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Abstract

Motivation: The evolutionary history of biological networks enables deep functional and evolutionary
understanding of various bio-molecular processes. Network growth models, such as the Duplication-
Mutation with Complementarity (DMC) model, provide a principled approach to characterizing the evolution
of protein-protein interactions (PPI) based on duplication and divergence. Current methods for model-
based ancestral network reconstruction, primarily use greedy heuristics and yield sub-optimal solutions.
Results: We present a new Integer Linear Programming (ILP) solution for maximum likelihood
reconstruction of ancestral PPI networks using the DMC model. By construction, our model is designed
to find the optimal solution. It can also use efficient heuristics from general-purpose ILP solvers to obtain
multiple optimal and near-optimal solutions that may be useful in many applications. Experiments on
synthetic and real data show that our ILP obtains solutions with higher likelihood than those from previous
methods. We evaluate our algorithm on two real PPI networks, with proteins from the families of bZIP
transcription factors and Commander complex. On both the networks, solutions from our ILP has higher
likelihood and are in better agreement with independent biological evidence from other studies.
Availability: A Python implementation is available at https://bitbucket.org/cdal/.
Contact: vaibhav.rajan@nus.edu.sg

1 Introduction
An organism’s genotype and phenotype is mediated by complex
biological interactions. Snapshots of such interactions are
graphically captured by networks and spatio-temporal analysis of
biological networks has led to deep functional and evolutionary
understanding of molecular and cellular processes (Yamada and
Bork, 2009). Knowledge of the evolution of networks such as
Protein-Protein Interactions (PPI), metabolic and gene regulatory
networks has been effectively used in the study of: molecular
mechanisms in yeast (Wagner, 2001), cell signaling and adhesion
genes (Nichols et al., 2006), modularity in metabolic networks
of bacterial species (Kreimer et al., 2008), and of protein
complexes (Pereira-Leal et al., 2006), functional modules from
conserved ancestral protein-protein interactions (Dutkowski and
Tiuryn, 2007), evolutionary trends of biosynthetic capacity loss
in parasites (Borenstein and Feldman, 2009), regulatory network
inference (Zhang and Moret, 2010) and essential and disease-
related genes in humans (Vidal et al., 2011).

Generative models, called network growth models, that
describe the evolution of networks have been used to explain
properties of networks in other domains, such as the Preferential
Attachment Model (Barabási and Albert, 1999) (for the World
Wide Web) and the Forest Fire Model (Leskovec et al.,
2005) (for social networks). These models encode assumptions
of evolutionary processes in terms of graph operations. The
key evolutionary process characterizing biological networks
is duplication and divergence (Wagner, 2001). Thus each
evolutionary step is modeled by duplication of a network node
(including its incident edges) and deletion of some of the incident
edges. Such models have been elucidated and validated in several
biological studies (Chung et al., 2003; Vázquez et al., 2003). In
this work we use the Duplication-Mutation with Complementarity
(DMC) model, that has been found to fit PPI networks better than
other commonly used network growth models (Middendorf et al.,
2005; Navlakha and Kingsford, 2011).

Similar to reconstruction algorithms to infer evolutionary
history of sequences, we can use a network growth model to obtain
principled model-based reconstruction of ancestral networks.
Assuming such a generative model, ancestral reconstruction
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2 Rajan et al.

seeks to find the most likely sequence of networks that yields
the extant network. This entails inferring the order in which
nodes duplicate and edges are lost at each step during evolution.
Several algorithms have been designed for ancestral network
reconstruction. An algorithm for maximum likelihood ancestral
reconstruction based on the DMC model, called ReverseDMC,
was developed by Navlakha and Kingsford (2011). ReverseDMC
greedily (by maximizing the likelihood of that single step) chooses
an anchor node that is duplicated, at each step of evolution.

ReverseDMC uses only extant network topology to infer
ancestral networks. Variants that can use additional biological
information of the extant proteins, when available, for ancestral
reconstruction have also been proposed. Such additional
information include protein duplication history (Li et al.,
2013; Jasra et al., 2015) and evolutionary periods of proteins
(Zhang et al., 2017). Other techniques for ancestral network
reconstruction include the use of graphical models (Pinney et al.,
2007), and parsimony-based approaches that find one or more
ancestral reconstructions with the minimum number of interaction
gain/loss events (Patro et al., 2012; Patro and Kingsford,
2013). These methods also use the gene duplication history and
extant networks of multiple species during ancestral network
reconstruction. Most of these methods, including ReverseDMC,
yield only one evolutionary history, which is obtained by
optimizing a mathematical criterion (like likelihood). In many
applications it is useful to obtain multiple optimal and near-optimal
histories to explore their biological relevance, through alternative
criteria.

