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Abstract  

The spatio-temporal organization of transcription factor (TF)-promoter interactions is critical for 

the coordination of transcriptional programs. In budding yeast, the main G1/S transcription 

factors, SBF and MBF, are limiting with respect to target promoters in small G1 phase cells and 

accumulate as cells grow, raising the question of how SBF/MBF are dynamically distributed 

across the G1/S regulon. Super-resolution Photo-Activatable Localization Microscopy (PALM) 

mapping of the static positions of SBF/MBF subunits revealed that 85% were organized into 

discrete clusters containing ~8 copies regardless of cell size, while the number of clusters 

increased with growth. Stochastic simulations with a mathematical model based on co-

localization of promoters in clusters recapitulated observed cluster behavior. A prediction of the 

model that SBF/MBF should exhibit both fast and slow dynamics was confirmed in PALM 

experiments on live cells. This spatio-temporal organization of the TFs that activate the G1/S 

regulon may help coordinate commitment to division.  
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Introduction 

The three dimensional (3D) architecture of the genome has been postulated to play a central 

role in the regulation of gene expression and DNA replication (Cremer et al., 2001; Sexton et al., 

2007). Eukaryotic genomes are organized into separated large-scale active or repressed (A/B) 

compartments (Lieberman-aiden et al., 2009). At smaller length scales, Topologically Associated 

Domains (TADs) (Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012), in which distant loci 

on the same chromosome are brought together, serve to segregate active and inactive 

chromosomal compartments. Sequential FISH labeling coupled to super-resolution STORM 

microscopy has validated the existence of TADs in single cells (Bintu et al., 2018; Szabo et al., 

2018). These TADs are highly heterogeneous and formed by multiple low-probability  interactions 

(Bintu et al., 2018; Cattoni et al., 2017).  

The  current 3D model of the G1 phase genome in the budding yeast Saccharomyces cerevisiae 

suggests a configuration in which the centromeres are clustered at the spindle pole body (SPB), 

the yeast equivalent of the centrosome, at the opposite side of the nucleus to the nucleolus (Duan 

et al., 2010; Lazar‐Stefanita et al., 2017; Taddei and Gasser, 2012; Wong et al., 2012; Zimmer and 

Fabre, 2011), while the telomeres are clustered into 6-10 dynamic foci that are tethered to the 

nuclear membrane (Taddei et al., 2004; Taddei and Gasser, 2012) (Figure S1). This organization 

can be dynamically altered by growth conditions, as exemplified by the nutrient-dependent 

clustering of tRNA loci (Hopper et al., 2010) or the peripheral clustering of the GAL1-10 locus at 

the Nuclear Pore Complex (NPC) (Brickner et al., 2016). How 3D genome organization impacts 

the coordination of transcriptional programs, cell growth and proliferation, and cell fitness in 

general is not well understood.  

Commitment to cell division occurs in late G1 phase, an event termed Start in budding yeast 

(Hartwell et al., 1974; Johnston et al., 1977). Start depends on an extensive G1/S transcriptional 

regulon comprised of ~200 genes that function in macromolecular biosynthesis, bud emergence, 

DNA replication, SPB duplication and other critical processes. The G1/S transcriptional program 
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is controlled by two master transcription factor (TF) complexes, SBF and MBF, made up of one 

DNA binding subunit, Swi4 and Mbp1, respectively, and a common activator subunit, Swi6 (Koch 

et al., 1993). SBF and MBF recognize specific sites in G1/S promoter regions, called SCB and MCB 

sites, with some degree of overlapping specificity (Bean et al., 2005; Iyer et al., 2001; Koch et al., 

1993). Various ChipSeq experiments have delineated Swi4, Mbp1 and Swi6 binding sites in the 

genome (Iyer et al., 2001; Lee et al., 2002; Park et al., 2013; Simon et al., 2001), although the 

agreement between these various studies is only partial (Ferrezuelo et al., 2010). 

Based on recent Swi6 ChipSeq data, bioinformatics approaches have been used to map the 

Swi6 target sites onto a 3D model of the budding yeast G1 phase genome (Capurso et al., 2016; 

Duan et al., 2010; Park et al., 2013). This model predicted functional 3D hotspots for Swi6 

binding, in particular the MSB2 and ERG11 genes. A combination of ChipSeq and chromatin 

capture data  suggests many transcription factors in budding yeast, including Swi4 and Swi6, have 

targets sites that cluster in space (Ben-Elazar et al., 2013; Duan et al., 2010; Eser et al., 2017). 

Swi4 and Swi6 have been shown to be associated with highly transcriptionally active gene clusters 

(Tsochatzidou et al., 2017). Interestingly, the boundaries of these TADs appear enriched for 

transcriptional activity and seem to separate regions of similarly timed replication origins. 

Despite the strong inference of TF clustering from these studies, the spatial and temporal 

organization of the G1/S TFs and their target sites has not been directly observed.  

Here, we have used a super-resolution method, Photo-Activatable Localization Microscopy 

(PALM) (Betzig et al., 2006; Rust et al., 2006) to map the static and dynamic positions of fusions 

of Swi4, Mbp1 and Swi6 with the photoactivatable protein mEos3.2 (Zhang et al., 2012) expressed 

from their natural loci in fixed and live budding yeast cells. The resultant PALM images of fixed 

cells provided 2D projections of the 3D organization of these proteins in the nucleus. We found 

that the TFs organize into clusters of ~8 monomers (4 dimers) that range in number from ~5 in 

small cells to ~30 in large cells. Given that, throughout most of G1, SBF/MBF copy numbers are 

limiting with respect to the ~200 G1/S promoters (Dorsey et al., 2018), the observed SBF/MBF 
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clustering strongly suggests close spatial proximity of several promoter sites within each cluster. 

While the number of clusters increased with cell size, the number of molecules per cluster was 

independent of cell size. This increase in TF cluster number was in overall in agreement with our 

previous observations of an increase in TF copy number as cells grow (Dorsey et al., 2018). A 

mathematical model and Monte Carlo computer simulations of TF clustering constrained by these 

observations and simple biophysical assumptions predicted that TFs should alternate between a 

highly confined state, in which they are trapped within G1/S promoter clusters, and a highly 

dynamic state, in which they hop rapidly between clusters. Live cell single particle tracking (spt)-

PALM verified the prediction of distinct slow sub-diffusive and fast diffusive dynamic modes for 

these factors. Overall, these results suggest that the promoters of the G1/S regulon are spatially 

organized into discrete clusters that are successively titrated by increasing TF copy number as 

cells grow.  

