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Abstract1

Dual RNA-Seq is the simultaneous analysis of host and parasite transcriptomes. This2

approach can identify host-parasite interactions by correlated gene expression. Co-expression3

might highlight interlinked signaling, metabolic or gene regulatory pathways in addition4

to potentially physically interacting proteins. Numerous studies have used gene expression5

data to investigate Plasmodium infection causing malaria. Usually such studies focus on6

one organism – either the host or the parasite – and the other is considered “contami-7

nant”. Dual RNA-Seq, in contrast, follows the rationale that cross-species interactions8

determine not only virulence of the parasite but also tolerance, resistance or susceptibility9

of the host.10

Here we propose a meta-analysis approach for dual RNA-Seq. We screened malaria11

transcriptome experiments for studies providing gene expression data from both Plasmod-12

ium and its host. Out of 105 malaria studies in Homo sapiens, Macaca mulatta and Mus13

musculus, we identified 56 studies with the potential to provide host and parasite data.14

While 15 studies (1935 total samples) of these 56 explicitly aimed to generate dual RNA-15

Seq data, 41 (1129 samples) had an original focus on either the host or the parasite. We16

show that a total of up to 2530 samples are suitable for dual RNA-Seq analysis providing17

an unexplored potential for meta analysis.18
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We argue that the multitude of variations in experimental conditions found in the19

selected studies should help narrow down a conserved core of cross-species interactions.20

Different hosts used as laboratory models for human malaria infection are infected by21

evolutionarily diverse species of genus Plasmodium. We propose that a conserved core of22

interacting pathways and co-regulated genes might be identified using overlying interaction23

networks of different host-parasite species pairs based on orthologous genes. Our approach24

might also provide the opportunity to gauge the applicability of model systems for different25

pathways in malaria studies.26
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Introduction27

Transcriptomes are often analysed in a first attempt to understand cellular and organismic28

events, because a comprehensive profile of RNA expression can be obtained at reasonable29

cost and with high technical accuracy [1]. Microarrays dominated transcriptomics for over30

ten years since 1995 [2–4]. Microarrays quantify gene expression based on hybridisation31

of a target sequence to an immobilised probe of known sequence. Technical difficulties32

associated with microarrays lie in probe selection, cross-hybridization, and design cost of33

custom chips [5]. RNA sequencing (RNA-Seq) eliminates these difficulties and provides34

deep and accurate expression estimates for all RNAs in a sample. RNA-Seq has thus35

replaced microarrays as the predominant tool for transcriptomics [1,6]. RNA-Seq assesses36

host and parasite transcriptomes simultaneously, if RNA of both organisms is contained in37

a sample. Virulence of infectious disease is often a result of interlinked processes of both38

host and pathogen (“host-pathogen interactions”) and it has been proposed to analyse39

transcriptomes of both organisms involved in an infection to obtain a more complete40

understanding of disease [5–7]. This approach is called dual RNA-Seq.41

In case of malaria, unlike in bacterial infections, both the pathogen and the host are42

eukaryotic organisms with similar transcriptomes. Host and parasite mRNA is selected43

simultaneously when poly-dT priming is used to amplify polyadenylated transcripts [5,6].44

This makes most malaria transcriptome datasets potentially suitable for dual RNA-Seq45

analysis. Malaria research, especially transcriptomics, is traditionally designed to target46

one organism, either the host or the parasite. Expression of mRNA, for example, can47

be compared between different time points in the life cycle of Plasmodium or between48

different drug treatment conditions. In the mammalian intermediate host, Plasmodium49

invades first liver and then red blood cells (RBCs) for development and asexual expansion.50

While the nuclear machinery of cells from both host and parasite produces mRNA in the51

liver, RBCs are enucleated and transcriptionally inactive in mammalian host. In blood52

infections leukocytes are thus the source of host mRNA. Researchers conducting a targeted53

experiment might regard transcripts from the non-target organism as “contamination”.54

Nevertheless, expression of those transcripts potentially responds to stimuli during the55

investigation. Additionally, some recent studies on malaria make intentional use dual56

