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Abstract (250 words) 

Cell surface proteins play critical roles in a wide range of biological functions and disease 

processes through mediation of adhesion and signaling between a cell and its environment. 

Owing to their biological significance and accessibility, cell surface proteomes (i.e. surfaceomes) 

are a rich source of targets for developing tools and strategies to identify, study, and manipulate 

specific cell types of interest, from immunophenotyping and immunotherapy to targeted drug 

delivery and in vivo imaging. Despite their relevance, the unique combination of molecules 

present at the cell surface are not yet described for most cell types. While modern mass 

spectrometry approaches have proven invaluable for generating discovery-driven, empirically-

derived snapshot views of the surfaceome, significant challenges remain when analyzing these 

often-large datasets for the purpose of identifying candidate markers that are most applicable for 

downstream applications. To overcome these challenges, we developed SurfaceGenie, a web-

based application that integrates a consensus-based prediction of cell surface localization with 

user-input data to prioritize candidate cell type specific surface markers. Here, we outline the 

development of the strategy and demonstrate its utility for analyzing human and rodent data from 

proteomic and transcriptomic workflows. An easy-to-use web application is freely available at 

www.cellsurfer.net/surfacegenie. 

Introduction 

Cell surface proteins play critical roles in a wide range of biological functions and disease 

processes through mediation of adhesion and signaling between a cell and its environment. 

Owing to their biological significance and accessibility, cell surface proteomes (i.e. surfaceomes) 

are a rich source of targets for developing tools and strategies to identify, study, and manipulate 

specific cell types of interest, from immunophenotyping and immunotherapy to targeted drug 

delivery and in vivo imaging. A growing interest in cell type specific data has fueled the generation 

of the Cell Surface Protein Atlas (1), Human Protein Atlas (2), Human Cell Atlas Project (3), and 
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related efforts. However, the unique combination of molecules present specifically at the cell 

surface are not yet described for most cell types or disease states, and thus continued discovery 

and annotation efforts are needed.  

Mass spectrometry (MS) based workflows can be applied to identify and quantify hundreds 

to thousands of cell surface proteins (1, 4-14). Particularly, chemoproteomic methods to 

specifically label and subsequently affinity enrich cell surface proteins can provide experimental 

evidence of a protein’s subcellular location and therefore enable the generation of discovery-

driven, empirically-derived snapshot views of the surfaceome (10, 15, 16). These approaches 

offer significant advantages over transcriptomic approaches, which cannot directly inform protein 

abundance or localization, and antibody-based strategies which are limited to molecules for which 

high quality reagents are available.  As such, these MS-based chemoproteomic approaches are 

well-suited to defining cell type specific surfaceomes and serve as a useful first step in defining 

the cellular phenotype, enabling the development of marker combinations (i.e. barcodes) that are 

cell type specific (17, 18).  

Despite their advantages, these chemoproteomic methods generally require >50 million 

cells, on average, to produce high quality results, which may preclude their application to sample-

limited cell types such as primary cells. Although a recent study suggests these methods can be 

applied to smaller numbers of cells (15), methods that enable routine discovery on very low 

numbers of cells are not yet widely available. Furthermore, to ensure the results from these 

approaches provide empirical evidence of surface localization, the initial chemical labeling must 

be applied to cells with intact plasma membranes, which can pose challenges for certain cell 

types. For these reasons, more general proteomic approaches that accurately identify and 

quantify proteins will continue to be useful in the search for cell surface proteins that are 

informative for a particular cell type or disease status, albeit with the caveat that they offer less 

inherent specificity for cell surface proteins. Independent of the discovery strategy employed, 
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bioinformatic predictions can serve as an important complement to experimental approaches by 

providing a means to filter data and prioritize the focus on proteins that are predicted to be 

localized to the cell surface (19-22). 

