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Adapting a well-established formalism in polymer physics, we develop a minimalist approach to infer three-
dimensional (3D) folding of chromatin from Hi-C data. The 3D chromosome structures generated from our
heterogeneous loop model (HLM) are used to visualize chromosome organizations that can substantiate the
measurements from FISH, ChIA-PET, and RNA-Seq signals. We demonstrate the utility of HLM with several
case studies. Specifically, the HLM-generated chromosome structures, which reproduce the spatial distribution
of topologically associated domains (TADs) from FISH measurement, show the phase segregation between
two types of TADs explicitly. We discuss the origin of cell-type dependent gene expression level by modeling
the chromatin globules of α-globin and SOX2 gene loci for two different cell lines. We also use HLM to discuss
how the chromatin folding and gene expression level of Pax6 loci, associated with mouse neural development,
is modulated by interactions with two enhancers. Finally, HLM-generated structures of chromosome 19 of
mouse embryonic stem cells (mESCs), based on single-cell Hi-C data collected over each cell cycle phase,
visualize changes in chromosome conformation along the cell cycle. Given a contact frequency map between
chromatic loci supplied from Hi-C, HLM is a computationally efficient and versatile modeling tool to generate
chromosome structures, which can complement interpreting other experimental data.

INTRODUCTION

Recent advances in chromosome conformation capture
techniques combined with parallel sequencing1–5 and flu-
orescence imaging microscopies have ushered in a new era
of chromosome research over the past decade. Along with
post-translational histone modifications, which have been
led to conceptualization of epigenomes6, the critical find-
ings from fluorescence imaging and Hi-C data, that the
spatial organization of chromatin varies with the tissue
or cell types7,8, cell cycle4, and pathological states9–11,
have brought a new dimension to our understanding of
genome functions.

Among others, maps of genome-wide contact frequen-
cies, quantified by Hi-C data, offer unprecedented op-
portunities to infer 3D chromosome structures in cell
nuclei12–22. In a nutshell, Hi-C provides the contact fre-
quencies of genomic loci pairs based on the statistics of
PCR-amplified DNA fragments digested from formalde-
hyde cross-linked cells1,2. One could interpret that Hi-
C measures the population-sampled contact probability
between pair of genomic loci, say i and j, pij . A proper
mathematical mapping of pij to the spatial distance rij is
of critical importance for interpreting fluorescence imag-
ing data23,24 in comparison with Hi-C data.

The advent of fluorescence in situ hybridization
(FISH) followed by C-based techniques have engen-
dered much devotion to capture the principle underly-
ing the three-dimensional (3D) folding of chromosomes.
This has led to development of a series of polymer-
based models over the decades, which include “multiloop
subcompartment model,”25,26 “random loop model,”
(RLM)27–29 “strings and binders switch” model12,15,30
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and its derivative17,31,32, “loop extrusion model,”13–15,33

“minimal chromatin model,”34 and more recently “chro-
mosome copolymer model.”22 Among them, while ap-
plicability is limited to the associated spatio-temporal
scale of the model being considered, some were devel-
oped by keeping a specific molecular mechanism in mind
or by incorporating “one-dimensional” information of epi-
genetic modification and/or DNA accessibility along ge-
nomic loci as input to heteropolymer model22,32,35. On
the other hand, partly sacrificing the model simplicity,
others were developed solely for the purpose of recon-
structing more precise 3D chromatin structures from Hi-
C20,36–38 and other experiments39.

As the cell imaging data over different cell types
is rapidly growing, comparative study of chromosome
conformations has become imperative. In the above-
mentioned models, however, a physically sound mapping
of pij from Hi-C to the spatial distance rij (see review40)
is still lacking, and computational cost are still high. To
this end, here we develop a minimalist model that allows
us to generate chromatin conformations from Hi-C data
in a most efficient way and to study the structural char-
acteristics of chromosome at a length scale of interest
corresponding to the resolution of the given data. In or-
der to achieve such a goal in a most simplifying manner,
one could learn much from literature of generic polymer
problems, such as the collapse transition of an isolated
polymer chain or macromolecular networks with increas-
ing number of internal bonds41–44, and polymer confor-
mation and dynamics inside confinement45,46.

Pushing the polymer physics idea to its extreme,
we propose a minimalist approach, termed the hetero-
geneous loop model (HLM), that allows us to build
3D structures of chromosomes from Hi-C data. HLM
adapts the random loop model (RLM) which was orig-
inally developed based on a randomly crosslinked poly-
mer chain27,28,49. In RLM, which represents chromosome
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TABLE I. Genomic regions simulated in this work.
Species Cell line Hi-C exp. Chr. Start(bp) End(bp) Resolution (kb) N PCa Time (min)c Fig.
Human GM12878 Ref.3 chr5 90,000,000 100,000,000 50 200 0.96 4.8 6

IMR90 Ref.3 chr21 14,000,000 48,000,000 250 137 0.97 0.8 1
IMR90 Ref.3 chr11 59,000,000 94,000,000 250 140 0.98 1.7 S3
IMR90 Ref.3 chr1 150,000,000 180,000,000 250 120 0.98 0.8 S4
K562 Ref.3 chr16 60,000 560,000 5 100 0.94 0.2 2
GM12878 Ref.3 chr16 60,000 560,000 5 100 0.92 0.4 2
hESC Ref.47 chr3 179,000 184,000 40 125 0.94 1.4 3
HUVEC Ref.3 chr3 179,000 184,000 40 125 0.95 1.8 3