RNA-Seq. Malaria is the most thoroughly investigated disease caused by an eukaryotic57

organism and accumulation of these two kinds of studies, RNA-Seq with “contaminants”58
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and intentional dual RNA-Seq, provides a rich resource for meta-analysis.59

Such a meta analysis can use co-regulated gene expression to infer host-parasite inter-60

actions. Correlation of mRNA expression can be indicative of different kinds of biological61

“interactions”: On one hand, protein products could be directly involved in the forma-62

tion of complexes and might therefore be produced at quantities varying similarly under63

altered conditions. On the other, involvement in the same biological pathways can re-64

sult in co-regulated gene expression without physical interaction. This broad concept of65

interaction has long been exploited in single organisms (e.g. [?, 8–10]). We (and others66

before [11]) propose to extrapolate this to interactions between the host and pathogen. It67

can be expected that a stimulus presented by the parasite to a host causes host immune68

response and the parasite in turn tries to evade this response, creating a cascade of genes69

co-regulated at different time points or under different conditions.70

In this paper we explore first steps in a comparative meta-analysis of dual RNA-Seq71

transcriptomes. Existing raw read datasets collectively present an unexplored potential to72

answer questions that have not been investigated by individual studies. Meta-analysis in-73

creases the number of observations and statistical power and helps eliminate false positives74

and true negatives which may otherwise conceal important biological inferences [12–14].75

Since mice- and macaque-malaria are often used as laboratory models for human malaria,76

we analyse the availability and suitability of mRNA sequencing data from three evolution-77

arily close hosts - Homo sapiens, Macaca mulatta and Mus musculus - and their associated78

Plasmodium parasites. We summarize available data, challenges and approaches to obtain79

host-parasite interactions and discuss orthology across different host-parasite systems as80

a means to enrich information.81

Data review and curation of potentially suitable82

studies83

Sequence data generated in biological experiments is submitted to one of the three mirror-84

ing databases of the International Nucleotide Sequence Database Collaboration (INSDC):85

NCBI Sequence Read Archive (SRA), EBI Sequence Read Archive (ERA) and DDBJ Se-86

quence Read Archive (DRA). Comprehensive query tools to access these databases via87

web interfaces and programmatically via scriptable languages exist (for example, SRAdb,88
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ENAbrowseR). In these databases, all experiments submitted under a single accession are89

given a single “study accession number” and are collectively referred to as a “study” here90

onwards.91

We used SRAdb [15], a Bioconductor/R package [16, 17], to query SRA [18, 19] for92

malaria RNA-Seq studies with the potential to provide host and Plasmodium reads for93

our meta-analysis. We first selected studies with “library strategy” given as “RNA-Seq”94

and “Plasmodium” in study title, abstract or sample attributes using the “dbGetQuery”95

function. Then we used the “getSRA” function with the query “(malaria OR Plasmodium)96

AND RNA-Seq”. This function searches all fields. We manually curated the combined97

results and added studies based on a literature review using the terms described for98

the “getSRA” function in SRA, PubMed and Google Scholar. During this search, we99

disregarded 91 studies, all of which provide data from vectors and non-target hosts (e.g.100

avian malaria). 49 more studies were excluded because their gene expression data was101

derived from Plasmodium. spp cultures in erythrocytes, blood or RPMI and thus can be102

expected to be devoid of host mRNA. We then used the SRAdb Bioconductor/R package,103

and the prefetch and fastq-dump functions from SRAtoolkit, to download all replicate104

samples (called “runs” in the databases) of the selected studies. The curation of studies105

and the download was performed on 21 January, 2019.106

In total we found 56 potentially suitable studies in this database and literature review.107

The host organism for 22 studies was Homo sapiens, for 24, Mus musculus and for 10,108

Macaca mulatta. The corresponding infecting parasites were P. falciparum, P. vivax and109

P. berghei in human studies (including four artificial infections of human liver cell culture110

with P. berghei), P. yoelii, P. chabaudi and P. berghei in mouse studies and P. cynomolgi111

and P. coatneyi in macaque studies(table 1).112

We note that 20 of the 56 studies depleted (or enriched, respectively) specific classes of113

cells from their samples. Some studies, for example, targeted the parasite using vaccines114

derived from sporozoites during liver infection [20–22]. Such infection is physiologically115

asymptomatic and a low number of parasites cells [23] makes it difficult to study Plas-116

modium transcriptomes in this stage. To reduce overwhelming host RNA levels, 3 out of117