In this paper, we develop an Integer Linear Programming
(ILP) solution for maximum likelihood reconstruction of ancestral
PPI networks, using only extant network information. We use
indicator variables to determine anchor and duplicated nodes at
each step of evolution. Conditions imposed by the DMC model
are formulated as linear constraints on each consecutive pair of
networks during evolution. By construction, our algorithm can find
the optimal solution, i.e., a solution that maximizes DMC-model
based likelihood.

It is not known whether this problem is polynomial-time
solvable. However, it appears to be unlikely, since the number
of possible histories grows exponentially with each step. The
advantage of an ILP framework is that it can leverage accurate
and efficient heuristics, that are being steadily improved by the
optimization community with readily available implementations
in state-of-the-art general-purpose solvers (Gurobi, 2015). These
improvements can automatically enhance the solution quality for
the ancestral reconstruction problem. Another advantage of using
ILP heuristics is that they can find multiple optimal and near-
optimal solutions during their search of the solution space. Thus,
they yield multiple reconstructions that can be examined for their
biological relevance.

In experiments with synthetic datasets, our ILP solution
obtains reconstructions with higher likelihood than those from
ReverseDMC, which also shows that the greedy heuristic for
this problem is not optimal. We evaluate our algorithm on two
real biological networks, that contain protein-protein interactions
from the families of bZIP transcription factors and Commander
complex. Our ILP obtains solutions with higher likelihood on
both these networks. We also examine the biological relevance
of the results by comparing the inferred node arrival times as
well as the chosen duplicated nodes at each evolutionary step,
in reconstructions from ReverseDMC and ILP. By corroboration

with independent biological evidence, we find that ILP produces
better results.

2 Problem Statement
Given a network Gt at time t, and a model of evolution M
that specifies a series of operations that generates Gg+1 from
Gg , we want to find the most probable sequence of networks
GS = G1, G2, . . . , Gt−1:

G∗S = argmax
GS

(P (Gt|Gt−1) . . . P (G2|G1) |M, Gt) (1)

We now describe the model that we use and how likelihood is
computed for the model, as given in Navlakha and Kingsford
(2011).

Fig. 1. DMC Model. Left: Yellow anchor node selected. Middle: Anchor node is duplicated,
with edges to all neighbors. Right: Some edges to neighbors are deleted (with probability
qmod/2), edge between the duplicated nodes retained with probability qcon .

The duplication-mutation with complementarity (DMC) model
assumes the first network to be a simple, connected two–node
graph, has two parameters qcon and qmod, and network evolution,
from any networkGg toGg+1, proceeds as follows (see fig. 1):

1. An anchor node u inGg is selected at random and duplicated
to form node v. Initially v is connected to all neighbors of u
and to no other nodes.

2. For each neighbor x of u (x is also a neighbor of v), the
connecting edge (u, x) or (v, x) is modified with probability
qmod; if the edge is to be modified, then with equal probability,
either edge (u, x) or (v, x) is deleted.

3. Edge (u, v) is added with probability qcon.

Since each time-step adds a node we denote each network by
the number of nodes contained in it:Gg is a network with g nodes.

Let euv denote the edge between the anchor (u) and duplicated
node (v), that is set to 1 if the edge exists and is 0 otherwise. From
step 2 of the DMC model, the probability that u and v share a
particular neighbor is (1 − qmod) and the probability that a node
x is a neighbor of u and not of v or a neighbor of v and not of u
is qmod/2. Let N(u) denote the neighbors of u, the intersection
N(u) ∩ N(v) is the set of common neighbors of u and v and
the symmetric differenceN(u)∆N(v) is the set of nodes that are
neighbors of either u or v but not both. Then, given u and v are the
anchor and duplicated nodes respectively inGg , we have, ignoring
constant terms:

logP (Gg|Gg−1,M) = (euv log qcon + (1− euv) log(1− qcon)

+
∑

N(u)∩N(v)

(1− qmod)

+
∑

N(u)∆N(v)

qmod
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Network Reconstruction 3

Once u and v are identified, Gg−1 can be reconstructed by
removing node v and adding edges between u and each node in
N(u) − (N(u) ∩ N(v)), since these edges were present before
step 2 of the DMC model. Note that u and v are indistinguishable
in Gg: either one of them may be deleted to form Gg−1 and the
addition of edges follows mutatis mutandis. In the following we
will refer to the pair of nodes u, v in Gg as duplicated nodes and
u in Gg−1 as the anchor node.