Though MS is well-suited to the identification of cell-type specific proteins, ultimately, 

antibodies (Ab) or other affinity reagents that recognize specific epitopes on cell surface proteins 

are required for most downstream applications such as live cell sorting, imaging, and drug 

targeting by Ab-drug conjugates. Considering the significant cost and time required to generate 

and validate affinity reagents for these purposes, it is prudent that the candidate marker 

prioritization is as selective as possible prior to reagent generation. Specifically, candidate 

selection should consider whether a marker is likely to be accessible to and detectable by affinity 

reagents in a manner that allows cell types of interest to be discriminated from non-target cells. 

Moreover, these assessments should be objective and suited to the analysis of large datasets 

such as those provided in proteomic and transcriptomic studies. To address these outstanding 

needs, we developed GenieScore, a mathematical strategy that integrates a consensus-based 

prediction of cell surface localization with user-input data to prioritize candidate cell type specific 

surface markers. Here, we outline the development of the strategy and demonstrate its utility for 

analyzing data from proteomic workflows that specifically identify cell surface proteins (e.g. CSC) 

and more general strategies (e.g. whole-cell lysate proteomics and transcriptomics). To facilitate 

its implementation for a broad range of study and data types, we developed SurfaceGenie, an 

easy-to-use web application that calculates the GenieScore for user-input data and further 

annotates the data with ontology information relevant for cell surface proteins. SurfaceGenie is 

freely available at www.cellsurfer.net/surfacegenie. 

Results 

Generation of a surface prediction consensus (SPC) dataset for predictive localization 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/575969doi: bioRxiv preprint 

http://www.cellsurfer.net/surfacegenie
http://www.cellsurfer.net/surfacegenie
https://doi.org/10.1101/575969
http://creativecommons.org/licenses/by-nc/4.0/


Based on first principles, three features of a protein predominate its capacity to serve as 

a cell surface marker capable of distinguishing among cell types (Figure 1A). These include (1) 

presence at the cell surface, (2) difference in abundance among cell types, and (3) sufficient 

abundance for antibody-based detection. Whereas features concerning the abundance must be 

determined empirically, a consensus-based predictive approach was adopted to represent 

whether a protein is capable of being present at the cell surface, as this feature is largely a function 

of its primary sequence. To this end, four previous bioinformatic-based constructions of the 

human cell surface proteome were compiled into a single, surface prediction consensus (SPC) 

dataset resulting in 5,407 protein accession numbers (Dataset S1, 4.1). The strategies used to 

generate these predicted human surface protein datasets varied markedly, from manual curation 

to machine learning, and resulted in datasets ranging 1090-4393 surfaceome proteins each. 

Overall, the dataset sizes are a primary determinant as to how the datasets intersect (Figure S1). 

For example, the number of proteins exclusive to a prediction strategy is positively correlated to 

the size of the original dataset, albeit not in a linear manner, comprising 1.7%, 4.4%, 9.6%, and 

26.5% for the Diaz-Ramos, Bausch-Fluck, Town, and Cunha datasets, respectively. Despite 

these differences, there was considerable overlap among these predictions, with 69% and 41% 

of proteins in the SPC dataset occurring in ≥ 2 or ≥ 3 individual prediction sets, respectively. To 

stratify the proteins in the SPC dataset according to how likely they are to be truly present at the 

cell surface, each protein was assigned one point for each of the individual predicted datasets in 

which that protein appeared, termed SPC score - any protein not present in the dataset is 

assigned a score of 0 (Dataset S1, 4.1). The distribution of SPC scores in the compiled dataset 

is shown in the histogram in Figure 1B where 1671, 1507, 1497, and 732 proteins are assigned 

a score of 1, 2, 3, and 4, respectively. (Figure S1). To enable more widespread application, 

homologous accession numbers were mapped between human and mouse using the Mouse 

Genome Informatics database (http://www.informatics.jax.org) and human and rat using the Rat 

Genome Database (https://rgd.mcw.edu) (Dataset S1, 4.2-3). 
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Benchmarking the SPC dataset against other annotations 