 

Results 

The G1/S transcription factors are clustered in yeast nuclei 

Super-resolution PALM images of mEos3.2 fusions of Swi4, Mbp1 and Swi6 in single nuclei 

from fixed cells grown on rich (SC+2% glucose) medium revealed non-homogeneous distributions 

for each protein (Figure 1, Figures 1-Supplemental Figures 1 and 2). No size phenotype was 

observed for these strains, as with our prior studies on strains expressing GFP fusions of these 

factors (Dorsey et al., 2018), indicating that these crucial TFs retain their function when fused to 

the fluorescent proteins. The super-resolution detection images (Figures 1A-D, Figures 1-

Supplemental Figures 1A-D and 2 A-D) (resolution ~25 nm) result from the super-position of all 

detections of all molecules over the ~30,000-40,000 frames acquired for a given field of view 

(FOV). However, since each protein was cross-linked by fixation and thus immobile, and was 

detected multiple times in successive frames (up to 100), it is possible to average its mean position 

over multiple detections to obtain a molecular (Betzig et al., 2006) as opposed to detection image, 
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in which the average position of each individual TF is represented (Figure 1 E-G; Figures 1-

Supplemental Figures 1E-G and 2 E-G). It is apparent from both the detection and the molecular 

images that most nuclear Swi6, Mbp1 and Swi4 occurred in discrete clusters of a few molecules in 

small, medium and large G1 phase (see Supplementary Information cells. Clusters of the TFs were 

also observed in cells grown on SC+2% glycerol, a poor growth medium (Figures 1-Supplemental 

Figure 3). The super-resolution images correspond to 2D representations of 3D objects, since the 

microscope depth of field (~500nm) is larger than macromolecular structures. Hence some 

degree of clustering could in principle arise from super-position of molecules in different z-planes. 

Nonetheless, the extensive degree of clustering observed exceeds what may be expected from 2D 

super-position of randomly distributed molecules in 3D (see simulations below).   

Figure 1. Super-resolution PALM imaging reveals clustering of Swi4-mEos3.2 in fixed budding yeast 
cells.  
A) Composite image of the phase contrast and PALM images of a FOV of Swi4-mEos3.2 cells grown in SC+2%glucose. 
Detection image outputs (pink dots; one for each detection) were obtained with the Thunderstorm plugin from ImageJ. 
Detection images were not filtered for blinking. High intensity purple in the image corresponds to out of focus beads. 
Zoomed cells 1-3 are indicated by yellow circles and numbers. Scale bar is 10 μm. B-D) Zoomed composite images of 
small (1), medium (2) and large (3) cells. Scale bars are 1 μm. E-F) Molecular images of the nuclei of cells 1-3, 
respectively. Scale bars are 0.15 μm in panel E, 0.24 μm in panel F and 0.30 μm in panel G. 
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The number of clusters of G1/S transcription factors increases with cell size while copy number 

per cluster remains constant  

Nuclei were masked, and the number of molecules detected in each nucleus was obtained from 

analysis of the blinking-corrected molecular images (i.e., Figures 1E-G, Figure1-Supplemental 

Figures 1 and 2E-G) as described in the methods section and SI. Given their nuclear size, most 

cells to the left of the black dashed lines in Figure 2 are expected to be in G1 phase (see Methods, 

Figure 2-Supplemental Figure 1). The nuclear copy numbers of Swi4, Mbp1 and Swi6 increased 

with cell size (Figure 2A-C, respectively), consistent with our previously reported size-dependent 

increase in G1/S copy number determined by Number and Brightness (N&B) fluctuation 

microscopy (Dorsey et al., 2018). The average number of proteins per nucleus was in reasonably 

good agreement with values determined by N&B of 50-100 copies in small G1 phase cells and 100-

200 in large G1 phase cells (Figure 2-Supplemental Figure 2), although we detected somewhat 

fewer molecules in the PALM experiments, especially in large cells. This difference is most likely 

due to the limited depth of field in the PALM experiments (see Supplemental methods). We note 

that PALM microscopy is not as reliable as N&B for particle counting due to blinking of mEos3.2, 

imperfect correction thereof (Lee et al., 2012), incomplete activation of mEos3.2 and exclusion of 

out-of-focus particles.  

To quantify the number of clusters in each nucleus and the number of molecules in each 

cluster, an algorithm was developed to identify clusters. First the list of individual molecules 

within each nucleus was reordered such that nearest neighbors on the image were also nearest 

neighbors in the list (see Supplemental Methods). Since Mbp1, Swi4 and Swi6 predominantly 

occur as dimers (Dorsey et al., 2018), we defined a cluster as a group of molecules larger than at 

least 2 dimers (i.e., 4 molecules). The algorithm was then used to compute the list of distances 

between each molecule and the next one in the list, as shown in Figure 2-Supplemental Figure 3A 

for an exemplary cell. In order to define and distinguish clusters, a distance threshold (i.e., 

threshold spike amplitude separating two different clusters) of 10 high-resolution pixels, i.e., 10x3 
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nm/pix = 30 nm was chosen (Figure 2-Supplemental Figure 3A). This choice followed from the 

fact that the relative change in cluster number with respect to the threshold did not change 

significantly beyond this critical distance of 30nm (Figure 2-Supplemental Figure 3B). Unlike 

previously published cluster detection algorithms (Mazouchi and Milstein, 2015), our algorithm 

detected the small clusters observed for these proteins, even for the sparse clusters found in small 

cells.  