3 ILP-based Solution
To recover the entire sequence GS , given the extant network Gt,
we have to identify the following:

• Anchor nodes in each of the networks G2, . . . , Gt−1,
• Duplicated nodes in each of the networks G3, . . . , Gt,
• Edges in each of the networks G3, . . . , Gt−1.

We will construct an Integer Linear Program (ILP) to obtain
the solution. For each graph,G2, . . . , Gt, we will use binary edge
indicators eijg that denote presence or absence of an edge and
binary node indicators xig, yig, zig, aig . Subscripts i, j refer to
nodes and g refers to networkGg that has nodes 1, . . . , g. We will
set xig to 1 if the ith node in Gg is a duplicated node and aig to
1 if the ith node in Gg is an anchor node. To identify a common
neighbor of the duplicated nodes, we will use the indicator yig
and to identify a neighbor of either one of the duplicated nodes
(but not both), we will use the indicator zig . Note that eijg, ∀i, j
are known in networks G2 and Gt and unknown in all the other
networks. All the binary node indicators are unknown in all the
networks.

The log of the probability in equation 1 can now be expressed
as:

lP =

t∑
g=1

( g∑
i=1

g∑
j=1

(eijgxigxjg log qcon

+ (1− eijg)xigxjg log(1− qcon)
)

+

g∑
k=1

ykg(1− qmod) +

g∑
k=1

zkgqmod

Thus we want to maximize lP subject to all the constraints (2 to
23 below) posed by the extant graph and the model, which we
shall now describe.

3.1 Anchors, Duplicated Nodes and Neighbors

Each network, except G2, has exactly 2 duplicated nodes:

g∑
i=1

xig = 2, ∀g ∈ {3, . . . , t} (2)

Each network, except Gt, has exactly 1 anchor node:

g∑
i=1

aig = 1, ∀g ∈ {2, . . . , t− 1} (3)

The product eijgxig is 1 if and only if the ith node is a
duplicated node and there is an edge from the jth node to the
ith node. If the kth node is a common neighbor there should be
exactly 2 edges to the duplicated nodes in the network. Since there

are only 2 duplicated nodes per network, for the kth node, the sum∑g
i=1 eikgxig can take only three values: 0,1 or 2. For values 0

and 1, constraint 4 sets ykg = 0 and for value 2, constraints 4 and
5 set ykg = 1.

2ykg ≤
g∑

i=1

eikgxig, ∀k, ∀g ∈ {3, . . . , t} (4)

ykg ≥
g∑

i=1

eikgxig − 1, ∀k, ∀g ∈ {3, . . . , t} (5)

To identify a neighbor of one of the duplicated nodes, but
not both, i.e. to set zkg , there should be exactly 1 edge to the
duplicated nodes in the network. We also have to ensure that one
of the duplicated nodes, which may also satisfy this criterion if the
duplicated nodes have an edge between them, is not selected. We
can pose these constraints using an auxiliary binary node variable
wkg:

wkg + 2ykg =

g∑
i=1

eikgxig, ∀k, ∀g ∈ {3, . . . , t} (6)

zkg ≥ wkg − xkg, ∀k, ∀g ∈ {3, . . . , t} (7)

zkg ≤ wkg, ∀k, ∀g ∈ {3, . . . , t} (8)

zkg ≤ 1− xkg, ∀k, ∀g ∈ {3, . . . , t} (9)

Since there are only 2 duplicated nodes per network, for the kth

node, the sum
∑g

i=1 eikgxig can take only three values: 0,1 or 2.

• If the value is 2, then constraints 4 and 5 ensure that ykg = 1
and constraint 6 sets wkg = 0 yielding zkg = 0 through
constraint 8.

• If the value is 1, thenwkg = 1 since constraints 4 and 5 ensure
that ykg = 0. In this case if xkg = 1 then constraint 9 ensures
that zkg = 0 and if xkg = 0 then constraint 7 ensures that
zkg = 1.

• Finally, if the value is 0, then wkg = 0 (constraints 4, 5, 6)
and zkg = 0 through constraint 8.