The SPC dataset was compared to three established strategies for determination of cell 

surface localization – Gene Ontology Cellular Component (GO-CC) Annotations, annotations 

within the Cell Surface Protein Atlas (CSPA), and annotations generated through application of 

HyperLOPIT(23). Comparisons to GO-CC were consistent with expectations as ‘nucleus’ and 

‘cytoplasm’ were the two most common terms for proteins with an SPC scores of 0, ‘integral 

component of membrane’ and ‘membrane’ for SPC scores of 1, and ‘integral component of 

membrane’ and ‘plasma membrane’ for SPC scores of 2-4 (Figure S2A). The ‘confidence’ 

assignment to proteins in the CSPA correlated well with SPC score for both human and mouse, 

with the notable outlier of ~17% of proteins assigned ‘high confidence’ having an SPC score of 0 

(Figure S2B). However, upon closer inspection, 95% these proteins are predicted to be secreted 

or extracellular matrix proteins (Secretome P, (24)), which can be captured by CSC but are not 

integral membrane proteins. HyperLOPIT annotations agreed with SPC score to a lesser extent, 

with the most common annotations in proteins with SPC scores of 3 or 4 being ‘plasma 

membrane’. However, ‘ER/Golgi apparatus’ was the most common annotation in proteins with 

SPC scores of 1 or 2 (Figure S2C). Though these comparisons demonstrated agreement overall, 

the SPC dataset provides unique and specific information in addition to assigning the predictions 

in a non-binary manner. As the SPC score is not dependent on experimental observation, it is 

more comprehensive in coverage than the CSPA and HyperLOPIT. These differences offer 

significant advantages for mathematically assigning the likelihood that a protein is present at the 

cell surface in a predictive manner. 

Applying the SPC dataset to compare two proteomic approaches for surface protein identification 

The concept of specificity as it relates to cell surface markers is always context dependent, 

meaning a protein or set of proteins may be useful for identifying a particular cell type in one 

context, but not another (e.g. a protein that is specific to a single cell type within an organ may 
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not be specific to that organ when all other tissues in the body are considered). Therefore, 

prioritization of cell surface proteins that are likely capable of serving as informative markers 

should consider experimental data from relevant cell types, including the target and non-target 

cell types that are to be discriminated. We previously demonstrated that the Cell Surface Capture 

Technology (CSC) applied to 100 million cells can yield proteins capable of distinguishing among 

four human lymphocyte cell lines (25). Here, we performed whole-cell lysate (WCL) digestion of 

5 million cells of these same cell lines to determine whether a generic proteomic approach coupled 

with SPC score and GenieScore analysis could identify cell surface proteins sufficient to 

distinguish among these cell lines. Compared to the CSC analysis which identified 470 proteins, 

the WCL approach identified 3858 proteins (≥2 unique peptides). While the majority, 73% (343), 

of the CSC-identified proteins are predicted to be cell surface localized (i.e. SPC scores of 1-4), 

only 13% (485) of the WCL proteins (Figure 2) met this criterion. This trend is expected due to 

the high specificity of CSC for cell surface proteins (10, 11, 13, 25). Though predicted surface 

proteins were identified by both proteomic approaches, the distributions of SPC scores suggest 

more confidence in the surface localization of CSC proteins compared to WCL. This is exemplified 

by the number of cluster of differentiation (CD) molecules in each SPC-scoring subset, where 109 

of 343 proteins from CSC and 50 of 485 proteins from WCL are annotated as CD molecules 

(Dataset S1 4.4-5). Despite these differences, applying a hierarchical clustering approach to the 

peptide spectrum matches (PSMs) assigned to individual biological replicates for the subset of 

proteins in each dataset with an SPC scores of 1-4 recapitulated the clustering predicted based 

on the entire dataset for both proteomic approaches (Figure 2). Although these datasets were 

collected on the same cell lines, only 127 proteins with SPC scores 1-4 were observed in both 

datasets, which represent 37% and 26% of the CSC and WCL predicted surface proteins, 

respectively. These data highlight that despite the challenges in identifying cell surface proteins 

when using generic proteomic strategies that do not specifically enrich for them, application of the 
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SPC-scoring approach can provide a statistical strategy for determining whether the data are 

sufficient to differentiate among cells lines.  