Figure 2. Copy numbers and the number of clusters per cell for Swi4, Mbp1 and Swi6 increase with cell 
size. 
A-C) Total number of Swi4-, Mbp1-, and Swi6-mEos3.2 molecules in each nucleus as a function of nuclear size, a proxy 
for cell size. Each point represents an individual nucleus. D-F) Number of Swi4-, Mbp1-, and Swi6-mEos3.2 clusters 
per nucleus as a function of cell size. G-I) Average number of Swi4-, Mbp1-and Swi6-mEos3.2 molecules per cluster for 
each nucleus as a function of cell size. Left-hand panels correspond to Swi4-mEos3.2 (green, 370 cells), middle panels 
correspond to Mbp1-mEos3.2 (red, 536 cells) and right-hand panels correspond to Swi6-mEos3.2 (blue, 222 cells). 
Each point represents one nucleus. Nuclear size is given in pixels. To the left of the dashed lines at 20000 pixels the 
majority of cells are in G1 phase (see Supplementary Methods and Figure S5).  
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For all three TFs, the number of clusters increased with cell size, while the mean number of 

molecules per cluster was almost invariant with size (Figure 2D-I, Figure 2-Supplemental Figure 

4A). Most clusters contained ~8 molecules (4 dimers), although some were significantly larger 

(Figure 2G-I; Figure 2-Supplemental Figure 4B). Regardless of cell size, 85% of all molecules were 

located in clusters, whose lateral extension was in the 30nm-80nm range (Figures 1E-G, Figure1-

Supplemental Figures 1-3E-G and insets). These results suggested that as TF copy number 

increased with cell growth, TFs form new clusters rather than associating with existing clusters. 

The number of clusters for each TF in the largest cells reached ~20-30, much lower than the ~200 

G1/S promoters and the ~600 target sites across all G1/S promoters (Ferrezuelo et al., 2010; Iyer 

et al., 2001). Interestingly, Swi6 clusters had about the same average number of molecules as Swi4 

or Mbp1 (Figures 2, Supplemental Figure 4), such that the larger number of Swi6 molecules (with 

respect to Swi4 or Mbp1) was reflected by a larger number of clusters (but significantly smaller 

than the sum of Swi4 and Mbp1 clusters for any cell size). This observation suggested that most 

clusters are composed of both MBF and SBF. 

Given that Swi4 and Mbp1 copy numbers are only in slight excess with respect to the number 

of G1/S promoters in large cells at the end of G1 phase (Dorsey et al., 2018), the organization of 

the TFs into clusters indicates that G1/S promoters might also be clustered, which may help 

ensure synchronous expression of the G1/S regulon. In this view, most G1/S promoters would be 

spatially organized into ~30 clusters of 7-10 promoters each that are successively titrated by G1/S 

TFs as cells grow. In a contrasting view, the limiting number of Swi4-Mbp1 dimers could in 

principle partially populate the promoter clusters even in small cells (Dorsey et al., 2018), and 

newly synthesized molecules would also randomly distribute across all clusters of target sites. This 

scenario would result in a constant number of clusters that increase in TF copy number per cluster 

as cells grow. Our data unequivocally support the former model in which most G1/S promoters 

are spatially organized into clusters that are successively titrated by G1/S TFs as cells grow.  
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A quantitative model couples G1/S DNA promoter clusters to TF clusters 

We developed a mathematical model and used Monte Carlo computer simulations to explore 

the biophysical parameters that might explain the observed spatial patterns of TFs as a function 

of cell size (Figure 3).  The model was based on the SBF/MBF binding module of our previously 

published Start model (Dorsey et al., 2018) and included an additional assumption that G1/S 

promoters form clusters (see below). The SBF/MBF binding module encompasses mass-action 

kinetic-driven binding of Swi4 and Mbp1 dimers to Swi6 dimers, their binding to DNA, and the 

converse dissociation reactions. This equilibrium mathematical model was first converted to mass 

action-like ordinary differential equations and then into stochastic simulations using the Gillespie 

algorithm, discretized onto a three-dimensional spatial mesh to account for diffusion (David 

Bernstein, 2005; Jose et al., 2013) in small, medium and large cells. Unless otherwise specified, 

we used a nuclear diffusion coefficient of 𝐷𝑛𝑢𝑐 = 2 µm2/s (Thattikota et al., 2018). For model 

equations, assumptions and parameters see Methods, Supplemental Methods and (Dorsey et al., 

2018)). 

SBF/MBF dimer copy number values as a function of cell size were also taken from our 

previous determination by Number and Brightness microscopy (Dorsey et al., 2018). The 

concentrations of Mbp1 and Swi6 were found previously to be 110 and 150 nM in G1 cells of all 

sizes, such that the dimeric copy numbers of 42 and 57, respectively for Mbp1 and Swi6 in small 

cells increased ~3-fold to 131 and 178 in large cells. Swi4 concentration was much lower in small 

cells, 50 nM (dimeric copy number 15) and doubles as cells grow in G1, leading to a dimeric copy 

number of 109 in large cells (Dorsey et al., 2018). These parameters ensured stable and 

predominant formation of DNA-bound SBF and MBF complexes, confirming that the equilibrium 

regime previously predicted (Dorsey et al., 2018) is reached kinetically when molecular noise is 

accounted for (Figure 3-Supplemental Figure 1A, B).  
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Figure 3.  Stochastic modeling predicts Swi4, Mbp1 and Swi6 clustering.  
A) Schematic of SBF/MBF binding model (left), encompassing mobile Swi4 dimers (green dots), Mbp1 dimers (red 
dots), Swi6 dimers (blue dots) and immobile G1/S DNA promoters (black dots), moving and interacting in the nucleus 
discretized in infinitesimal volume elements (cubes separated by thin black lines, only a few of them are shown here). 
Swi4/Mbp1 can associate with Swi6 to form mobile SBF/MBF, and/or bind (immobile) promoter DNA. For illustrative 
purposes, the leftmost element shows SBF formation from Swi4 and Swi6 (convergent thick black arrows). The 
bottommost element shows MBF dissociation into Mbp1 and Swi6 (divergent thick black arrows) and diffusion (thin 
grey arrows). Also shown is SBF dissociation from DNA. The rightmost element shows Mbp1 and SBF association with 
2 promoters within a cluster. All interactions (i.e., promoter DNA binding and dissociation, complex formation and 
dissociation, diffusion) accounted for in the model are indicated (right). The corresponding propensities (in s-1) were 

derived from (D. Bernstein, 2005) and are listed below for all five reaction types respectively: 
𝑘𝑜𝑛1/3/4,𝑠/𝑚

