
  

 

Abstract — Single-cell transcriptomics offers a new vista on 

non-genetic tumor cell plasticity, a neglected aspect of cancer. 

The gene expression state of each cell is governed by the gene 

regulatory network which represents a high-dimensional non-

linear dynamical system that generates multiple stable attractor 

states and undergoes destabilizing bifurcations, manifest as crit-

ical transitions. Modeling clonal cell population as statistical en-

sembles of the same dynamical system, a index IC is derived for 

detecting destabilization towards critical transitions in single-

cell molecular profiles. Therapy-induced bifurcation explains 

why treatment backfires: a drug-treated cell is imposed the bi-

nary choice to either apoptose or become a cancer-stem cell.  

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Tumor cell populations within a tumor exhibit a vast heter-
ogeneity of cell states and rapid bidirectional interconversions; 
a behaviors is not readily explained by genetic mutations. Such 
non-genetic plasticity allows cancer cells to spontaneously or 
in response to environmental cues switch between discretely 
distinct stable phenotypes, such as a cancer stem cell (CSC),  
proliferative, differentiated, senescent or apoptotic states [1]. 
Such cell state dynamics allows cells to switch from a drug-
sensitive to a drug-resistant state. We model the ubiquitous un-
intended drug-induced conversion of cells that survive treat-
ment into a drug-resistant, CSC-like state as an inevitable con-
sequence of bifurcation in a dynamical system [2].  

Epistemological note on mathematical oncology. Sadly, 
most cancer research promoted by current funding for interdis-
ciplinary approaches uses mathematical tools to address not 
scientific but operational problems (e.g. optimization of ther-
apy schedules, image analysis) and typically employ heuristics 
(ad hoc models “to see if it works”). Such mathematical mod-
eling is designed in the mind-set of engineering, not of basic 
science. While sometimes useful for making practical predic-
tions, such heuristics do not seek to explain observable phe-
nomena in terms of first principles of natural sciences. In con-
trast to engineering, science aspires to explain biological ob-
servables, such as interesting, reoccurring (“universal”) tumor 
behaviors, by a formal hypothesis and followed by demonstra-
tion, that they are the necessary manifestation of constraints 
imposed by underlying principles of biochemistry, molecular 
biology, cell population dynamics, etc. Such formal “bottom-
up” approaches of course will still require coarse-graining in 
the formalization of a model that however is rooted in a theory 
of natural science and must not be confounded with the above 
heuristic, ad hoc models.  
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II. RESULTS OF APPLICATION OF METHOD 

A. The model class: multi-stable dynamical system  

One such coarse-graining that formalizes the constraints in 

terms of governing principles is the use of dynamical systems 

theory to describe changes in gene expression profiles which 

determine the cell phenotype, defined by a set of m genes i: 

𝒙(𝑡) = [𝑥1, 𝑥2. . 𝑥𝑖 . . 𝑥𝑚] . The dynamical system captures the 

constraints unto the time evolution of 𝒙(𝑡) by a (genomically 

encoded) gene regulatory network (GRN) through which 

these m genes interact. The state vector x represents a state of 

the GRN at time t, thus one point in the m-dimensional state 

space. We have then the m-dimensional dynamical system 

�̇� =F(x). Herein, functions 𝐹𝑖 captures at a high-level the 

GRN architecture and how each the expression behavior of 

each gene i is influenced by the values xj of its “upstream” 

regulators. The system is multi-stable: it exhibits multiple sta-

ble attractor states 𝒙𝑨
∗ , 𝒙𝑩

∗ , 𝒙𝑪
∗ …  One (simplified) premise for 

which there is now ample experimental support [3, 4], is that 

observable, robust (recurring, characteristic) expression pro-

files, such as those defining the normal cell types in the body 

or the distinct cancer cell states within a tumor, correspond to 

these high-dimensional stable attractor states of �̇�. Gene ex-

pression noise or perturbations can then cause switch-like 

transitions between attractors (phenotype conversions) [4].  

We depart from standard dynamical systems modeling ef-

forts in two ways: (i) Since the functional form of F is gener-

ally not known we do not explicit model 𝒙(𝑡) but focus on 

generic observable features associated with a critical state 

transitions [5]. This leads to a “phenomenological” model 

that is agnostic of specifics of the GRN and cannot predict the 

trajectory x(t) but predicts generic properties that can be ex-

perimentally tested. (ii) We take advantage of single-cell anal-

ysis technology to measure the expression of gene i in cell k: 

xik. Thus, we obtain the expression state xj in each individual 

cell j of a population of n cells which are nominally identical 

(clonal and in the same phenotypic state x) –distinct only be-

cause of gene expression noise. We then assume an ergodic 

ensemble of n replicates of our dynamical system: 𝒙𝟏(𝑡), 
𝒙𝟐(𝑡),.. 𝒙𝒏(𝑡). For each dimension i the value xi is subject to 

stochastic fluctuations, such that gene i across the cell popu-

lation represents a distribution Pi(xi). Thus, at any time point 

we have a cell population state, and instead of the state vector 

x(t) we have the matrix X(T) with elements xik which can be 
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approximately measured with single-cell qPCR or RNAseq as 

population snapshot of time T:  

 𝑿(𝑡) = [
𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮

𝑥𝑚1 ⋯ 𝑥𝑚𝑛

]  (1)

  

B. The formal hypothesis  

We model the scenario in which a perturbation on X (treat-

ment) to push cells into the apoptosis attractor also produces 

stem-cell states in those cells not killed.  