Mouse mESC Ref.48 chr2 105,000,000 106,000,000 8 125 0.94 1.4 4
NPC Ref.48 chr2 105,000,000 106,000,000 8 125 0.96 1.2 4
CN Ref.48 chr2 105,000,000 106,000,000 8 125 0.97 1.3 4
ncx NPC Ref.48 chr2 105,000,000 106,000,000 8 125 0.97 0.8 4
ncx CN Ref.48 chr2 105,000,000 106,000,000 8 125 0.97 1.1 4
mESC Ref.4 chr19 1 61,342,430 500 117 0.92b 1.4 5

aThe similarity between contact probabilities (pij) from Hi-C and those from modeling is quantified by the Pearson
correlation (PC) (see also discussions in SI). bFrom the post-M to pre-M phase, Pearson correlation of mESCs is 0.77, 0.96,
0.96, 0.96, 0.97 and 0.91, respectively. cIt takes a few minutes to determine the interaction strength parameters by the
constrained optimization, namely, obtaining K̃ from P.

conformation in terms of the sum of harmonic potentials,
pairwise contact probabilities are expressed analytically
in terms of a few model parameters. Here, without sacri-
ficing the mathematical tractability and simplicity of the
RLM, we extend the RLM to HLM by allowing the loop
interactions to be non-uniform and heterogeneous, such
that the resulting loop interactions can best represent a
given Hi-C data.

In this study, we apply HLM to various regions of
human and mouse genomes that span 1 – 100 Mb at
5 – 500 kb resolution, and generate the corresponding
conformational ensemble of chromsomes. We demon-
strate the utilities of HLM by comparing the structural
information extracted from HLM-generated chromosome
ensemble with those implicated from the measurements
from FISH23,24,28, chromatin interaction analysis by
paired-end tag sequencing (ChIA-PET)50,51, and pre-
vious modeling studies28,32,37,52,53. Through multiple
examples this study will demonstrate that HLM is an
excellent approach to infer 3D structures from Hi-C data.

RESULTS

HLM is effectively a multi-block copolymer model in
which monomer-monomner interactions (loops) are har-
monically restrained with varying interaction strengths
(kij) (Methods and SI). Mapping the pairwise contact
probabilities pij from Hi-C to the model parameters
kij is the essence of HLM. By incorporating a standard
Lennard-Jones non-bonded potential slightly below the
θ-condition, which takes into account the short-range
excluded volume interaction between monomers as well
as global thermodynamic driving force that induces

microphase separation between different monomer types,
HLM allows us to generate a conformational ensemble
of chromosome structures that reproduces a contact
probability matrix that displays close resemblance to
an original input Hi-C data. We used HLM to model
various genomic regions (see Table I). HLM-generated
chromosome conformations were used to interpret the
currently available experimental results.

Spatial distribution of TADs inferred from HLM in
comparison with FISH measurement

Intra-chromosomal distances between TADs in human
IMR90 cells, measured by Wang et al. through a multi-
plexed FISH method23, have been used as a benchmark
for different models38. To show the utility of HLM, we
model 34 Mb genomic region on chr21 of IMR90 cells,
which contains 33 labeled TADs (Table S1 provides the
genomic positions of these TADs).

First, the contact probability matrix P̃ constructed
from HLM-generated structures captures the character-
istic checkerboard pattern of the heatmap of Hi-C data,
P; the mean contact probability PHLM(s) of HLM is con-
sistent with PHi-C(s) calculated from Hi-C over all length
scales including the wiggly pattern at large s (Figs. 1A
and 1B).

The heatmap calculated for inter-TAD distances using
the HLM-generated conformational ensemble (lower di-
agonal part of Fig. 1C) can directly be compared with the
FISH measurement (upper diagonal part). The square
block pattern along the diagonal axis of the heatmap in-
dicates that 4–5 adjacent TADs constitute an aggregate,
reminiscent of meta-TAD30, and the patterns in the off-
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FIG. 1. A 34 Mb-genomic region of chr21 in IMR90 cells modeled by HLM. (A) Heatmap of contact probabilities from Hi-C
(P, upper diagonal part) and HLM (P̃, lower diagonal part). The Pearson correlation between P and P̃ is 0.97. The positions
of TADs are displayed above the heatmap, labeled by sticks. The type of each domain, A and B, is depicted in red and blue.
(B) Mean contact probability P (s) calculated from Hi-C (orange data) and HLM (blue line). (C) The heatmap of inter-TAD
distances measured by FISH (upper diagonal part) is compared with that calculated from HLM (lower diagonal part). (D)
Distributions of A- and B-type TADs projected on the x-axis, along which the geometric centers of different types of TADs
are aligned, are indicative of the microphase separation. An ensemble of structures are also shown. (E) Intrachain end-to-end
distance r(s) as a function of arc-length s from FISH (orange data) and HLM (blue line). The inset shows r(s) in log-log scale.
(F) Inverse of pairwise contact probability between TADs, p−1

ij , versus inter-TAD distance rij in log-log scale.

diagonal part (highlighted by the magenta boxes) suggest
long range clustering of TADs. The error of the inter-
TAD distance heatmap relative to FISH is 0.184, which
is comparable to the value of GEM model38 and better
than others (see Fig. 4D in Ref.38). A principal compo-
nent analysis of this matrix (top left part of the matrix
in Fig. 1C) divides TADs into A/B types23. Aligning
the geometric centers of HLM-generated A- and B-type
TADs parallel to the x-axis highlights a polarized orga-
nization of A- and B-type TADs (see Fig. 1D)23.