10 liver studies sorted infected hepatoma cells from uninfected cells. Similarly, 17 other118

studies have depleted or enriched host WBCs (leukocytes) to focus expression analysis on119

Plasmodium or the host immune system, respectively. In all these scenarios, we suspect120

depletion to be imperfect and thus the samples to potentially include mRNA of both or-121
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ganisms. We note, however, that host gene-expression for WBC-depleted samples might122

be problematic as incomplete depletion might affect different types of WBCs differentially123

and hence bias the detectable host mRNA expression in the direction of less-depleted cell124

types. For the similar reasons, parasite depletion might be challenging to control for.125

For 15 out of the 56 studies the authors state that they intended to simultaneously126

study host and parasite transcriptomes (“dual RNA-Seq”). This includes 8 studies from127

MaHPIC (Malaria Host-Pathogen Interaction Center), based at Emory University, that128

made extensive omics measurements in macaque malaria. The original focus of the re-129

maining 41 studies was on the parasite in 20 and on the host in 21 cases.130

Plasmodium parasites sequester in bone marrow, adipose tissue, lung, spleen and brain131

(the latter causing cerebral malaria) [24, 25]. To study a comprehensive spectrum of132

host-parasite interactions it would be optimal to have data from these different tissues.133

Our collection of studies represent data derived from blood and liver for all three host134

organisms. In addition, we have seven spleen studies ( [26–32]) and two studies of cerebral135

malaria ( [33,34]) from mice. MaHPIC offers a collection of blood and bone marrow studies136

in macaques.137

Experiments performed on mouse blood focus on the parasite instead of the host (11138

vs. 0). Studies on human blood infection focus more often on the host immune response139

than on the parasite (9 vs. 5). Liver and spleen studies focus on host and parasite almost140

equally as often, with sources for host tissue in this case being either mice (in vivo) or141

hepatoma cell cultures (in vitro). We, here, argue that small clusters of genes co-expressed142

across several of such diverse conditions might help to point towards potentially novel core143

host-parasite interactions.144

Dual RNA-Seq suitability analysis145

A sample (experimental replicate or “run” in the jargon of sequencing databases) suitable146

for dual RNA-Seq analysis must provide “sufficient” gene expression from both host and147

parasite. To assess the proportion for host and parasite RNA sequencing reads in each148

study and sample we mapped sequencing reads onto concatenated host and parasite ref-149

erence genomes using STAR [35,36]. Simultaneous mapping against both genomes should150

avoid non-specific mapping of reads in regions conserved between host and parasites. We151

quantified the sequencing reads mapped to exons using the “countOverlaps” function of152
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the GenomicRanges package [37] and calculated the proportion of reads mapping to host153

and parasite genes.154

The proportions of host and parasite reads for each run does not always reflect the155

original focus of a study (fig. 1a). Studies using no depletion or enrichment give us an idea156

how skewed overall RNA expression is towards one organism under native conditions: in157

studies on blood stage infections, the original focus is mostly on immune gene expression158

from leukocytes. In the respective samples the number of host reads is often overwhelming159

unless parasitemia is very high, like in studies originally designed to use a dual RNA-Seq160

approach on blood stages. Samples with lower parasitemia are mostly not suitable for161

dual RNA-Seq analysis (table 1).162

Many studies using depletion or enrichment prior to RNA sequencing (“enriched/depleted”163

in fig. 1a) show considerable expression of the non-target organism. Studies on liver infec-164

tion, for example, [38] and [39], comprise several runs with balanced proportions of host165

and parasite reads. This is a result of infected liver cells being sorted from uninfected cells166

in culture. While the parasite has been the original target organism in most studies they167

provide data suitable for dual RNA-Seq. Studies depleting whole blood from leukocytes168

to focus on parasite transcriptomes still show considerable host gene expression and pro-169

vide principally suitable runs for the analysis of blood infection at lower intensities. The170

latter comes with the caveat that host expression might be biased by unequal depletion171

of particular cell types.172

To establish suitability thresholds for inclusion of individual samples (runs) in further173

analysis we plotted the number of host and parasite reads against the number of host174

and parasite genes expressed (fig. 1b and fig. 1c). For runs with high sequencing depth175

the total number of expressed genes of the host and parasite approaches the number of176

annotated genes: around 30000 for the mammalian host and around 4500 for Plasmodium.177