602.2ℎ3 , 

𝑘𝑜𝑛1/3/4,𝑠/𝑚*𝐾𝑠/𝑚1/3/4𝑒𝑓𝑓  , 
𝑘𝑜𝑛2,𝑠/𝑚

602.2ℎ3  , 𝑘𝑜𝑛2,𝑠/𝑚*𝐾𝑠/𝑚2𝑒𝑓𝑓 , and 
6∗𝐷𝑛𝑢𝑐

ℎ2  , where h is the mesh size, and the reaction “on” rates 

𝑘𝑜𝑛 (and the equilibrium constants 𝐾 such that 𝑘𝑜𝑓𝑓 = 𝐾 ∗ 𝑘𝑜𝑛) are defined in Methods and SI.. B) 2-D projection of the 

3-dimensional output of a typical simulation showing clusters of Swi4 dimers (green dots), Mbp1 dimers (red), Swi6 
dimers (blue) and G1/S DNA promoters (black dots) in small (10fL, left) and large (31.5fL, right) cells. C) Plots of 
clusters per nucleus (left) and molecules per cluster (right) of Swi4 (green), Mbp1 (red) and Swi6 (cyan) for cells of 
three sizes. 
 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574772doi: bioRxiv preprint 

https://doi.org/10.1101/574772
http://creativecommons.org/licenses/by/4.0/


 

12 
 

This minimal model, based on the assumption that the G1/S promoters are pre-organized into 

clusters, predicts the formation of TF clusters (Figure 3B). In agreement with our experimental 

observations, in small cells, a substantial fraction of promoter clusters was free from binding of 

any TF (Figure 3B left, black dots), while in larger cells close to the critical size at the end of G1 

phase, most if not all clusters and promoters were bound with either fully formed SBF/MBF, or 

Swi4 or Mbp1 dimers (Figure 3B, right). We computed cluster statistics by counting the number 

of particles of each type within each promoter cluster (retaining clusters with ≥ 4 molecules, i.e. 

2 dimers, to compare with our experiments) across 10 independent simulations for each cell size. 

The number of Swi4, Mbp1 and Swi6 clusters increased from ~5-10 in small cells to ~10-15 for 

Swi4 and Mbp1 and ~20 for Swi6 in large cells (Figure 3C, left). The number of molecules per 

cluster in the model was between 4 and 12 regardless of cell size, with no significant size 

dependence (Figure 3C, right), in reasonable agreement with our experimental observations 

(Figures 2, Figure 2-Supplemental Figure 4). In control simulations with identical 

binding/unbinding kinetic constants and diffusion parameters, spontaneous TF cluster formation 

was not observed when G1/S promoters were not pre-clustered (Figure 3-Supplemental Figure 

2).  

We then asked whether clustering could influence TF residence times on each promoter. 

Ranking all G1/S promoters in simulations according to occupancy revealed that in cells of all 

sizes promoter/TF clustering narrowed the spread in average SBF residency time across all 

promoters, thus homogenizing SBF occupancy across promoters (Figure 3-Supplemental Figure 

1C). This effect was particularly pronounced if the average SBF residency time was assessed for 

short periods (e.g., a 1 second test time) in large cells close to the G1/S transition (Figure 3-

Supplemental Figure 1D). In this situation, clustering reduced the number of G1/S promoters that 

were never bound by an SBF complex during the test time by ~2-fold. If the G1/S transition was 

triggered in this time window, the expression of all SBF-bound genes would be more correlated. 
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This result suggests that clustering might facilitate the synchronous expression of the G1/S 

regulon.  

 

Table 1. Sensitivity analysis of TF clustering simulations in very small cells (10.1fL). 

kon1s/m – On rate for Swi4/Mbp1 binding to DNA, kon2s/m – On rate for Swi6 binding to Swi4 or Mbp1, kon3s/m – On rate for SBF/ MBF binding to DNA, kon4s/m – On rate for Swi6 binding 

to Swi4/Mbp1 DNA complexes, Ks/m1 – Dissociation constant for monomer Swi4/Mbp1 binding to DNA, Ks/m2 – Dissociation constant for monomer Swi6 binding monomer Swi4 and Mbp1 

 

Scaling arguments explain transcription factor clustering 

Particle-DNA binding/unbinding is at equilibrium when the rate of binding events equals the 

rate of unbinding events. A detectable decrease of RICS vertical correlation (computed data 

acquired with short 20 µs dwell time, i.e., 6.24 ms time shift per vertical pixel) in less than 2-3 

vertical lines shows that binding/unbinding dynamics are in the 10-20 ms range. Consistently, 

single particle tracking data with a spatial resolution of a few nanometers, i.e. much smaller than 

observed particle cluster size, showed a very minor fraction of completely immobile particles, 

buttressing the conclusion that particle dynamics is faster than the acquisition frame time of 30 

ms. Thus, the rate of TF dissociation from DNA is of the order 𝑘𝑜𝑓𝑓~ 1
15𝑚𝑠⁄ = 67𝑠−1. Our 

Parameters Reaction Number of 
Molecules/cluster 

Number of 
Clusters/nucleus 

Swi4 Mbp1 Swi6 Swi4 Mbp1 Swi6 
kon1,3 s/m  = 3500 
 kon2,4 s/m  = 
35000 
 

Default parameters 4.27 5.15 5.38 2.2 10.1 15.2 

100 fold lower 
kon1,2,3,4 s/m 

All dynamics slow down 4.09 5.26 5.38 2.1 9.7 13.9 

20 fold larger 
Ks/m1 

With kon1 constant this is an 
increased rate for 
Swi4d/Mbp1d dissociating 
from DNA relative to 
SBF/MBF 

4.27 4.90 5.39 2.2 11.8 17.0 

20 fold larger 
Ks/m2 

With kon2 constant this is an 
increased rate for Swi6 
dissociation from Swi4/ 
Mbp1 

4.09 4.97 4.33 2.3 11.5 0.6 
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previous model indicated that SBF/MBF dissociation constants are in the range of  𝐾𝑠3 = 0.02𝜇𝑀, 

corresponding then to a 𝑘𝑜𝑛  rate of 

𝑘𝑜𝑛 =
𝑘𝑜𝑓𝑓

(𝐾𝑠3)
⁄ ~ 3350 𝑠−1(𝜇𝑀−1) 

In the situation of a single TF dimer particle moving in a neighborhood of volume 𝑉0 (in fL) 

containing 𝑛 DNA binding sites evenly distributed, the propensity for this particle to bind DNA is 

𝑎 =
𝑘𝑜𝑛

602.2∗𝑉0
∗ 𝑛   (𝑠−1), and therefore the mean free time (average time spent diffusing around 

without binding DNA) is: 