The intrachain end-to-end distance r(s) =∑N−s−1
i=0 ri,i+s/(N − s) displays a scale-dependent

scaling relationship with the genomic distance s,
r(s) ∼ sν (Fig. 1E). In qualitative agreement with the
FISH measurement23, there is a crossover around s = 7
Mb, such that ν ≈ 1/3 for s < 7 Mb and ν ≈ 0.21 for
s > 7 Mb.

We explore the relationship between contact probabil-
ity pij and the corresponding distance rij of two loci. It
is expected that the looping probability of polymer is in-
versely proportional to the volume of space (V ) explored
by the two loci as Ploop ∼ 1/V . Since the volume V
scales with the spatial separation (R) between the two
loci in d-dimension as V ∼ Rd, it follows that54–56

Ploop ∼
1
Rd

f
(rc
R

)
∼ 1
Rd

(rc
R

)g
. (1)

The correlation hole exponent g is g = 0 for a Gaussian

chain57. According to the Flory theorem58–61, the ideal
chain statistics is a good approximation for a chain in
polymer melts or for a subchain in a fully equilibrated
globule. Since d = 3 for 3D, we expect Ploop ∼ R−3, or
equivalently pij ∼ r−3

ij (see also Fig. S1B). In fact, this
scaling relation is observed for the data point generated
by HLM for rij < 1 µm (Fig. 1F). Although Wang et al.,
who combined Hi-C and FISH data, reported a scaling
relation of pij ∼ r−4.1

ij for the entire range, it is not clear
whether the relation can straightforwardly be extended
to the range of rij < 1 µm where the data point from
their measurement might be less accurate. According to
the HLM-generated data a more proper scaling should
be pij ∼ r−3

ij for rij < 1 µm and pij ∼ r−4.1
ij for rij > 1

µm.

Next, to demonstrate another analysis on FISH
measurement, we applied HLM to the q-arm of chr11
in IMR90 cells, whose intrachain pairwise distances
between genomic loci had been measured with FISH28,64

(see Table S2 for the position of FISH probes in the
genome and in the model). The model produces the
contact probability matrix P̃ with a Pearson correlation
(PC) of 0.98 relative to Hi-C data (P) (see Figs. S3A,
S3B, and SI for discussion of PC in comparison to other
alternative method). HLM enables us to calculate the
spatial distances between specific pairs of loci (Fig. S3C),
with a mean relative error of 0.189 (with respect to FISH
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FIG. 2. α-globin gene domain modeled by HLM for two different cell lines. (A) Heatmap (P) of contact probabilities measured
by Hi-C (upper diagonal part) and the corresponding map (P̃) obtained from HLM (lower diagonal part), in K562 (left) and
GM12878 (right) cells. RNA-Seq signals62 is displayed on the left side of the heatmaps, and the location of α-globin gene is
depicted in gray shade. (B) Mean contact probability P (s). (C) Compactness, and (D) asphericity of the domain. (E) Gemonic
positions of the loci, closer to the α1 gene in K562 than GM12878 cells, are labeled using red sticks. Contrasted below are the
distance distributions between α1 gene and HS40, P (rα,HS40), for two cell lines. For each cell line, an ensemble of structures are
shown for comparison with chains colored by the genomic position from the telomere (blue) to centromere (red). The α-globin
gene and HS40 are rendered as a black and orange sphere, respectively. (F) Pol II-mediated chromatin interactions50, which
involves α-globin genes and specific to K562 cells, are compared with the model.

data). The HLM-generated structural ensemble also
indicates that compared to the gene-poor and transcrip-
tionally inactive anti-ridge domain, the transcriptionally
active ridge domain is less compact, less spherical, and
has a rougher domain surface (Figs. S3D-F), all of which
are in agreement with the FISH experiment64. Modeling
another 30 Mb region on chr1 of IMR90 cells leads to
similar results (Fig. S4 and Table S3).

Visualization of chromatin globules

α-globin gene. Cis-regulatory elements generally me-
diate the transcription of neighboring genes within a
range smaller than 1 Mb65. The α-globin gene domain, a
500 kb-genomic region known as ENm008 located at the
left telomere of human chr16, has previously been studied
to decipher the relationship between chromatin structure
and transcription activity37,52,53. RNA-seq data62,66,67

indicate that the α-globin genes (including ζ-, µ-, α2-
, α1- and θ-globin genes) are expressed in K562 cell

lines, but silenced in GM12878 (tracks on the left side
of the Hi-C heatmaps in Fig. 2A). According to 3C/5C
measurements52,68, the α-globin gene forms long-range
looping interactions with multiple regulatory elements
upon gene activation. Among them, of particular interest
is one of the DNase I-hypersensitive sites (DHS), HS40,
located at ∼ 70 kb upstream of the α1 gene.

The HLM-generated structural ensemble at 5 kb reso-
lution for ENm008 of two cell lines (K562 and GM12878)
suggests that the contact probability P (s) decreases
slightly faster in K562 than in GM12878 cells at large s
(Fig. 2B). The α-globin domains of K562 and GM12878
cell lines visualized with FISH52 indicates that K562 is
less compact than GM12878, which is confirmed straight-
forwardly by the compactness calculated using the HLM-
generated structures (Fig. 2C). Compared with GM12878
cells, the α-globin domain in K562 cells adopt a less
spherical shape (Fig. 2D)52,53.