When sequencing depth is lower, the number of genes detected as expressed is lower and178

a decrease in sensitivity can be expected to prevent analysis of lowly expressed genes. We179

propose four parameters for suitability thresholds in dual RNA-Seq analysis: the number180

reads mapping to host (1) and (2) parasite genes and the number of genes these reads map181

to (expressed genes) in host and parasite (3, 4). In table 1, we give the number of runs182

considered suitable for three different combinations of thresholding. Without claiming a183

particular thresholds to be ideal we propose to use thresholds to avoid uninformative runs184

in further processing to reduce the computational burden of co-expression analysis.185
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Figure 1: Proportion and number of sequencing reads and expressed genes from parasite and host in selected malaria RNA-Seq studies. We mapped
sequencing reads from studies selected for their potential to provide both host and parasite gene expression data (studies N=56, total runs n=3064)
mapped against appropriate host and parasite genomes. (a) The percentage of parasite reads (x-axis) is plotted for runs in each study. The studies are
categorised according to the host organisms and labeled “enriched/depleted” to indicate enrichment of infected hepatocytes or depletion of leukocytes
from blood. Studies labeled “dual” were originally intended to simultaneously assess host and parasite transcriptomes. We also plot the number of
reads mapped against the number of expressed genes for host (a) and parasite (b). The number of expressed genes increases with sequencing depth
towards the maximum of all annotated genes for the respective organism. The vertical lines indicate a threshold of 1.000.000 and 100.000 reads for
host and parasite, respectively. The horizontal lines correspond to thresholds on the number of expressed genes at 10.000 and 3.000 for host and at
1.000 and 100 for the parasite. At such exemplary thresholds data could be considered sufficient for dual RNA-Seq analysis on both organisms.

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576116doi: bioRxiv preprint 

https://doi.org/10.1101/576116
http://creativecommons.org/licenses/by-nc/4.0/


T
ab

le
1:

N
u
m
b
er

of
st
u
d
ie
s
fo
r
ea
ch

h
os
t-
p
ar
as
it
e
p
ai
r
an

d
su
it
ab

il
it
y
an

al
y
si
s
of

th
ei
r
ru
n
s.