Testing two label-free quantitation strategies as input data for SurfaceGenie 

The GenieScore was calculated for each protein in the CSC and WCL datasets using 

PSMs as inputs for the two terms based on experimental data - signal dispersion and signal 

strength (Figure 1). GenieScores were plotted against the rank-order - according to GenieScore 

- for CSC and WCL data resulting in a rectangular-hyberbola-like shape, namely, a subset of 

higher-scoring proteins that trail off into a majority of proteins that are lower-scoring (Figure 2). 

Although the range of GenieScores was similar for both proteomics approaches (6.59 and 6.16 

for CSC and WCL, respectively) there are significant differences in the average and distribution, 

due to the statistical differences between CSC and WCL for each of the terms used to calculate 

GenieScore – SPC scores, signal dispersion, and signal strength (Figure S3). These differences 

are likely consequences of the highly-selective nature of CSC for identifying cell surface proteins. 

Although CSC provides empirical evidence of surface localization, unlike WCL, the laborious 

sample processing involved in selective enrichment of N-glycopeptides can introduce more 

experimental variability compared to the simple WCL digestion. Moreover, CSC results in fewer 

peptides identified per protein owing to the restriction to tryptic N-glycosylated peptides. Despite 

the differences between these two proteomic approaches, the GenieScores for the 127 proteins 

identified in both proteomic approaches were relatively well correlated (R = 0.66) (Dataset S1 4.6, 

Figure S3). Recognizing the potential challenges of relying on PSMs for quantitative comparisons, 

peak areas for selected proteins were calculated using Skyline to provide an alternative type of 

experimental data for calculating the GenieScore. Selection criteria for peptides analyzed in 

Skyline are provided in the Supporting Information Methods section. The GenieScores calculated 

using MS1 peak areas correlated well with the GenieScores using PSMs (R = 0.79 and 0.86 for 

CSC and WCL, respectively (Figure 2)). As the calculation of GenieScore relies on averages (as 
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opposed to individual replicate measurements) the relationship between the product of the 

GenieScore experimental terms (signal dispersion and signal strength) and the statistical 

difference (which considers variability in measurement) between cell lines was investigated. A 

positive relationship was observed, with correlations of 0.47 and 0.73 for CSC and WCL, 

respectively. The positive relationship suggests that the equation for the GenieScore is likely to 

be prioritizing proteins for which there is a statistical difference (Dataset S1 4.7-8). Overall the 

GenieScore is a robust prioritization metric, demonstrating similar rank ordering for proteins 

common to CSC and WCL data and for proteins within CSC or WCL using the different 

quantitative measurements (PSMs or MS1 peak area).  

Benchmarking GenieScore against a published study of surface proteins in cancer cell lines 

Though the GenieScore appears to be a valid metric insofar as it produced similar rank 

ordering independent of the type of input data, we sought to benchmark it against a published 

study that validated markers which were originally selected based on experimental proteomic and 

transcriptomic data. In the test dataset, seven antibodies were generated to surface proteins 

upregulated on RAS-driven cancer cells compared to a control cell line (26). As the CSC results 

in this study were reported as a log-fold change without individual values, the signal strength 

component of the GenieScore was calculated using the FPKM values from the RNA-Seq dataset. 