Next, we examined the changes in the distances be-
tween the α1-globin gene and other loci upon activa-
tion of the gene. Even though the whole domain in
K562 cells is relatively more expanded, HS40 is closer
to the α1 gene in K562 than in GM12878 cells (Fig. 2E),
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which is consistent with the expectation based on the
higher contact enrichment between HS40 and α1 gene
observed in K562 by 3C/5C measurements (e.g., Fig. 2
in Ref.52). Through inter-cell line comparison between
K562 and GM12878 for the rest of the region using dis-
tance distribution to the α-globin gene locus, we identi-
fied a group of loci other than HS40 that are significantly
closer to α-globin genes in K562 cells (Mann-Whitney U
test, p < 1× 10−5). Their genomic positions are marked
using red sticks in Fig. 2E. According to the indepen-
dent ChIA-PET experiments50,51 designed to capture the
chromatin loop interactions mediated by specific protein
factors, the structural variation associated with α-globin
genes is mainly orchestrated by Pol II (see Table S4).
HLM captures 83% of Pol II-mediated chromatin loops
specific to K562 cells (Fig. 2F).

Taken together, HLM captures both the tissue-specific
variation in the global packing of the α-globin gene
domain, and variation in the structure of gene locus.
The multiple K562-specific interactions, substantiated
by HLM, suggest that a cooperative action of multiple

regulatory elements including HS40 is responsible for
the activation of α-globin genes37. HLM-generated
conformations indeed confirm the notion of chromatin
globule proposed in Ref.52.

SOX2 gene. As an another example of transcription-
dependent chromatin folding, we studied the human
SOX2 gene locus which encodes a transcription factor
involving the regulation of embryonic development. The
SOX2 gene is transcribed in human embryonic stem
cells (hESCs), but not in umbilical vein epithelial cells
(HUVECs) (Fig. 3A). To compare the results from HLM
with a recent modeling study32, we measured the dis-
tances between SOX2 gene and two possible regulatory
elements located at regions ∼800 kb upstream (US)
and ∼650 kb downstream (DS). Whereas both elements
are closer to the SOX2 locus in transcriptionally active
hESCs than in inactive HUVECs, the chromatin fiber is
less compact in hESCs (Fig. 3D, see also the snapshots in
Figs. 3E and F). HLM-generated structures demonstrate
the dependence of chromatin folding on the transcription
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level at SOX2 gene loci, and this trend comports well
with the prediction made in Ref.32 that also employed
polymer model simulation.

Chromatin interactions at complex genomic loci

The efficacy of HLM was further tested for the ge-
nomic loci of Pax6 gene that involve the development
of mouse neural tissues. Flanked by two neighboring
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genes (Pax6os1 and Elp4), the expression level of Pax6
gene is considered to be regulated by multiple long-
range elements, including two regulatory regions located
at ∼50 kb upstream (URR) and ∼95 kb downstream
(DRR) (Fig. 4A). The DRR contains several DNase I-
hypersensitive sites and the SIMO enhancer, which was
identified in transgenic reporter gene studies of develop-
ing mouse embryos71,72. Another cis-regulatory element
PE3 within URR has recently been identified from mouse
pancreatic β-cells (β-TC3)70.

A study combining Capture-C, FISH and simulations32

has reported a non-trivial correlation between the expres-
sion level of Pax6 gene and the spatial separation from
Pax6 gene to URR and DRR. Among the three types
of mouse cells (β-TC3, MV+ and RAG cells) studied in
Ref.32, Pax6 gene maintained the largest separation from
DRR in the β-TC3 cells that displayed the highest ex-
pression level of Pax6. Therefore, it was suggested32 that
the enhancer at DRR is not involved in upregulation of
Pax6 in β-TC3 cells, or that some unclear upregulation
mechanisms that do not require the spatial proximity to
enhancers are responsible for the activity of Pax6 gene.

To study the origin of complex interplay between
Pax6 gene and neighboring genetic elements, we applied
HLM to the same genomic region of five different mouse
cell types whose Hi-C data are currently available: (i)
embryonic stem cells (mESCs), (ii) neural progenitors
(NPCs), (iii) cortical neurons (CNs), (iv) ncx NPC, and
(v) ncx CN, where the prefix “ncx ” indicates that the
cells are directly purified from the developing mouse em-
bryonic neocortex in vivo. Each cell type displays distinct
transcriptional activity patterns of Pax6 and its neigh-
boring genes48 (Fig. 4A). According to the FPKM scores
from RNA-seq analysis (Fig. 4 B), the five cell types dis-
play Pax6 activity in the following order: ncx NPC >
NPC > CN > ES > ncx CN.

The contact probabilities calculated from our HLM-
generated conformations reasonably reproduce the Hi-C
data at a resolution of 8 kb48 (see Table I and Fig. S5).
The Hi-C contact profiles of three genomic loci (URR,
Pax6, and DRR) with other genomic regions (histograms
in Fig. 4C) are well captured by HLM-generated confor-
mations (lines in Fig. 4C). Compared with the distance of
Pax gene promoter (P) to the upstream enhancer (UE),
Pax6 gene activity is better correlated with the distance
to the downstream enhancer (DE) (see Fig. 4D); the
closer to the DE, the higher the Pax gene activity is.
The highest Pax gene activity is seen in ncx NPC. No-
tice that the most enriched Hi-C contacts between Pax6
and DRR is indeed found in ncx NPC, which is marked
with a red star in Fig. 4 C. We note that our finding on
contacts between Pax6 and DRR is in contrast to that
based on β-TC3 cells (see Fig. 2 A in Ref.32). This how-
ever underscores that the mechanism or the chromatin
conformations responsible for the Pax6 gene activity de-
pends strongly on the cell-type: At least the mechanism
of Pax6 gene regulation in ncx NPC cells differs clearly
from that in β-TC3 cells.