We use another binary node variablenkg to indicate a neighbor
of a duplicated node, which may be a common neighbor or
neighbor of either of the duplicated nodes:

nkg = ykg + zkg, ∀k, ∀g ∈ {3, . . . , t} (10)

3.2 Phantom Edges

During reconstruction, we have to learn the correspondence
between nodes in Gg and nodes in the previous network Gg−1

to set the values of the unknown edges. In particular, we want
to associate the duplicated nodes in network Gg with the anchor
node inGg−1. To learn this association, we use indicator variables
P

i(g−1)
jg for pairs of nodes (ig−1, jg) where the subscript indicates

the network to which the node belongs. Since these are edges that
do not exist in the network, but are artificial constructions for our
inference, we call them phantom edges. We can view them as
directed edges to a network from the previous network. See fig. 2
for an illustration.

On each node jg in a network, except in G2, there must be
exactly one incoming phantom edge from any of the nodes (ig−1)
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Fig. 2. Phantom edges between networks. Each node ig of a network Gg is connected to all the nodes jg in Gg through phantom edges P i(g−1)
jg

. Not all phantom edges shown.

in the previous network:

g−1∑
ig−1=1

P
i(g−1)
jg = 1, ∀jg∀g ∈ {3, . . . , t} (11)

From each node (ig−1) in the (previous) network, except from
Gt, there must be at least 1 and at most 2 outgoing phantom edges.
Anchor nodes will have 2 phantom edges and all other nodes will
have only 1:

g∑
jg=1

P
i(g−1)
jg ≥ 1, ∀ig−1∀g ∈ {3, . . . , t} (12)

g∑
jg=1

P
i(g−1)
jg ≤ 2, ∀ig−1∀g ∈ {3, . . . , t} (13)

3.3 Edge Reconstruction

We now add the final set of constraints for edges in all the ancestral
networks that are determined by the model and edges in the extant
network. This is done by mapping edges from Gg to Gg−1 for
which we will use the phantom edges. The known edges in the
extant network shall be mapped backwards up to the first graph
G2. We have to ensure the following three conditions:

1. An edge between duplicated nodes should not be mapped to
any edge in the previous network since the duplicated nodes
are from a single anchor node.

2. An edge (xg, ng) between a duplicated node xg and its
neighbor ng in network Gg should be mapped to an edge
(ag−1, ng−1) between the anchor ag−1 and its neighborng−1

in network Gg−1.
3. Any other edge should be mapped back to a unique edge in

the previous network and there should be no other unmapped
edge in the previous network.

To set these constraints, we will use three variables defined as
follows. A binary indicator variable, for two nodes ig and jg in

Gg , is defined as

S1
ijg =

g∑
k=1

ak(g−1)P
i(g−1)
kg P

j(g−1)
kg .

It is non-zero if and only if there are two phantom edges from an
anchor node kg−1 inGg−1 to ig and jg inGg . For each edge (i, j),
each term in S1

ijg is the product of ak(g−1), P
i(g−1)
kg , P

j(g−1)
kg .

This term has value 1 iff ak(g−1) = P
i(g−1)
kg = P

j(g−1)
kg = 1

which creates a mapping from nodes i, j to the anchor node in the
previous network. See fig. 3.

Fig. 3. For each pair of nodes (i, j), we use phantom edges to find the appropriate mapping.
Variables S1

ijg, S
2a
ijg, S

2b
ijg, Tijg encode different possible conditions all of which are

not true at the same time. S1
ijg is used to map i, j to a single anchor node, S2a

ijg, S
2b
ijg

are used to map i, j to an anchor node and its neighbor and Tijg is used for all other cases.

Another binary indicator variable, for two nodes ig and jg in
Gg , is defined as

S2a
ijg =

g−1∑
l,k=1

al(g−1)(1− ak(g−1))P
k(g−1)
jg P

l(g−1)
ig elk(g−1).

It is non-zero if an only if there are two phantom edges from an
anchor node al(g−1) and its neighbor (1 − ak(g−1)) connecting
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Network Reconstruction 5

them respectively to ig and jg inGg and there is an edge elk(g−1)

in Gg−1. For a symmetric condition, for phantom edges from an
anchor node al(g−1) and its neighbor (1 − ak(g−1)) connecting
them respectively to jg and ig in Gg , we define another binary
indicator variable, for two nodes ig and jg in Gg , as

S2b
ijg =

g−1∑
l,k=1

al(g−1)(1− ak(g−1))P
k(g−1)
ig P

l(g−1)
jg elk(g−1).

Each term in the sums S2a
ijg and S2b

ijg is used to create a mapping
from nodes i, j to an anchor node and its neighbor in the previous
network. See fig. 3.