The central hypothesis is that bifurcations drive attractor 

switching, akin to catalysis lowering “energy barriers” 

(Fig.1). Cell phenotype switching is a response to an environ-

mental signal that operates an unknown bifurcation parameter 

 whose change destabilizes the current attractor 𝒙𝐀
∗ , hence 

opening access to 𝒙𝐁
∗ . Thus, the attractor transition represents 

a critical state transition [5]. If the bifurcation is of a pitch-

fork-type (a sufficient but not necessary condition in a multi-

stable, rugged “energy” landscape [6]), then upon destabiliza-

tion of 𝒙𝐀
∗ , not necessarily only the desired attractor state is 

accessed by the unstable cells, but due to stochastic fluctua-

tions, other nearby attractors (the alternative branch in a pitch-

fork-type bifurcation) could also be accessed. These unde-

sired cells would explain “rebellious cells” that switch to 

states opposite to the intended one [2]; in the case of cancer 

treatment as the bifurcation inducer, 𝒙𝐁
∗  would correspond to 

the desired destination state (apoptosis) where as the “oppo-

site” state 𝒙𝐂
∗  would represent the treatment induced stem-like 

state. This would explain why cancer therapy often backfires 

–generating cancer stem cells [1]. 

C. Application of the model 

The goal of applying this model to experimental data is to 

test the key assumption: the presence of a destabilization prior 

to the induced transition to the new attractor. Without 

knowledge of F the phenomenological approach is to predict 

changes in X(T) associated with approach to a critical state 

transitions, analogous to the Early Warning Signals for critical 

transitions in low-dimensional systems [5] monitored continu-

ously in time, such as the enhancement of fluctuations (auto-

correlation in time). Here the equivalent, under the assumption 

of ergodicity, would be a particular change in the structure of 

high-dimensional population structure captured in X(T). We 

derived the “critical transition index” IC [2] which has the key 

property that IC will increase monotonically if a system (mono-

stable cell population) moves towards a critical transition: 

 𝐼𝐶(𝑇) =
〈|𝑅(𝐱𝑖

𝑔
, 𝐱𝑗

𝑔
)|〉

 〈𝑅(𝐱𝑘
𝑐 , 𝐱𝑙

𝑐)〉
  (2) 

where 𝐱𝑖,𝑗
𝑔

 are gene vectors (rows in eq. (1)), and 𝐱𝑘,𝑙
𝑐  are cell 

state vectors (columns) and <...> denotes the average of Pear-

son coefficients R for all pairs of genes (i,j) or cells (k, l). That 

the value of the denominator will decrease when a critical tran-

sition is imminent is obviously a consequence of the increased 

diversity of cell states as stability is reduced, reflecting the 

“critical slowing down” [5] of relaxation to 𝒙𝐀
∗ . The less obvi-

ous increase of the numerator is related to the reduced dimen-

sionality of the manifold in the m-dimensional state space at 

bifurcation –see Appendix in [2]. Experimental verification by 

single-cell qPCR measurements showing increase in IC in a 

case of known cell fate bifurcation is presented in ref. [2]. 

III. QUICK GUIDE TO THE METHOD  

A. Model assumptions 

To derive IC we made the following basic assumptions [2]: (i) 

Any robust biologically functional cell state represents a hy-

perbolic stable attractor state that is attracting in all m (most?) 

dimensions of GRN dynamics. (ii) Ergodicity and quasi-

steady state process: expression levels xi is subject to stochas-

tic fluctuations that are much faster than the gradual change in 

the bifurcation parameter .  As a consequence of both as-

sumptions, the cell population to be measured to compute IC 

should be a mono-modal cell population. 

 

B. Application to single-cell expression analysis  

The presented method of computing IC (2) from the single-

cell profiling matrices X(T) (1) for a population of n cells 

with their states described by m genes can be applied to the 

analysis of single-cell resolution any molecular profiles in 

(tumor) cell populations, obtained by new technologies, such 

as single-cell transcriptomics (RNAseq and qPCR), CyTOF 

[7] and in situ methods. Few time points T suffice to detect a 

trend of IC indicating destabilization towards a critical transi-

tion which may be new indicator for cancer progression. 
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Figure 1. Schematic of model and hypothesis based on a pitchfork bi-
furcation (as pedagogically simple example).  For landscape “eleva-

tion”, U(x) see [6] 
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