Next, given that Hi-C data is obtained from a col-
lection of millions of cells, heterogeneity of chromatin
conformations is inevitable in analyses, which has indeed
been highlighted in Ref.32. To characterize the hetero-
geneity in the HLM-generated conformational ensembles,
we classified each chromatin structure into five groups
based on the separations between the Pax6 gene pro-
moter (P) and two enhancers (UE and DE) (Fig. 4E). To
visualize the conformational diversity, we randomly se-
lected 200 structures and characterized by the promoter-
enhancer distances (Fig. 4 F). Except for the “gray”
group where all three separations are large, the popu-
lation of conformational ensemble consists mainly of the
“black” group (P is close to DE but not to UE), and
the “purple” group (P is close to UE but not to DE)
which are suspected to be responsible for high expression
level of Pax6 gene. In consistent with our analysis on
the ensemble-averaged distance to enhancers for different
cells (Fig. 4 D), the proportion of “black” group shows
a decreasing trend as Pax6 becomes less active (Fig. 4
E), suggesting a more important role of DE than UE in
regulating Pax6 gene for the five cell lines.

While an indirect upregulation of Pax6 gene by DRR
as seen in β-TC3 cells32 cannot entirely be ruled out,
the correlation of gene activity level with the spatial
proximity of Pax6 gene to DRR is clearly demonstrated,
at least, across the five cell lines that we studied using
HLM. The mechanism of indirect upregulation and
the mechanism of cell type-dependent choices deserve
further study.

Chromosome in different phases of cell cycle

Most Hi-C data are obtained over a population of ‘un-
phased’ cells. Here, we employ HLM to model the global
architecture of chromosome at different phases of cell
cycle during the interphase, based on single-cell Hi-C4.
Accumulating the data from tens to hundreds of binary
contact matrices of single cells into an input matrix P,
we built 500 kb-resolution model of chromosome for the
post-M, early-S, mid-S, late-S/G2, and pre-M phases of
chr19 in mESC (above the diagonal in Fig. 5A). P̃ matri-
ces computed using HLM (below the diagonal in Fig. 5A)
display reasonable correlation with the original Hi-C data
(Pearson correlation, PC > 0.9) except for the post-M
phase (PC = 0.77); unlike other phases, the lower PC
value with the P̃-matrix at the post-M phase, character-
ized with uniform and featureless pattern, is due to the
smaller number of sampling cells (Nc).

The local compactness of the chromosome confor-
mation was quantified in terms of the average volume
occupied by a single monomer (v = V/N) based on the
Voronoi tessellation (Fig. 5B). After the mitosis, the
chromosome continues to expand until the late-S/G2
phase. The gyration radius also captures this trend
(Fig. 5B), except that the model has the largest value
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FIG. 5. Chr19 of mESC modeled by HLM at 500 kb resolution. (A) Heatmap of contact probabilities from Hi-C (upper
diagonal part) and HLM (lower diagonal part). From post-M phase to pre-M phase, Pearson correlations (PCs) are 0.77, 0.96,
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HLM-generated structure which are colored from the centromere (blue) to telomore (red).

of rg in post-M phase. A partial condensation of the
chain (decreases in r3

g and v) is observed before entering
the pre-M phase. This decondensation-condensation
cycle is also captured with the asphericity of structures
generated from HLM (Fig. 5C), which decreases dramat-
ically from the post-M to G1 phases and then increases
gradually after the G1 phase. The same conclusion
can be drawn from the probability density of pairwise
distance between monomers (see Fig. S6).

DISCUSSION

HLM is similar to previous polymer models of chro-
matin, which also convert information of spatial proxim-
ity into harmonic restraints between monomers25,73,74.
In order to demonstrate that the choice of energy po-
tential in HLM is optimal over other alternatives, we
examined HLM and its three variants on a 10 Mb ge-
nomic region on chr5 of GM12878 cells (Fig. S7). Unlike
the HLM which faithfully reproduced the domain edges
of enriched contacts observed by Hi-C (highlighted by
cyan boxes in Fig. S7A), which was regarded as a dis-
tinct feature of loop extrusion14, two alternative copoly-
mer models, which retain uniform strength of loop inter-
action, could not properly reproduce the diagonal-block
patterns of Hi-C data (Fig. S7B and C). In a homopoly-
mer model, where χ−,−, χ−,+, and χ−,+ are all set to
1 (see Methods), the long-range checkboard pattern was
not reproduced (Fig. S7D). The Pearson correlation of
contact probabilities contrasted between Hi-C and other
models at different genomic separations shows that HLM
outperforms others (Fig. S7E).

As shown for different chromosomes, cell types, species

with a flexible choice of model resolution, one of the
greatest advantages of HLM is its versatile application.
While all of the output conformations exhibit great vari-
ability (see discussions in SI, Fig. S8, and Fig. 4F), the
population-sampled contact map faithfully reproduces
the input Hi-C data. For a given Hi-C data, the two sets
of model parameters K̃ and {χti,tj} can be determined
in a few minutes using a personal computer without any
manual intervention (Table I).