𝑡0 =
602.2𝑉0

𝑛𝑘𝑜𝑛
=

602.2𝐿3

𝑛𝑘𝑜𝑛
, 

where 𝐿 (𝜇𝑚) is the characteristic length defining the volume 𝑉0. During this time lag the particle 

diffuses away from it original point and jumps an average distance of 𝐿𝑀𝑆𝐷 = √𝑀𝑆𝐷 =

√6𝑡0𝐷𝑛𝑢𝑐 where 𝐷𝑛𝑢𝑐 = 2 − 3𝜇𝑚2𝑠−1. If DNA binding sites are equally distributed within the 

nucleus, 𝐿~1𝜇𝑚 (nuclear size), 𝑛~200 (number of G1/S promoters), and thus 𝑡0~0.8 − 1𝑚𝑠 and 

𝐿𝑀𝑆𝐷 = 100 − 200𝑛𝑚. Thus, before binding to DNA again, the freely diffusing nuclear SBF/MBF 

particle explores a significant fraction (10-20%) of the nuclear radius and will therefore rebind at 

a location distant from its previous binding site. Thus, the diffusing particles are strongly mixed 

throughout the entire nucleus making random cluster formation unlikely. Active processes may 

cluster the transcription factors to counteract diffusion, but we do not consider this possibility in 

the present study, nor is it required to achieve TF clustering.  

If DNA binding sites are pre-organized as clusters,  𝐿~0.03𝜇𝑚 (cluster size), 𝑛~6 − 8 (number 

of binding sites per cluster), then 𝑡0~0.5 − 1𝜇𝑠 and 𝐿𝑀𝑆𝐷 = 3 − 5𝑛𝑚, at most. Thus, 𝐿𝑀𝑆𝐷 ≪ 𝐿, the 

cluster size. This implies that the next binding of the SBF/MBF particle will be within the same 

cluster of DNA sites where it was previously bound, and thus that diffusing SBF/MBF particles 
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become dynamically trapped in G1/S promoter clusters. Newly synthesized particles populate new 

clusters when the cell grows rather than being trapped in existing clusters because of a simple 

saturation effect. If a diffusing particle is within the neighborhood of a partially occupied cluster, 

then the mean-free time becomes 𝑡0 =
602.2𝐿3

𝑛𝑓𝑟𝑒𝑒𝑘𝑜𝑛
, where 𝑛𝑓𝑟𝑒𝑒  is the number of free sites. If all sites 

are occupied then 𝑡0 → ∞ but even if there is one site free, the mean free time can increase by an 

order of magnitude, yielding a 3-4-fold increase in 𝐿𝑀𝑆𝐷, which becomes comparable to the cluster 

size. Particles approaching nearly saturated clusters will have a strong probability to diffuse away 

without being captured, explaining why the number of particles trapped within each DNA cluster 

does not significantly increase with cell size even though SBF/MBF particle counts increase, and 

thus why the newly synthesized SBF/MBF factors tend to populate new DNA clusters. 

This mechanism explains why Swi4 dimers/SBF and Mbp1 dimers/MBF particles would 

cluster naturally around pre-organized G1/S target promoter clusters. However, it does not 

explain why in small cells, where the total number of fully formed SBF/MBF complexes is 40-70,  

i.e. larger than the number of putative DNA clusters, only a small number of DNA clusters are 

populated by the TFs while most remain unoccupied. Given the model parameters chosen and the 

species concentrations at equilibrium, the system evolves in a regime where most Swi4/Mbp1 are 

Swi6-bound, and hence promoters are mostly occupied by SBF/MBF (Figure 3-Supplemental 

Figure 1A, B). The dissociation of Swi6 from Swi4/Mbp1-bound DNA, which happens regularly 

given the koff  values, creates a Swi6-enriched region around a partially populated cluster, but not 

around empty promoter clusters. This local concentration effect favors the formation of new 

SBF/MBF complexes and thus the DNA binding of nearby Swi4d/Mbp1d dimers. Thus, the 

number of molecules per cluster is set by the trade-off between two effects. The first is the 

saturation effect discussed above. This increases the mean free time and the diffusion jumps 

between unbinding and re-binding events and favors binding to empty promoter clusters. The 

second is the local Swi6-enrichment around partially populated clusters that improves the 
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likelihood of binding new Swi4/Mbp1 molecules as full S(M)BF complexes to these clusters. This 

interpretation is supported by the fact that reducing Swi6 affinity to Swi4 and Mbp1 (and thus 

Swi6 clustering) has a detrimental effect on the number of Swi4 and Mbp1 clusters (Table 1).   

To address this question, we computationally tested the hypothesis that local Swi6 enrichment 

in the clusters might trap freely diffusing Swi4 and Mbp1 dimers. In small cells, strengthening 

SBF/MBF DNA binding enhanced Swi6 clustering by increasing both the cluster number and the 

molecules per cluster (Table 1). In contrast, decreasing the Swi6 affinity for Swi4 and Mbp1 

markedly reduced the number and size of Swi6 clusters (Table 1). Both these results directly follow 

from the fact that in our model, Swi6 does not directly bind to DNA, such that Swi6 clustering is 

dependent on its interaction with Swi4 and Mbp1, leading to local enrichment of Swi6 within 

already populated clusters. Decreasing Swi6 affinity for Swi4 and Mbp1 also had a detrimental 

effect on the number of Swi4 and Mbp1 in clusters, showing that local equilibrium interactions of 

the DNA binding factors with Swi6 reinforces their own clustering. Collectively, these local avidity 

effects explain why clusters for all three proteins are observed in the simulations even at low copy 

number in small cells. 

 

Single particle tracking PALM in live cell nuclei reveals two modes of TF mobility. 