Of the 122 proteins found to be more abundant in the MCF10A KRASG12V cells relative to empty 

vector control, the proteins selected for antibody development ranked 1,2,3,8, 28, and 30 in our 

GenieScore analysis (Figure 3A). The rank-order by GenieScore was compared to the rank-order 

of log2 fold change in abundance (a metric denoted as selection criteria in the original manuscript) 

(Figure 3A). The GenieScore also performed well using the RNA-Seq data as a starting point, 

with the SPC analysis rapidly reducing the candidate list from 1139 upregulated proteins to 330 

with SPC scores of 1-4. The proteins selected for validation by antibody-based analysis in the 

manuscript are among the top candidates when rank-ordered by GenieScore (3, 4, 9, 10, 36) with 
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four of the five genes in the top 3% of the 330 SPC-scoring upregulated proteins.  These rank-

orders perform favorably compared to using log2 fold change in transcript levels (25, 37, 43, 50, 

115) (Figure 3B). Based on these results, the GenieScore is a powerful metric for selection of cell 

surface proteins that can serve as markers for immunodetection applications, and in this example 

highlights additional proteins of interest that were not targeted in the original study. 

Integrating GenieScores of proteomic and transcriptomic data to reveal candidate markers for 

Mouse Islet Cell Types 

As the GenieScore produced useful rank-ordering of potential protein markers from both RNA-

Seq and CSC data that were consistent with published results, we sought to determine if it would 

be a useful metric for integrating data from disparate studies for marker discovery. To this end, 

we performed CSC on mouse alpha and beta cell lines and compared the results to published 

RNA-Seq data acquired on primary alpha and beta cells from dissociated mouse islets (27). The 

datasets shared 321 predicted surface proteins in common, but when the GenieScores from CSC 

data were plotted against the GenieScores from the RNA-Seq data, they revealed a poor 

correlation (R = 0.25) (Figure 4A). This could be due to the fact that the CSC dataset was acquired 

on cell lines and the RNA-Seq was on primary cells. However, in the context of marker discovery, 

each of these approaches offers advantages, namely, the CSC data provides experimental 

evidence regarding abundance at the cell surface and the RNA-Seq analysis of primary cells 

avoids possible artifacts introduced by culturing cells ex vivo. Recognizing the benefits of these 

complementary approaches, the data were combined in a manner that weighs them equally. 

Specifically, the GenieScores were normalized to the maximum value from each dataset and then 

the scores were averaged (Figure 4B). The top candidate markers for alpha and beta cells 

revealed by this combined approach are provided in Figure 4C. Several of these have been 

studied in the context of islet biology (e.g. GLP1R (28), LRP1 (29), CRHR1 (29)) and most (26/30) 

were identified in a proteomic study of intact human islets, suggesting potential utility across 
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species (30). Altogether, GenieScore calculations provide a rapid method for integrating 

proteomic and transcriptomic data for surface marker prioritization 

SurfaceGenie: a web-based application for integrating GenieScore and relevant annotations 

SurfaceGenie, a shinyApp written in R, was developed to enable calculation of the GenieScores 

for user input data. In this interface, users upload data as a csv file and can view the distribution 

of GenieScores and SPC scores for their data. Proteins are annotated with ontological information 

including CD and HLA molecule annotations. The plots and data generated are available for 

download, including the results for individual terms used to calculate GenieScore. Additional 

functionality includes the ability to query accession numbers in single or batch mode, independent 

of data type, to obtain SPC Scores. SurfaceGenie is freely available at 

http://www.cellsurfer.net/surfacegenie. 

Discussion 

Despite the central role cell surface proteins play in maintaining cellular structure and function, 

the cell surface is not well documented for most human cell types. There is currently no 

comprehensive reference repository of experimentally determined cell surface proteins cataloged 

by individual human cell types that can be used for comparison to experimental or diseased 

phenotype. Although specialized proteomic approaches allow for probing the occupancy of the 

cell surface, the sample requirements and technical sophistication often preclude widespread 

application, and quantitation is challenging. To overcome these challenges, predictions of surface 

localization can enable insights from more easily implemented proteomic and transcriptomic 

approaches, which can be performed on smaller sample sizes. Here, we describe the 

development of GenieScore, a calculation that integrates a predictive metric regarding surface 

localization with experimental data to prioritize proteins which may be useful as cell surface 

markers. We demonstrate that GenieScore is compatible with CSC, WCL, and RNA-Seq data 
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and is a useful framework by which to integrate multiple sources of data for marker discovery. A 

web-based application, SurfaceGenie, was generated to enable the calculation of SPC-scores 

and GenieScores on user-input data and annotation of datasets with functional annotations 

relevant for cell surface proteins.  