In summary, we demonstrated that HLM is a
computationally efficient approach with which to in-
vestigate the genome function. The conformational
ensemble generated by HLM shows that depending
on the chromatin states, different types of chromatin
domains have different compactness and shapes, and
spatial phase separation between domains takes places
in human genome. The inter-cell line comparison of
human α-globin and SOX2 loci shows that while the
sub-megabase gene domain becomes less compact upon
gene activation, the most critical regulatory element
comes closer to the gene, and that its expression is
likely affected by many other elements. The activity of
Pax6 gene in a complex genetic environment is mostly
modulated by the proximity between Pax6 promoter
and the downstream enhancer, while the distance to
the upstream regulatory element shows non-monotonic
variations with its activity for the cell types we studies.
HLM was also used to visualize the cell cycle dynamics
of chromosome organization based on single-cell Hi-C.
Although HLM is not designed based on assumptions
of molecular mechanisms of genome organization, the
principle of transcription regulation can be inferred from
the changes of chromatin conformations. With Hi-C
data being accumulated, HLM would be of great use to
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provide complementary structural information, which
are not easily accessible to current experiments.

METHODS

Description of HLM. The full energy potential of HLM
consists of two parts.

UHLM(r) = UK(r) + Unb(r) (2)

In what follows, we delineate the first and second terms
of Eq. 2 (see SI for technical details).

First, decomposed into two parts, UK(r) describes the
harmonic constraints on a chain of N monomers27,

UK(r) =
N−1∑
i=1

k

2 (~ri − ~ri−1)2 +
N−3∑
i=0

N−1∑
j=i+2

kij
2 (~ri − ~rj)2,

= 3
2rTKr. (3)

where successive monomers along the backbone and non-
successive monomers forming loops are both harmoni-
cally restrained. In the second line, UK(r) is written in
a compact form with r = (~r1, ~r2, · · · , ~rN−1)T and K rep-
resenting the Kirchhoff matrix. K can be built from the
interaction strength matrix K that takes kij = (K)ij as
its matrix element. The interaction strengths ought to be
non-negative (kij ≥ 0) for all i and j-th monomer pairs.
In HLM, if kij 6= 0 then the i and j-th monomer has a
potential to form a (chromatin) loop. After removing the
translational degrees of freedom by setting ~r0 = (0, 0, 0)
on Eq. 3, we obtain the probability density of pairwise
distance as27

P (rij) = 4π(γij/π)3/2r2
ije
−γijr2

ij , (4)

where

γij =
{

1
2(σii+σjj−2σij) , i > 0

1
2σjj , i = 0

(5)

and σij [= 〈δ~ri · δ~rj〉] is the covariance between the po-
sitions of i and j-th monomers, which can be obtained
from an inverse of K-matrix as

σij = (K−1)ij . (6)

One can obtain the contact probability pij by integrat-
ing the pairwise distance P (rij) (Eq. 4) up to a certain
capture radius (rc)75,76, pij =

∫ rc
0 P (rij)drij , which gives

pij = erf
(√

γijr2
c

)
− 2
√
γijr2

c

π
e−γijr

2
c , (7)

where erf(x) = 2√
π

∫ x
0 dte

−t2 . Therefore, a one-to-one
analytical mapping between pij and kij follows from the

precise mappings between pij and σij from Eqs 7 and 5,
and between σij and kij from Eq. 6.

Although it is tempting to directly use the mathemat-
ical relation between pij and kij to obtain K from Hi-C
data, there is an unavoidable numerical issue (see SI Text
and Figs. S9–S11 for details). In practice, we calculate
K̃-matrix that approximates K by selecting only the sig-
nificant contacts in P. More specifically, we evaluate the
significance of contact probability pij by calculating zij ,
which is defined as (see the matrix elements in the upper
diagonal part of Fig. 6B):

zij = pij
P (s) , (8)

where P (s) = 1
N−s

∑N−s−1
i=0 pi,i+s is the mean con-

tact probability for monomer pairs separated by the arc
length s along the contour. The greater the value of zij ,
the contacts are deemed more significant. We then select
top 2N (i, j) pairs ranked in terms of the values of zij
(> 1) (the matrix elements in the lower diagonal part of
Fig. 6B). For these 2N pairs whose contact probability
pij is given in P, the precise value of γ∗ij (or equivalently
〈r2∗
ij 〉 =

∫∞
0 r2

ijP (rij)drij = 3/2γ∗ij) can be determined
using Eq. 7. Then, starting from a Rouse chain config-
uration as an initial input, we add non-successive bonds
with varying interaction strengths (0 ≤ kij ≤ 10 kBT/a2)
until we minimize the objective function F(K)

F(K) =
2N∑
(i,j)

ωij

(
〈r2
ij({kαβ})〉
〈r2∗
ij 〉

− 1
)2

, (9)

so as to determine the optimal values of K̃ = {k̃αβ} =
min{kαβ} F(K). Here the weight factor ωij , which is used
to normalize the statistical bias from chromatin loops of
different sizes, is defined as

ωij = ω(|i− j|) = ω(s) = n−1(s)∑
s n
−1(s) , (10)

where n(s) =
∑

(i,j) δ(|i− j| − s) is the number of loops
of size s. The gradient-descent algorithm (L-BFGS-B
method in SciPy package) was used to determine the op-
timal parameters {k̃αβ}. A fully convergent solution of
K̃-matrix (Fig. 6C) could be obtained within a few min-
utes when N was not too large (≤ 200). This K̃-matrix
determining process, termed constrained optimization,
faithfully reproduces the original K matrix with a rel-
ative error smaller than 5% (see also Figs. S10-S12).