A key prediction of our mathematical model is that the G1/S TFs should display two very 

different kinds of motion corresponding to 1) slow, confined diffusion within the neighborhood of 

promoter clusters and 2) faster diffusion between clusters (Figure 4A, B, Figure 3-Supplemental 

Figure 3). This combination of slow and fast motion modes, with predicted effective diffusion 

coefficients ranging over orders of magnitude is characteristic of anomalous sub-diffusion, which 

is characterized by downward curvature of the Mean Squared Displacement (MSD) curves. We 

measured the dynamics of Swi4, Swi6 and Mbp1 using single particle tracking (spt)PALM in live 

cells (Movies S1-S3). After analysis of the trajectories (see Methods and Supplementary Methods), 

images of overlaid individual trajectories for each nucleus were produced (Figure 4C). We note 
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the similarity of the image in Figure 4C, in terms of the space mapped out by the overlaid 

trajectories with previous models of the yeast nucleus (Duan et al., 2010; Wong et al., 2012) 

(Figure S1). The trajectories of individual molecules were a mixture of smaller and larger mean 

squared displacements. Globally the trajectories fell into two dynamic modes, one fast and one 

slow (Figure 4-Supplemental Figure 1A, B) both of which appeared to be sub-diffusive and/or 

confined. This bimodal dynamic motion agrees with our model prediction (Figure 4, Figure 3-

Supplemental Figure 4).  

 
Figure 4.  Swi4, Mbp1 and Swi6 dynamics are comparable in simulations and experiment.  
A) Example of individual molecule trajectory of Swi6 dimers from the simulations. B) Histograms of the log of the 
apparent diffusion coefficient of Swi6 from all simulation trajectories. Black arrows highlight two modes of motion. A 
third slower mode (grey arrow) likely arises from Swi6 dimers that spent most of their time bound to Mbp1/Swi4 DNA 
complexes during the 5s window of Monte Carlo simulations, and cannot be resolved in experiments due to instrument 
jitter and localization uncertainties. C) Experimental individual molecule trajectories of Swi6-mEos3.2 in the nucleus 
of a live cell grown in SC+2%glucose medium. Each individual trajectory is represented by a different color. D) 
Histogram of the log of apparent diffusion coefficients, Dapp, calculated from all individual trajectories of Swi6-
mEos3.2 for all cells in three FOV (red) (~5000 trajectories per FOV). The distribution was fit to two Gaussians. The 
distribution for Swi6 Log Dapp obtained from spt tracking in fixed cells (light grey - immobile, except for instrument 
jitter) and the distribution of Log Dapp of Zwf1 (glucose phosphate dehydrogenase)-mEos3.2 (also light grey) diffusing 
freely in the cytoplasm are plotted for comparison and indicated by the arrows. 
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Analysis of the individual experimental MSD in terms of apparent diffusion coefficients at 

short timescales yielded bimodal histograms (Figure 4-Supplemental Figure 1C, D). The average 

apparent fast diffusion coefficients for each TF were approximately 0.1 μm2/s in both simulations 

and experiments (Figures 4B rightmost arrow, 4D and S11, S12), ~10-20-fold slower than that 

observed for glycerol phosphate dehydrogenase (Zwf1), which diffuses freely in the cytoplasm. 

This value was also considerably slower than the diffusion coefficient of free nuclear proteins 

evaluated by Raster Scanning Image Correlation Spectroscopy (RICS) (Thattikota et al., 2018). 

The lower mobility of this component, with respect to free protein diffusion, is consistent with the 

fixed cell data showing that 10-15% of the molecules are outside of the clusters and are likely 

undergoing a combination of free diffusion and non-specific DNA binding. The slower apparent 

diffusion coefficient of clustered TFs, 0.01-0.03 m2/s, was consistent with ~85% of the molecules 

being confined to clusters. This motion was 10-fold faster than the apparent diffusion of immobile 

molecules in fixed cells (which are an artefact of instrument jitter and localization precision) and 

thus constitute a signature of actual TF motion at this (fast) PALM frame timescale, supporting 

the <30ms off-rates of DNA-TF complexes used in our modeling. Arbitrary Region Raster 

Scanning Image Correlation Spectroscopy (ARICS) analysis (Schrimpf et al., 2018) of Swi4-, 

Mbp1- and Swi6-GFP fluctuation for nuclear pixels only yielded diffusion coefficients of 0.015, 

0.05 and 0.11, respectively for the three proteins (Figure 4-Supplemental Figure 2), also in 

reasonable agreement with the experimental sptPALM results and simulations.  

Since individual molecules sampled both dynamic modes in a single trajectory, these apparent 

diffusion coefficients conflate the two modes of motion, which might result in the apparent 

anomalous nature of TF diffusion. To avoid mixing different modes of motion over single 

trajectories, we analyzed the dynamics of individual molecules using a Jump-Distance 

Distribution (JDD) approach (Menssen and Mani, 2018; Tollis, 2015). JDDs for Swi4, Swi6 and 

Mbp1 in glucose and glycerol-grown cells (Figure 4-Supplemental Figure 3) all showed a main 

peak corresponding to a Jump Distance ranging from 30-50 nm (for Swi4) to 60-80 nm (for Swi6 
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and Mbp1), for a duration of 7*30 ms=0.21 s, in agreement with apparent cluster sizes on PALM 

images. In comparison, free nuclear diffusion in our quasi-2D excitation volume would yield a 

typical jump of ~1 µm, emphasizing how strongly the molecular motion is restricted. Comparison 

of JDDs acquired in live (Figure 4-Supplemental Figure 3B) and fixed (Figure 4-Supplemental 

Figure 3A) cells revealed that jump distances are significantly larger in live cells, indicating that 

the peak at small jump distance in this case is not due to instrument jitter but represents actual 

motion. The long tail in the JDD in live cells (Figure 4-Supplemental Figure 3B, arrows) indicated 

that a small fraction of the particles displays fast motion, in agreement with the MSD analysis and  

model predictions.  

Table 2. Jump Distance Distribution parameters from live cell spt-PALM experiments 

 

The JDDs could not be well fitted using simple models such as free diffusion, anomalous 

diffusion, directed motion along linear tracks or with a mixed two-mode model of free diffusion. 