It is anticipated that SurfaceGenie will enable prioritization of cell surface markers to 

support a broad range of applications, including immunophenotyping, immunotherapy, and drug 

targeting for a range of research questions, from mechanistic studies to those in search of markers 

for disease. However, whether an expressed protein is localized to the cell surface on a specific 

cell type in a specific experimental or biological condition remains difficult to predict. This is 

especially true for proteins that do not fit the canonical model (e.g. lack a signal peptide) or are 

only trafficked to the cell surface upon ligand binding (e.g. glucose transporter). For these 

reasons, experimental workflows that provide capabilities for discovery (i.e. not limited to available 

affinity reagents) while providing experimental evidence of cell surface localization on a particular 

cell type of interest with a specific context (e.g. experimental condition, disease state) will remain 

invaluable.  

 

Methods 

All experimental details are provided in Supporting Information.  

Cell culture 

Human lymphocyte cell lines (Ramos, HG-3, RCH-ACV, Jurkat) were cultured and passaged as 

previously described (25). Alpha TC1 clone 6 (ATCC CRL-2934) and beta-TC-6 (ATCC CRL-

11506) cells were maintained at 37˚C and 5% CO2, cultured in Dulbecco’s Modified Eagle’s 

Medium (Gibco #11885-084) supplemented with 10% heat-inactivated fetal bovine serum 

containing 16.6 mM or 5.5 mM glucose, respectively. 
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Cell Lysis, Protein Digestion, and Peptide Cleanup 

For WCL analysis of lymphocytes, cell pellets were lysed in 100mM Ammonium Bicarbonate 

containing 20% acetonitrile and 40% Invitrosol (ThermoFisher Scientific), digested with trypsin 

overnight, and cleaned by SP2 following the standard operating protocol as described (31). 

Peptides were quantified using Pierce Quantitative Fluorometric Peptide Assay (ThermoFisher 

Scientific) according to manufacturer’s instructions on a Varioskan LUX Multimode Microplate 

Reader and SkanIt 5.0 software (ThermoFisher Scientific). For CSC analysis of mouse islet cell 

lines, samples were prepared as previously described (11, 13, 25). 

Label Free Quantitation by Mass Spectrometry  

Lymphocyte peptides and CSC samples of mouse islet cell types were analyzed by LC-MS/MS 

using a Dionex UltiMate 3000 RSLCnano system (ThermoFisher Scientific) in line with a Q 

Exactive (ThermoFisher Scientific). Lymphocyte samples were prepared as 50 ng/µL total sample 

peptide concentration with Pierce Peptide Retention Time Calibration Mixture (PRTC, Thermo) 

spiked in at a final concentration of 2 fmol/µL PRTC, and then blocked and randomized with two 

technical replicates analyzed per sample. CSC samples of mouse islet cell types were analyzed 

as described (32, 33). MS data were analyzed using Proteome Discoverer 2.2 (ThermoFisher 

Scientific) and SkylineDaily.  

Construction of a consensus dataset of predicted surface proteins  

Four published surfaceome datasets (19-22), each of which used a distinct methodology to 

bioinformatically predict the subset of the proteome which can be surface localized, were 

concatenated into a single consensus dataset. In this process, the UniProt retrieve/mapping ID 

tool (www.uniprot.org) was used to convert the gene names provided in the published 

surfaceomes to UniProt Accession numbers. Ambiguous matches were clarified by any 

supplementary information provided in the datasets in addition to gene name (i.e. alternate name, 
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molecule name, chromosome). To stratify the proteins within the consensus dataset, each was 

assigned a surface prediction consensus score (SPC score), a summed value whereby one point 

was awarded for each of the prediction strategies in which the protein appeared.  