After obtaining K̃ (Fig. 6C), and hence UK(r), we
added a non-bonded interaction term Unb(r), defined for
all i and j pairs to the full energy potential UHLM(r)
(Eq.2):

Unb(r) =
∑
ij

χti,tjuLJ(rij), (11)
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where uLJ(r) is the Lennard-Jones potential truncated
for r ≥ rc where rc = 5a/2 with ε = 0.45 kBT ,

uLJ(r) = ε

[(a
r

)12
− 2

(a
r

)6
]

Θ(rc − r). (12)

If ε = εθ(= 0.34 kBT ) with χti,tj = 1, then Unb(r) leads
to θ-solvent condition for infinitely long chain, putting
the second virial coefficient to zero, i.e., ν2 = 1

2
∫ rc

0 (1 −
e−βuNB(r))d3r = 0. We chose ε(= 0.45 kBT ) slightly
greater than εθ and assigned loci-pair-type-dependent
prefactor χti,tj . Each monomer i is assigned with a
type t, either “−” or “+”, based on the sign of the
first principal component of Z (see the track on top of
Fig. 6B). The value of prefactor χti,tj (> 0), depend-
ing on the types of two loci i and j which are either
titj = ++, −−, or −+, are evaluated by averaging over
all the monomer pairs of the corresponding types, such
that χp,q = 〈zij〉ti=p,tj=q, The values of χti,tj are deter-
mined based on a given Hi-C data. For the case shown
in Fig. 6, we obtain χ−,− = 1.18, χ−,+ = 0.79, and
χ+,+ = 1.19. According to the Flory-Huggins theory57,
the condition χeff

−,+ = 1
2 (χ−,− + χ+,+)− χ−,+ ≈ 0.4 > 0

leads to microphase separation between + and − type
loci, which indeed is realized and reflected in the charac-
teristic checkerboard pattern of Hi-C data. It should be
noted, however, that the classification of type −/+ is not
necessarily identical to the A/B compartment of chro-

matin. Whereas A/B compartments are genome-wide
characteristics usually defined based on Hi-C data at low
(Mb) resolutions2,3, the monomers in HLM can be always
classified into types −/+ regardless the resolution of the
model,

Finally, we sampled 3D chromosome structures using
molecular dynamics simulation implementing the full
energy potential UHLM(r) and calculated the contact
probability matrix based on HLM-generated conforma-
tional ensemble. In the specific example demonstrated
for the Hi-C data of 10 Mb-genomic region of chr5 in
GM12878 cell line (Fig. 6), P̃ (Fig. 6E) obtained from
HLM-generated chromosome conformations (Fig. 6D,
see also the clustering analysis which highlights the
conformational variability of chromosomes in SI text
and Fig. S8) displays a notable resemblance to the input
P (Fig. 6A) (Pearson correlation of 0.96; Spearman
correlation of 0.92). Despite the simplicity of HLM
potential (Eq. 2), the similarity between P and P̃ as well
as the chromosome conformations ensemble generated
during the procedure is remarkable.

Structure characterization. We quantified the struc-
tural feature of HLM-generated chromosome ensemble,
by means of several quantities:

(i) The compactness of a (sub-)chain of length N is
quantified in terms of r3

g/N , where rg is the gyration
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radius of the (sub-)chain.
(ii) The asphericity (A) is calculated by A =∑3
i=1(λi − λ̄)2/6λ̄2 where λi (i = 1, 2, 3) are the three

eigenvalues of the moment of inertia tensor, and λ̄ is
their mean77,78. A = 0 for a sphere, and A > 0 for a
non-spherical shape.

(iii) The roughness of the surface of a (sub-)chain, was
evaluated using the Voronoi diagram79 that tessellates
the 3D space occupied by the chain. A upper bound for
the volume of each monomer was set using a dodecahe-
dron with a diameter of 2a, The Voronoi diagram pro-
vides a well-defined volume V and surface area S of the
(sub-)chain. Since the surface area of a perfect sphere
with the volume V is S0 = (36πV 2)1/3, we quantified the
surface roughness using S/S0 ≥ 1.

(iv) To visualize an ensemble of structures with con-
siderable variability, we first divided the chain into a few
segments (domains). Next, the distribution of the dis-
tances between the geometric centers of these domains
were computed based on the ensemble of structures. Sev-
eral configurations of chromosomes were then randomly
selected from the most populated state (in terms of inter-
domain distances), aligned, and rendered.
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G. Mazzocco, Y. Ruan, and D. Plewczynski, “3D-GNOME: an
integrated web service for structural modeling of the 3D genome,”
Nucleic Acids Res. 44, W288 (2016).

20H. Tjong, W. Li, R. Kalhor, C. Dai, S. Hao, K. Gong, Y. Zhou,
H. Li, X. J. J. Zhou, M. A. Le Gros, C. A. Larabell, L. Chen,
and F. Alber, “Population-based 3D genome structure analysis
reveals driving forces in spatial genome organization.” Proc. Natl.
Acad. Sci. USA 113, E1663–E1672 (2016).

21M. Di Stefano, J. Paulsen, T. G. Lien, E. Hovig, and
C. Micheletti, “Hi-C-constrained physical models of human chro-
mosomes recover functionally-related properties of genome orga-
nization,” Sci. Rep. 6, 35985 (2016).

22G. Shi, L. Liu, C. Hyeon, and D. Thirumalai, “Interphase Hu-
man Chromosome Exhibits Out of Equilibrium Glassy Dynam-
ics,” Nat. Commun. 9, 3161 (2018).