R
u
n
su
it
ab

il
it
y
an

al
y
si
s
fr
om

al
l
st
u
d
ie
s

H
os
t

P
ar
as
it
e

#
to
ta
l
st
u
d
ie
s

#
to
ta
l
ru
n
s

#
d
ep
le
ti
on

st
u
d
ie
s

#
d
ep
le
ti
on

ru
n
s

#
h
os
t
ge
n
es

#
p
ar
as
it
e
ge
n
es

n
o
th
re
sh
ol
d
on

re
ad

co
u
n
t

p
rc

a
>
=

10
5
h
rc

b
>
=

10
6

#
st
u
d
ie
s

#
ru
n
s

#
st
u
d
ie
s

#
ru
n
s

H
u
m
an

P
.
fa
lc
ip
ar
u
m

13
84
0

5
21
6

30
00

10
0

11
52
3

6
27
0

30
00

10
00

11
36
2

6
26
8

10
00
0

30
00

7
21
9

5
20
7

H
u
m
an

P
.
be
rg
he
i

4
77

4
77

30
00

10
0

3
60

2
16

30
00

10
00

3
42

2
16

10
00
0

30
00

3
25

2
16

H
u
m
an

P
.
vi
va
x

5
13
5

1
5

30
00

10
0

3
39

1
1

30
00

10
00

3
36

1
1

10
00
0

30
00

2
4

1
1

M
ou

se
P
.
be
rg
he
i

7
12
8

4
50

30
00

10
0

6
74

4
23

30
00

10
00

6
54

4
23

10
00
0

30
00

4
24

4
22

M
ou

se
P
.
ch
ab
au

di
10

92
6

7
17
4

30
00

10
0

8
86
9

7
34
1

30
00

10
00

7
80
1

7
34
1

10
00
0

30
00

7
25
2

6
10
9

M
ou

se
P
.
yo
el
ii

7
65

3
19

30
00

10
0

7
34

2
8

30
00

10
00

6
21

2
8

10
00
0

30
00

2
7

2
6

M
ac
aq

u
e

P
.
co
at
n
ey
i

3
70

0
0

30
00

10
0

3
74

3
26

30
00

10
00

3
53

3
26

10
00
0

30
00

3
33

3
26

M
ac
aq

u
e

P
.
cy
n
om

ol
gi

7
84
9

0
0

30
00

10
0

7
85
7

7
37
5

30
00

10
00

7
70
6

7
35
7

10
00
0

30
00

7
51
4

7
36
5

a
p

rc
:

p
ar

as
it

e
re

ad
co

u
n
t

b
h

rc
:

h
os

t
re

ad
co

u
n
t

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2019. ; https://doi.org/10.1101/576116doi: bioRxiv preprint 

https://doi.org/10.1101/576116
http://creativecommons.org/licenses/by-nc/4.0/


Suitable runs at the thresholds chosen here are identified from human-P. falciparum,186

monkey-P. cynomolgi, human-P. berghei and mouse-P. berghei systems. Unfortunately,187

with current thresholds and currently available data, we highly under-represent human-188

P. vivax and human-P. berghei systems, the two liver in vitro models. This outcome189

is understandable owing to the low parasitemia in liver cultures [40]. We note that the190

thresholds could further be made lenient enough to include more runs for these systems191

at the cost of analysing only the most highly expressed parasite genes. An alternative192

approach relies on depleted/enriched samples for these systems. For further analysis,193

however, we it could prove challenging to include depleted/enriched samples as discussed194

before. Analysis approaches such as multilayer networks (see below) might help to gauge195

problems with such runs for the inference of co-expression in further steps of analysis.196

Identification of co-expressed genes via correlation197

techniques198

Some genes are likely to show almost uniform expression under different experimental con-199

ditions (“housekeeping genes”). Naive assessments of correlation could, however, identify200

pairs of such genes as highly correlated. An analysis of co-expression can deal with this201

challenge in two different ways:202

Firstly, the most variable genes within and across studies can be selected and other203

genes discarded. While requiring little computational time and resources, exclusion of204

genes with too little variance in expression from downstream analysis should be per-205

formed with caution, as seemingly small variations might result in a suitable signal over206

a large set of runs. To select only variable genes, one option is to compute their variance207

across all samples (in one or multiple studies). Genes with variance below a threshold208

may then be excluded from further analysis. As variance increases with the mean for209

gene expression data, the Biological Coefficient of Variation (BCV) [41,42] may provide a210

more robust threshold. Secondly, one can compute empirical correlation indices, similar211

to p-values, for any gene-pair. Empirical p-values are a robust way to estimate whether212

gene-pairs are correlated because of specific events (treatment condition, time point) and213

not by chance (e.g., housekeeping genes) [43, 44]. These methods construct a null dis-214

tribution using permutations of the given data instead of assuming a null distribution215
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in advance. Since host and parasite genomes total nearly 30,000 genes, the number of216

permutations has to be around 1.6×109 to be suitable for corrections for multiple-testing.217

Alternatively, as computational costs for these permutations can be expected to be too218

high for datasets with thousands of samples, non-corrected “p-values” may be consid-219

ered a ranking for host-parasite gene correlation, following the suggestion of Reid and220

Berriman [11]. Nevertheless, reliance on empirical computation of p-values without prior221

variance/BCV filtering might become impracticable for very large datasets in the proposed222

meta- analysis.223

We consider partial correlation as an additional approach that could be combined with224

the above methods. Partial correlation can control pairwise correlations for the influence225

of other genes [45]. In transcriptomic applications full-conditioned partial correlation is226

computationally very expensive. Some studies therefore resort to second-order partial227

correlation (relationship between two genes independent of two other genes) [46–48]. A228

suitable pipeline might first use (zero-order partial, that is “regular”) correlation with229

empirical p-values to remove constitutively expressed gene-pairs. For all correlations with230