GenieScore – A mathematical representation of surface marker potential  

An equation was developed to mathematically represent key features deemed relevant when 

considering whether a protein has high potential to be useful as a cell surface marker for 

distinguishing between cell types or experimental groups. The equation, which returns a metric 

termed the GenieScore, is the product of 1) the SPC scores (described above); 2) signal 

dispersion, a measure of the disparity in observations among investigated samples and is 

mathematically equivalent to the square of the normalized Gini coefficient; and 3) signal strength, 

a logarithmic transformation of the experimental data (e.g. number of peptide spectral matches, 

MS1 peak area, FKPM, or RKPM). A thorough definition and rationalization of the individual 

equation terms is provided in Supporting Information. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = (𝐺𝐺𝑆𝑆𝑆𝑆−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)∙�
𝐺𝐺

𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀
�
2
∙log(𝐺𝐺𝐺𝐺𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀) 

SurfaceGenie Web application 

A web application for accessing SurfaceGenie was developed as an interactive Shiny app written 

in R and is available at www.cellsurfer.net/surfacegenie.  

Supporting Information 

1. Figure S1 – Visualization of the intersections between datasets used to generate SPC 

score 

2. Figure S2 – Benchmarking the SPC score against GO terms, CSPA, and HyperLOPIT 

3. Figure S3 – Distributions of GenieScore terms in WCL and CSC lymphocyte data 
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4. Dataset S1 – (1) Human SPC dataset, (2) Mouse SPC dataset, (3) Rat SPC dataset, (4) 

lymphocyte WCL data with GenieScores, (5) lymphocyte CSC data with GenieScores, (6) 

GenieScores for proteins common to CSC and WCL, (7) ANOVA test statistics for WCL 

data, (8) ANOVA test statistics for CSC data 

5. Supplemental Methods 
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Figure Legends 

Figure 1: Overview of Surface Prediction Consensus (SPC) score and GenieScore. (A) The 

first principles hypothesized to be correlated to cell surface marker potential. (B) The first author 

and number of unique accession numbers in is shown for the four bioinformatic predictions used 

to generate SPC score (left) and the overall distribution of SPC Scores (right). The full dataset is 

provided in the Supporting Information (Dataset S1, 4.1) (C) The names of the terms and 

mathematical equation used to calculate GenieScore. 

 

Figure 2. SPC scores and GenieScores for whole-cell lysate and cell surface capture 

lymphocyte data. (A) cell surface capture and (B) whole cell lysate data from the analysis of four 

lymphocyte lines. (i) Hierarchical clustering using all identified proteins. (ii) Distribution of SPC 

scores using all identified proteins. (iii) Hierarchical clustering using proteins predicted to be 

surface-localized by SPC scores. (iv) Distribution of SPC scores for only the proteins predicted to 

be surface-localized. (v) Plot of GenieScore against rank-order of candidate cell surface markers. 

(vi) GenieScore calculated using MS1 peak area against GenieScore calculated using peptide 

spectral matches.  

 

Figure 3. Benchmarking GenieScore against a published surface marker study. (A) The 

GenieScore rank-order of proteins identified by CSC that were upregulated in MCF10A KRASG12V 

cells relative to empty vector control plotted against the relative difference in rank-order of proteins 

based on log2(fold change). (B) The GenieScores calculated using RNA-Seq data plotted against 

rank-order for predicted surface proteins. Labeled proteins were selected for antibody 

development - the protein in bold, CDCP1, being the focus of the study.  
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Figure 4. Application of a combined GenieScore for islet cell-type marker discovery. (A) 

GenieScore calculated using CSC data on mouse alpha and beta cell lines plotted against 

GenieScore calculated using RNA-Seq data on primary mouse alpha and beta cells. (B) The 

average normalized GenieScore calculated from integration of CSC and RNA-Seq data plotted 

against rank-order. (C) A table of top marker candidates for alpha and beta cells (colored in green 

and blue, respectively) shown with the SPC scores, average RKPM and PSMs, and combined 

GenieScores. 
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Figures: 
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