23S. Wang, J.-H. Su, B. J. Beliveau, B. Bintu, J. R. Moffitt, C.-t.
Wu, and X. Zhuang, “Spatial organization of chromatin domains
and compartments in single chromosomes,” Science 353, 598–602
(2016).

24A. N. Boettiger, B. Bintu, J. R. Moffitt, S. Wang, B. J. Beliv-
eau, G. Fudenberg, M. Imakaev, L. A. Mirny, C.-t. Wu, and
X. Zhuang, “Super-resolution imaging reveals distinct chromatin
folding for different epigenetic states,” Nature 529, 418–422

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/574970doi: bioRxiv preprint 

http://dx.doi.org/ 10.1126/science.1181369
http://dx.doi.org/10.1016/j.cell.2014.11.021
http://dx.doi.org/doi.org/10.1038/nature23001
http://dx.doi.org/ 10.1038/nature23263
http://dx.doi.org/ 10.1038/nature23263
http://dx.doi.org/ 10.1073/pnas.1518552112
http://dx.doi.org/ 10.1073/pnas.1518552112
http://dx.doi.org/10.1016/j.celrep.2016.04.085
http://dx.doi.org/10.1126/science.aaf8084
http://dx.doi.org/10.1126/science.aaf8084
http://dx.doi.org/10.1038/nature16496
https://doi.org/10.1101/574970
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

(2016).
25C. Münkel and J. Langowski, “Chromosome structure predicted

by a polymer model,” Phys. Rev. E 57, 5888–5896 (1998).
26C. Münkel, R. Eils, S. Dietzel, D. Zink, C. Mehring, G. Wede-

mann, T. Cremer, and J. Langowski, “Compartmentalization of
interphase chromosomes observed in simulation and experiment,”
J. Mol. Biol. 285, 1053 – 1065 (1999).

27M. Bohn, D. W. Heermann, and R. van Driel, “Random loop
model for long polymers,” Phys. Rev. E. 76, 051805 (2007).

28J. Mateos-Langerak, M. Bohn, W. de Leeuw, O. Giromus,
E. M. M. Manders, P. J. Verschure, M. H. G. Indemans, H. J.
Gierman, D. W. Heermann, R. van Driel, and S. Goetze, “Spa-
tially confined folding of chromatin in the interphase nucleus,”
Proc. Natl. Acad. Sci. USA 106, 3812–3817 (2009).

29A. Hofmann and D. W. Heermann, “The role of loops on the
order of eukaryotes and prokaryotes,” FEBS Letters 589, 2958–
2965 (2015).

30J. Fraser, C. Ferrai, A. M. Chiariello, M. Schueler, T. Rito,
G. Laudanno, M. Barbieri, B. L. Moore, D. C. Kraemer,
S. Aitken, et al., “Hierarchical folding and reorganization of chro-
mosomes are linked to transcriptional changes in cellular differ-
entiation,” Mol. Syst. Biol. 11, 852 (2015).

31C. A. Brackley, J. Johnson, S. Kelly, P. R. Cook, and D. Maren-
duzzo, “Simulated binding of transcription factors to active and
inactive regions folds human chromosomes into loops, rosettes
and topological domains,” Nucleic Acids Res. 44, 3503–3512
(2016).

32A. Buckle, C. A. Brackley, S. Boyle, D. Marenduzzo, and
N. Gilbert, “Polymer simulations of heteromorphic chromatin
predict the 3D folding of complex genomic loci,” Molecular Cell
72, 786 – 797.e11 (2018).

33A. M. Chiariello, C. Annunziatella, S. Bianco, A. Esposito, and
M. Nicodemi, “Polymer physics of chromosome large-scale 3D
organisation,” Sci. Rep. 6, 29775 (2016).

34M. Di Pierro, B. Zhang, E. L. Aiden, P. G. Wolynes, and
J. N. Onuchic, “Transferable model for chromosome architec-
ture,” Proc. Natl. Acad. Sci. USA 113, 12168–12173 (2016).

35L. Liu, G. Shi, D. Thirumalai, and C. Hyeon, “Chain organiza-
tion of human interphase chromosome determines the spatiotem-
poral dynamics of chromatin loci,” PLOS Comput. Biol. 14, 1–20
(2018).

36L. Giorgetti, R. Galupa, E. Nora, T. Piolot, F. Lam, J. Dekker,
G. Tiana, and E. Heard, “Predictive polymer modeling reveals
coupled fluctuations in chromosome conformation and transcrip-
tion,” Cell 157, 950 – 963 (2014).

37G. Gürsoy, Y. Xu, A. L. Kenter, and J. Liang, “Computational
construction of 3D chromatin ensembles and prediction of func-
tional interactions of alpha-globin locus from 5C data,” Nucleic
Acids Res. 45, 11547–11558 (2017).

38G. Zhu, W. Deng, H. Hu, R. Ma, S. Zhang, J. Yang, J. Peng,
T. Kaplan, and J. Zeng, “Reconstructing spatial organizations
of chromosomes through manifold learning,” Nucleic Acids Res.
46, e50 (2018).

39Q. Li, H. Tjong, X. Li, K. Gong, X. J. Zhou, I. Chiolo, and F. Al-
ber, “The three-dimensional genome organization of Drosophila
melanogaster through data integration,” Genome Biol. 18, 145
(2017).

40F. Serra, M. Di Stefano, Y. G. Spill, Y. Cuartero, M. Good-
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