an empirical “p-value” below a certain threshold, one could compute e.g. first-order partial231

correlations reducing the number of computations. Iterations of such an approach with232

higher-order partial correlations are then possible.233

Across different studies; across different host-parasite234

systems235

Gene × gene matrices obtained from correlation analysis can be visualised and analysed236

as interaction networks. We have identified different but interlinked workflows to recon-237

struct a consensus network of expression correlation (fig. 2). A first approach (fig. 2(a))238

integrates data from different studies of one host-parasite system by simply appending239

expression profiles of their runs.240

Knowledge of 1:1 orthologs [49] between different host and different parasite species241

can be used in the next steps to integrate across different host-parasite systems. Humans242

and macaques share 18179 1:1 orthologous genes, humans and mice share 17089 ortholo-243

gous genes and 14776 genes are 1:1:1 orthologs among all three species. Similarly, 7760244

groups of orthologous genes exist among the Plasmodium species. A simple approach245
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to combine data across host-parasite systems could again append those orthologs in the246

original datasets before correlations of gene expression.247

Figure 2: Two strategies identified to reconstruct host-parasite interaction networks from SRA. We identified two approaches to obtain a consensus
network involving multiple hosts and multiple parasites. We selected appropriate studies from SRA for this analysis. The aim is to find a set of
important interactions in malaria using co-regulated gene expression and visualising this information as a biological network. Using the first approach
(figure (a)), we form single networks from single RNA-seq datasets or single networks from all studies of a host-parasite system appended one after the
other, using cross-species gene correlation. To obtain a consensus network for all hosts and all parasites, we use 1:1 orthologous genes names for all hosts
and all parasites, rename these genes to show their equivalency and append them to form one big dataset. Next we perform pairwise correlation of genes
and finally, a network that will represent the direct interactions among orthologous genes. In (b), the second approach, we implement multi-layered
network analysis to obtain a consensus network from several layers of individual networks. In this approach, we make single networks for individual
RNA-seq datasets. To obtain a network for a host-parasite system, we either append all datasets of the host-parasite system with each other and form a
network, or we apply multi-layered network analysis on single networks to get the consensus. To reconstruct a network involving multiple host-parasite
systems, we rename orthologous genes in each layer and then look for overlapping communities.

Alternatively, to construct a consensus network involving all hosts and parasites, a248

multi-layer network analysis could align networks by orthologous genes. This approach249
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can offer more control when looking for similar correlation in different layers representing250

different host-parasite systems. Similarly, more insight could be possible when correlations251

from different types of tissues are combined as multilayer networks. This would only252

require the construction of networks for a single host-parasite system and multi-layered253

network analysis on networks from single studies of the same host-parasite system.254

We hope correlation between host and parasite transcript expression to highlight host-255

parasite interactions worth scrutiny of further focussed research. As a second goal, meta-256

analysis involving different host-parasite systems could give insights into how easily other257

insights obtained in malaria models can be translated to human malaria. If e.g. certain258

groups of pathways show lower evolutionary conservation in host-parasite co-expression259

networks, one could expect results on those to be harder to translate between systems.260

Finally, one can ask whether expression correlation between host and parasite species is261

more or less evolutionarily conserved than within host species [50–52].262
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[150] S. van Dam, U. Võsa, A. van der Graaf, L. Franke, and J. P. de Magalhães, “Gene737
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S. Gómez, and A. Arenas, “Mathematical formulation of multilayer networks,” Phys.760

Rev. X, vol. 3, p. 041022, Dec 2013.761

[160] W. Liu, T. Suzumura, H. Ji, and G. Hu, “Finding overlapping communities in762

multilayer networks,” PLOS ONE, vol. 13, pp. 1–22, 04 2018.763

[161] Y. Zhao, E. Levina, and J. Zhu, “Community extraction for social networks,” Pro-764

ceedings of the National Academy of Sciences, vol. 108, no. 18, pp. 7321–7326, 2011.765

[162] B. Zhang and S. Horvath, “A general framework for weighted gene co-expression766

network analysis,” Statistical Applications in Genetics and Molecular Biology, vol. 4,767

no. 1, 2005.768
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