Rather, our live cell data were best characterized by a superposition of an anomalous diffusion 

component (low JDD main peak, 65-80% of the molecules) with a faster, apparently directed, 

motion (20-35%) (Table 2), which may correspond in part to one-dimensional diffusion along 

 
Fraction of 
anomalously 
diffusing 
molecules 
(%) 

Anomalous 
diffusion 
coefficient 

(m2/s^a) 

Anomalous 
power (a) 

Velocity 
along 
tracks 

(m/s) 

Variance 
around 
tracks 

Diffusion 
coefficien
t around 
tracks 

(m2/s) 

Mbp1, glu 66.26 0.0091 0.73 0.1198 0.007833 0.1263 

Mbp1, gly 68.80 0.0080 0.74 0.1043 0.00760 0.1226 

Swi4, glu  80.80 0.0054 <0.4833  0.1577 0.006205 0.1001 

Swi4, gly 81.64 0.0044 0.6038 0.5251 0.004683 0.0755 

Swi6, glu 65.46 0.0089 0.8263 0.0976 0.007743 0.1249 

Swi6, gly 75.56 0.0065 0.6767 0.1066 0.006898 0.1113 
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DNA (Von Hippel and Berg, 1989). These results were in good quantitative agreement with the 

cluster analysis in fixed cells that yielded ~15% and ~85% of TFs outside and inside clusters 

respectively at the time of fixation. Thus, at the short timescale of JDD computation, TFs exhibited 

anomalous motion, confirming that DNA-binding/unbinding dynamics were faster than the 

~100ms regime. Analysis using either the JDD or the two component MSD of complete 

trajectories revealed that Swi4 is much less mobile than either Swi6 or Mbp1, perhaps be due to 

higher affinity (lower off-rates) of Swi4 for its target sites on DNA. This was also the case for the 

ARICS analysis above. Moreover, Mbp1 and Swi6 mobility decreased in glycerol medium 

compared to glucose (Figure 4-Supplemental Figure 1). This result is consistent with stronger 

specific binding of Mbp1 in the poor carbon source and is in agreement with the conditional large 

cell size phenotype of the Δmbp1 mutant reported previously (Dorsey et al., 2018). Collectively, 

these results suggest a mechanism whereby G1/S TFs populate discrete clusters and can also jump 

between clusters.  

 

Discussion 

Super-resolution spatial mapping of Swi4, Mbp1 and Swi6 molecules in fixed cells revealed 

that these TFs do not distribute randomly but are organized into discrete clusters of ~8 molecules, 

even in small cells, and that the number of clusters increases as cells grow. Stochastic modeling 

suggests that the spatial organization of the G1/S TFs is linked to the underlying spatial 

organization of their ~200 target promoters. Although our results do not rule out explicitly the 

converse possibility that G1/S TFs might spontaneously assemble into clusters, any such 

mechanism would need to counteract free diffusion. Spontaneous assembly would also favor 

aggregation into a one or a few large clusters of variable size, rather than the size dependent 

accumulation of discrete clusters that we observe.  

Importantly, clusters are observed in small cells where the TFs are severely limiting with 

respect to promoter target sites, and the number of molecules per cluster does not change with 
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increasing copy number or size. Our simulations demonstrate that the balance between Swi6 local 

concentration effects on the one hand, and target site saturation versus diffusion propensity on 

the other, is sufficient to explain the existence of clusters in small cells and the observed successive 

titration of new clusters as cells grow. The occupation of some sites within a cluster by SBF or 

MBF tends to sequester Mbp1 and Swi4 molecules via transient interactions with the Swi6 

activator already present in the cluster. However, as target sites within any given cluster are bound 

by the increasing TF copy numbers as cells grow, the lower number of unbound target sites 

available decreases the Swi4 or Mbp1 binding propensity. Diffusion out of the cluster eventually 

becomes statistically more probable than DNA re-binding. This interpretation is consistent with 

the bimodal dynamics of the G1/S TF we observe by sptPALM in live cells. Overall, these results 

indicate that cluster size and the distribution of TFs across clusters can be tuned by the promoter 

content of pre-formed clusters and by relative affinities of TF subunits for each other and for 

target sites on DNA.   

Both general and specific transcription factors have been observed to form clusters. For 

example, in budding yeast, the transcriptional repressor Mig1 forms clusters of similar size as we 

observe for Swi4, Mbp1 and Swi6 (Wollman et al., 2017). Interestingly, the number and copy 

number content of Mig1 clusters increases upon glucose repression, and like the G1/S TFs, these 

clusters also exhibit mixed dynamic properties (Wollman et al., 2017). In mammalian cells, RNA 

Polymerase II and its associated Mediator complex are co-localized in much larger stable clusters 

(>300 nm, ~300 molecules) that exhibit properties of phase separated condensates (Cho et al., 

2018). Even larger clusters have been observed using super-resolution imaging for the 

transcription factor STAT3 (Gao et al., 2017). These examples suggest that TF clustering is a 

common phenomenon but that different TFs can exhibit different clustering behavior. 

While our observations can be accounted for by simple physical phenomena and captured in 

a mathematical model based on minimal assumptions, the observed clustering of the G1/S TFs 

must be coupled to the global organization of the yeast genome (Duan et al., 2010; Lazar‐Stefanita 
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et al., 2017; Taddei and Gasser, 2012; Wong et al., 2012; Zimmer and Fabre, 2011). Thus, our 

results lead to several open questions. The nature of the pre-formed G1/S promoter clusters 

inferred from our model is unknown at this juncture, but may be generated by condensin- and 

cohesin-mediated chromosome looping (Lazar‐Stefanita et al., 2017), perhaps in conjunction with 

other factors that bind specific promoter regions or some other feature of global genome 

organization. It remains to be determined if clusters are populated in a discrete order as cell grow 

and whether clusters have defined or random promoter compositions. It is also unclear whether 

clusters can exchange promoters over time as opposed to being of fixed composition. Regardless 

of the underlying static or dynamic mechanisms, the localization of G1/S promoters within 

discrete clusters may help coordinate the G1/S transcriptional program once Start is triggered. 

These results provide evidence that higher-level organization of the genome may contribute to the 

efficiency of cell state transitions that depend on complex gene regulons.  

 

Methods 

Strains and sample preparation 

The S. cerevisiae strains used in this study were constructed in the S288C (BY4741) 

background by PCR-based homologous recombination integration of a mEOS3.2-HisMX cassette 

at the 3' end of each reading frame at the endogenous loci. Strain genotypes are given below.  