Finally, another binary indicator variable, for two nodes ig and
jg in Gg , is defined as

Tijg =

g−1∑
l,k=1

P
l(g−1)
ig P

k(g−1)
jg elk(g−1).

It is non-zero if and only if there are two phantom edges from
(any) nodes kg−1 and lg−1 inGg−1 to ig and jg inGg respectively
and there is an edge elk(g−1). Each term in Tijg is a product of
phantom nodes incoming at i and j inGg and the edge elk(g−1) in
the previous networkGg−1, which when set to 1 creates a mapping
from edge (i, j) ∈ Gg to edge (l, k) ∈ Gg−1. See fig. 3.

We set the constraints for each pair of nodes (ig, jg) in graph
Gg based on node indicators for duplicated nodes (xig) and
neighbor nodes (nig):

• If both (ig, jg) are duplicated nodes, i.e. xigxjg = 1, then we
have to set S1

ijg = 1 to ensure that duplicated nodes connect
to an anchor node in the previous network. Other indicators,
S2a
ijg = S2b

ijg = Tijg = 0 to ensure that no edge in Gg−1 is
mapped to an edge, if any, between ig and jg . See fig. 4.

Fig. 4. If both (ig, jg) are duplicated nodes (denoted by x), then S1
ijg = 1 shall connect

the duplicated nodes to a single anchor node (denoted by a) in the previous network.

• If the nodes (ig, jg) are such that one of them is a duplicated
node and the other a neighbor, i.e. xignig = 1 or xjgnig = 1,
then we set S1

ijg = 0 so the anchor node in the previous
network does not connect to this pair through any phantom
edges, and we set S2b

ijg = xjgnig, S
2a
ijg = xignjg to ensure

that phantom edges connect the anchor and its neighbor in the
previous graph to nodes (ig, jg).
Note that there may not be an edge between (ig, jg), if jg is
a neighbor to the other duplicated node and not ig as shown
in fig. 5. This should still set the above constraints since both
the duplicated nodes map to the anchor. We set Tijg = 1 to
ensure that there is exactly one edge between (lg−1, kg−1) and

Fig. 5. A duplicated node (x) and a neighbor (y or z) must connect to an anchor (a) and its
neighbor in the previous network. This is done through the variables S2a

ijg, S
2b
ijg . Above:

A duplicated node and neighbor of the other duplicated node, Below: A duplicated node and
its own neighbor. Both have to be mapped to the same two nodes in the previous network.

Fig. 6. Above: An edge between non-duplicated nodes is mapped back to an edge in the
previous network. Below: If there is no edge between a pair of non-duplicated nodes, there
should be no edge in the mapped nodes in the previous network.

Tijg ≥ eijg since there may or may not be an edge between
(ig, jg).
Note that this and the previous cases are mutually exclusive
since nig and xig are never both set to 1 for the same node.
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• If both the above cases are not true, i.e. xigxjg = xignig =
xjgnig = 0, then we set S1

ijg = S2b
ijg = S2a

ijg = 0 since
we do not want an edge between (ig, jg) to map to any edge
connecting to an anchor in the previous network and we set
Tijg = eijg to ensure that there is a single edge (lg−1, kg−1)
if eijg = 1. If eijg = 0, then this ensures there is no edge in
the previous network mapped to (ig, jg). See fig. 6.

The above three sets of conditions are incorporated in the
following constraints:

S1
ijg = xigxjg, ∀ig, jg, ∀g ∈ {3, . . . , t} (14)

S2a
ijg = xignjg, ∀ig, jg,∀g ∈ {3, . . . , t} (15)

S2b
ijg = xjgnig, ∀ig, jg, ∀g ∈ {3, . . . , t} (16)

We define an auxiliary binary variablePijg that is set to 0 ifS2a
ijg =

0 and S2b
ijg = 0 and 1 otherwise (i.e. the logical OR); also, we set

Qijg = xigxjg:

Pijg ≥ S2a
ijg, ∀ig, jg, ∀g ∈ {3, . . . , t} (17)

Pijg ≥ S2b
ijg, ∀ig, jg, ∀g ∈ {3, . . . , t} (18)

Pijg ≤ S2a
ijg + S2b

ijg, ∀ig, jg, ∀g ∈ {3, . . . , t} (19)

Variables Tijg and eijg are set using Pijg and Qijg:

Tijg ≥ Pijg, ∀ig, jg, ∀g ∈ {3, . . . , t} (20)

Tijg ≤ 1 + Pijg −Qijg, ∀ig, jg, ∀g ∈ {3, . . . , t} (21)

eijg(1−Qijg) ≤ Tijg(1−Qijg), ∀ig, jg,∀g ∈ {3, . . . , t}
(22)

eijg(1− Pijg) ≥ Tijg(1− Pijg), ∀ig, jg, ∀g ∈ {3, . . . , t}
(23)

• If Qijg = xigxjg = 1, then constraints 21 and 22 ensure
that Tijg = Pijg = 0 since both S2a

ijg and S2b
ijg are 0. If

Pijg = 0, Qijg = 1, then constraint 22 is void and constraint
23 ensures that eijg ≥ Tijg .

• If Qijg = xigxjg = 0 and Pijg = 1 (i.e. either S2a
ijg or S2b

ijg

is 1 which is only possible if xignig = 1 or xjgnig = 1) then
constraint 20 ensures that Tijg = 1. If Pijg = 1, Qijg = 0,
then constraint 23 is void and constraint 22 ensures that eijg ≤
Tijg .

• If Qijg = xigxjg = 0 and Pijg = 0, then constraints 20 and
21 do not impose any value on Tijg . If Pijg = 0, Qijg = 0,
then constraints 22 and 23 ensure that eijg = Tijg .

Finally, we set eijg = ejig∀ig, jg, ∀g ∈ {2, . . . , t} to ensure
that the edges are undirected.

3.4 Linearization

The constraints as described above have terms that are products
of binary variables and sums of such products. A constraint y =
x1x2, . . . , xn where each variable is binary is equivalent to the
following n + 1 constraints: y ≥ x1, y ≥ x2, . . . y ≥ xn, y ≤
x1+x2+. . .+xn−(n−1). Sums of products can be decomposed
using auxiliary binary variables. For example, y = x1x2 + x3x4

can be expressed as y = z1 + z2, z1 = x1x2, z2 = x3x4 and
further linearized using the previous rule.

3.5 Multiple Solutions

Since ILP is, in general, NP-hard, optimal solutions for very
large networks may not be found in polynomial time. However,
many heuristics have been developed to find multiple near-
optimal solutions, e.g., see Wallace (2010), with efficient software
implementations (Gurobi, 2015). These heuristics enable us to find
multiple solutions and examine their biological relevance.

4 Experiments

4.1 Simulations

We simulated 1215 extant networks with number of nodes in the
extant network varying from 6 to 10. For each network, evolution
is simulated following the DMC model starting from an initial
network of two connected nodes. The DMC model requires two
parameters qcon and qmod. For each simulation, each parameter
is randomly chosen from the closed interval [0.1, 0.9], rounded
to one decimal. We reconstruct the network sequence using
ReverseDMC, the Greedy approach of (Navlakha and Kingsford,
2011) and our ILP.

Likelihood Comparison
Table 1 shows that out of 1215 simulations, there were no
simulations where solutions from ILP had a lower likelihood than
that of ReverseDMC. Since these are relatively small networks,
both ReverseDMC and ILP were able to find optimal solutions
in many cases. The fact that ILP could find 274 solutions with
higher likelihood shows that ReverseDMC is not guaranteed to
find optimal solutions. Table 2 shows the summary statistics of the
increase in log-likelihood due to ILP, compared to ReverseDMC
solutions. The increase can range from 0.04 to 2.33, even in these
relatively small networks.

Total Equal ILP ReverseDMC
1215 941 274 0

Table 1. Number of simulations where the log-likelihood of the reconstructed
solutions were equal for both methods (2nd column), higher for ILP (3rd
column) or higher for ReverseDMC (4th column).

Total Mean (SD) Median Maximum Minimum
274 0.68 (0.43) 0.54 2.33 0.04

Table 2. Summary statistics of increase in log-likelihood among the 274
simulations where ILP reconstructions had higher likelihood than ReverseDMC
reconstructions. SD: standard deviation.

4.2 Real Networks

We reconstruct the history of two protein-protein interaction
networks using both ReverseDMC and ILP algorithms. In both
algorithms, we assume qcon = 0.7, qmod = 0.4.

We evaluate the biological relevance of the results in two ways.
First, we compare the node arrival times of the reconstructions
following the procedure described in Navlakha and Kingsford
(2011). The key idea is to estimate the protein arrival time using
available ortholog information, with the assumption that proteins
that arrive earlier in history have higher number of orthologs.
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Thus, the list of proteins in the extant network in descending
order of number of orthologs is considered to be the ‘true’ node
arrival order (AT ). We determine the number of orthologs for each
protein using OrthoDB (Kriventseva et al., 2018), by counting the
number of genes at the highest level at which ortholog information
was available for all the proteins in the networks (vertebrata for
bZIP and metazoa for Commander). The reconstruction history
of both Greedy and ILP identifies the removed node at each
step: this provides the reconstructed node arrival order (AR) for
each algorithm. AT and AR are compared using Kendall’s Tau
(Kendall, 1945) that measures correlation between two ranked
lists (definition given in appendix). Higher values indicate better
correlation.

Our second evaluation is based on the sequence similarities
between all the inferred anchors and duplicated nodes. Since
at each time step in evolution (by the DMC model) the anchor
gene (a) duplicates into another gene (d), we expect the pairwise
similarity between a and d to be higher than the pairwise similarity
between a and the remaining genes at that time step. Given
the the extant network Gt and its reconstructed evolutionary
history: ĜS = Ĝ3, . . . , Ĝt−1, Gt, along with chosen anchors
and duplicated nodes in each network, we compute a score ρ(Ĝi)
for each network in Ĝi ∈ ĜS , using pairwise sequence similarity
(Needleman and Wunsch, 1970) between the chosen anchor node
protein and the duplicated node protein. The final score for the
reconstruction, that we call Anchor-Duplicate Similarity Score
(ADSS), is given by

∑
Ĝi∈ĜS

ρ(Ĝi)/(t−2), where we normalize

by the number of networks in ĜS . Ĝ2 is not considered since
in the first evolutionary step (from Ĝ1 to Ĝ2) there is only one
gene that duplicates and there are no other genes to compare with.
Thus given two reconstructions of the same extant network, higher
ADSS indicates better choice of anchor and duplicate nodes in the
reconstruction.

bZIP Transcription Factors

Fig. 7. Extant bZIP network used in our experiment.

The basic-region leucine zipper (bZIP) transcription factors
are a protein family involved in many cellular processes including
the regulation of development, metabolism, circadian rhythm, and
response to stress and radiation (Amoutzias et al., 2006; Pinney
et al., 2007). The interactions between these proteins are strongly
mediated by their coiled-coil leucine zipper domains and so, the
strength of these interactions can be accurately predicted using just
sequence information (Fong et al., 2004). With the method of Fong

et al. (2004), Pinney et al. (2007) constructed extant networks on
a set of bZIP proteins for multiple species. We took the H. sapiens
network and merged subunits for the same protein into one node,
to obtain the extant network used in our experiment (fig. 7).

Algorithm Log-Likelihood Kendall’s Tau ADSS
ReverseDMC -21 -0.23 -1901.55

ILP -19.6 0.26 -1797.11
Table 3. Likelihood, Node Arrival Time Accuracy and ADSS for Ancestral
Reconstruction of the bZIP Network

Table 3 shows the Likelihood, Node Arrival Time Accuracy
(measured by Kendall’s Tau) and ADSS for Ancestral
Reconstruction of the bZIP Network by both ReverseDMC and
ILP. With respect to all three metrics, the solution obtained
by ILP is better than that of ReverseDMC. Table 4 shows the
order of arrival of proteins inferred by the reconstructions from
ReverseDMC and ILP. Sequence-based phylogenetic analysis of
bZIP transcription factors by Amoutzias et al. (2006) revealed
a highly conserved ancient core network containing proteins
JUN, FOS and ATF3, that provides additional evidence of the
correctness of our reconstruction. In table 4 we observe that these
three proteins appear early in the order inferred by ILP (before the
seventh step) while JUN and ATF3 arrive after the seventh step in
the order inferred by ReverseDMC.

Time step ReverseDMC ILP
2 FOS, CREB ATF2, ATF6
3 ATF6 FOS
4 BATF ATF3
5 ATF4 CREB
6 ATF2 JUN
7 E4BP4 CEBP
8 JUN BATF
9 ATF3 PAR
10 CEBP ATF4
11 PAR E4BP4
12 XBP1 OASIS
13 OASIS XBP1

Table 4. Arrival order of anchor proteins in the bZIP network, at each step of
evolution, based on reconstructions from ReverseDMC and ILP.

Commander Network
Commander is a multiprotein complex that is broadly conserved
across vertebrates and is involved in several roles including pro-
inflammatory signaling and vertebrate embryogenesis (Mallam
and Marcotte, 2017). A well characterized sub-complex of
Commander, CCC, made of COMMD1, CCDC22, CCDC93 and
C16orf62, is known to be involved in endosomal protein trafficking
(Bartuzi et al., 2016; Mallam and Marcotte, 2017). Defects
in the Commander complex are associated with developmental
disorders (Mallam and Marcotte, 2017; Liebeskind et al., 2018).
Reconstructing the evolutionary history of interactions in the
complex can shed light on the conservation and stability of the
proteins and their interactions, which in turn can aid understanding
of the sources of dysfunction of the complex. We use the network
discussed in (Liebeskind et al., 2018), shown in fig. 8, as the extant
network for ancestral reconstruction.
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Fig. 8. Extant Commander network used in our experiment.

Algorithm Log-Likelihood Kendall’s Tau ADSS
ReverseDMC -17.49 -0.27 -2873.25

ILP -16.17 0.01 -1649.64
Table 5. Likelihood, Node Arrival Time Accuracy and ADSS for Ancestral
Reconstruction of the Commander Network

Time step ReverseDMC ILP
2 COMMD6, COMMD9 COMMD3, COMMD9
3 C16ORF62 COMMD1
4 COMMD2 COMMD6
5 CCDC93 COMMD2
6 CCDC22 COMMD5
7 COMMD5 CCDC93
8 COMMD1 CCDC22
9 COMMD3 C16ORF62

Table 6. Arrival order of anchor proteins in the commander network, at each
step of evolution, based on reconstructions from ReverseDMC and ILP.

Table 5 shows the Likelihood, Node Arrival Time Accuracy
(measured by Kendall’s Tau), and ADSS for ancestral
reconstruction by both ReverseDMC and ILP. On this network
too, on all three metrics, the solution obtained by ILP is better
than that of ReverseDMC. Table 6 shows the order of arrival of
proteins inferred by the reconstructions from ReverseDMC and
ILP. Among all the commander proteins, COMMD1 is the best
studied and is found to be highly conserved with multiple key
functions (Riera-Romo, 2018). Indeed, in OrthoDB, COMMD1
has the maximum number of orthologs, among these proteins. In
the reconstruction by ILP, COMMD1 is seen to arrive early, at the
third step, while in the reconstruction from ReverseDMC it arrives
only at the eighth step of evolution.

5 Conclusion
We presented an Integer Linear Programming (ILP) based solution
for maximum-likelihood reconstruction of the evolution of a PPI
network using the Duplication-Mutation with Complementarity
(DMC) model. We use indicator variables to determine anchor
and duplicated nodes and derived the conditions imposed by the
DMC model as linear constraints on each network, and on each
consecutive pair of networks, at each step during evolution. By
construction, the ILP can find the optimal solution and heuristics

from general-purpose ILP solvers can be used to find multiple
optimal and near-optimal solutions efficiently.

We compared the solutions obtained by our ILP with those
from ReverseDMC (Navlakha and Kingsford, 2011), the previous
best algorithm for this problem. On simulated data, we found that
ILP always obtains solutions that are of equal or higher likelihood
than those from ReverseDMC. We evaluated both the algorithms
on two real PPI networks, containing proteins from the bZIP
transcription factors and Commander complex respectively. On
both the networks, solutions from our ILP had higher likelihood
and were in better agreement with independent biological evidence
from ortholog information and sequence similarity.

This is the first ILP solution to a model-based network
reconstruction problem and the presented framework may be
useful for other network models as well. The ILP framework
could be generalized to handle multiple input networks as well
as to take into account additional information, such as gene
duplication histories. A limitation of our solution is that it can
take considerably long to find reconstructions for very large
networks. However, the ILP framework can yield deeper insights
into the structure of the problem and specialized heuristics could
be developed to obtain more efficient and scalable solutions.
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Appendix
Kendall’s Tau
We use the version that accounts for ties, given by τ =

P−Q√
(P+Q+T )∗(P+Q+U)

, where P is the number of concordant

pairs, Q the number of discordant pairs, T the number of ties
only in AT , and U the number of ties only in AR. If a tie occurs
for the same pair in bothAT andAR, it is not added to either T or
U . Here we consider pairs of observatios (xi, yi), (xj , yj) where
xi, xj ∈ AT , yi, yj ∈ AR and i < j. A pair (xi, yi), (xj , yj)
is concordant if the ranks of both elements agree, i.e., both
xi < xj and yi < yj ; or both xi > xj and yi > yj . A pair
(xi, yi), (xj , yj) is discordant if xi > xj and yi < yj or if
xi < xj and yi > yj . If xi = xj or yi = yj , it is considered a tie.
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