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

MT5031 mbp1::MBP1-mEOS3.2-HisMX 

MT5032 swi4::SWI4-mEOS3.2-HisMX 

MT5033 swi6::SWI6-mEOS3.2-HisMX 

 

Sample preparation 

The TF-mEos3.2 fusion strains were grown on synthetic complete (SC) –His + 2% glucose 

plates for 3 days.  Fresh colonies were picked and grown in SC–His media supplemented with a 
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rich (2% glucose) or poor (2% glycerol) carbon nutrient source until stationary phase.  Prior to 

imaging, strains grown on rich or poor carbon sources where diluted to 0.3 OD and allowed to 

grow until OD 0.7 in fresh SC + 2% glucose/glycerol (His-) medium. A 1 mL sample of OD 0.7 

culture was pelleted at 3000 rpm and washed with fresh media. The sample was concentrated 10x 

by removing 900 mL of media and the cells were resuspended.  A 5 uL sample of the cells was 

placed on a concanavalin A (ConA) coated #1 coverslip with 100 nm Tetraspec fluorescent beads 

and allowed to adhere to the surface for 4 min. The cover slip was then placed on a 2% agar SC –

(His-) + carbon source pad and immediately imaged.  For fixed cells, a 1 mL sample of cells was 

washed with PBS buffer, buffer was removed and then 500 uL of a 4% paraformaldehyde solution 

was added and allowed to react for 20 min.  The sample was washed extensively with PBS and 

place on a #1 cover slip coated with ConA and 100 nm Tetraspec fluorescent beads similar to live 

cells.  Fixed cell samples were treated the same as live cells from this point on. 

 

PALM Microscope 

Imaging was performed on a Nikon inverted Ti-U Eclipse microscope with a CFI Plan Apo 

Lambda 100x/1.40 NA Oil Objective and an Andor iXon Ultra 897 EMCCD camera.  A 561 nm 

laser (Sapphire 561-150 CW CDRH) at 0.2 kW/cm2 and a 405 nm laser (OBIS 405 nm LX 50 mW) 

at 0.3 W/cm2 were directed into the microscope objective in a Koehler illumination configuration 

with the aid of a pair of beam-expanding lenses (150/30 mm, Thor Labs) and a quad-band 

(405/488/561/640 nm, Chroma) filter for excitation and activation, respectively. Emission was 

collected with a 600/50 nm BP filter (Chroma) mounted in an automated filter wheel (Thor Labs). 

The image was magnified with a set of lenses (150/250 mm) to an effective pixel size of 120 nm 

creating a 46x46 µm2 imaging area. Excitation and activation power were controlled using an 

acousto-optical tunable filter (AOTFnC400.650-TN, AA Optoelectrionics). The imaging focal 

plane was locked in position (within 10 nm) using an autofocus program by tracking the reflection 

of a 785 nm IR source (OBIS 785 nm LX 100 mW) from the sample coverslip with a Thor Labs 
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CCD camera and continuous incremental adjustments with a Fast PIFOC Piezo Nanofocusing Z-

Drive (PI) (Figure 5C) (Fiche et al., 2013). Software controls and data acquisition for the 

microscope stage, laser excitation and activation power, autofocus and camera were written in 

Labview 2015. 

 

Super-resolution image acquisition  

Samples were placed in a cylindrical sample chamber and mounted on the microscope. The 

optimum-imaging plane was determined using a z-calibration and find-focal plane algorithm 

written in Labview (National Instruments). After locking in the optimum imaging plane of the 

sample, a bright field reference image was acquired. For each FOV, 30,000-40,000 frames were 

collected within a data acquisition. A 561 nm CW laser at a fixed power was used for excitation of 

mEos3.2 molecules in the red-shifted state. Photoactivation was achieved by continually 

increasing the power of a 405 nm CW laser diode until mEos3.2 photoswitching was no longer 

observed (Lee et al., 2012).  

            
Super-resolution image processing  

Image data were pre-analyzed using the ImageJ plugin Thunderstorm to assess data quality 

by determining the x-y drift throughout the experiment. If images drifted more than 2 pixels (120 

nm effective pixel size) in either x or y directions, then the data were discarded. For acquisitions 

within the threshold drift range, molecular detection positions were drift-corrected using the 

image-correlation drift algorithm from Thunderstorm that cross-correlated the signal from 100 

nm fluorescent beads (Tetraspek, Anaspec) used as fiducial markers. The drift was fit to a 

smoothing function with the frame number as the independent variable (Figure 5A, B).  The 

average frame number for an individual molecule was then used to compute its total associated 

drift which was added to its averaged x-y position.  
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Figure 5. Drift, resolution, masking and blinking correction of PALM images.  
A) Example of the typical x positional drift during the acquisition of 30,000 frames. (B) Example of the typical y 
positional drift during the acquisition of 30,000 frames. C) Example of the typical z positional drift vs time with the 
active drift correction during the acquisition of 30,000 frames. D) Example of a histogram of positional uncertainties 
for all detections of Mbp1-mEos3.2 in a FOV. E) Example of a histogram of positional uncertainties for all molecules of 
Mbp1-mEos3.2 in a FOV calculated from averaging the position of the same molecules in multiple successive detections 
and then calculating the standard error on the mean for all detections of the same molecule. F) Plot of the number of 
molecules detected versus blinking time threshold using a 10 nm spatial cutoff. The decay time resulting from the fit of 
these data to a single exponential decay was 1.2 s, in good agreement with previously reported values (Lee et al., 2012). 
Based on these results the threshold for eliminating blinking molecules was set to 2 s and 10 nm. G) Result of the 

MATLAB gaussfit masking of yeast nuclei. Each white area represents one nucleus within an FOV (61.44 x 61.44 m). 
The white masks for the nuclei were calculated from the intensity of the detection images using the MATLAB gaussfit 
function. The blue crosses represent individual molecule positions within the nuclei. Here the scale is set to help 
visualize the masking of nuclei, not individual molecules. The individual molecules are better visualized in Figures 1E-
G, Figure1-Supplemental Figure 1E-G and 2 E-G. 

 

The average resolution for each individual localization was 25 nm (Figure 5D), which allowed 

an optimal super resolution image pixel size of 12 nm. The MATLAB (Mathworks) script MTT 

(Sergé et al., 2008) was used to identify molecules and connect molecular trajectories (i.e., 
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positions of the same molecule from one frame to the next) and the sptPALM_CBS (Fiche et al., 

2013) script was used to analyze and filter the trajectories. Our SuperResolution MATLAB script 

performed a correction for over-counting due to mEos3.2 blinking (Lee et al., 2012), with spatial 

and temporal cutoffs of 10 nm and 2 seconds (Figure 5F) to yield the overlaid corrected detection 

image (i.e., Figure 1A-D, Figure1-Supplemental Figures 1A-D, S2A-D, S3A, C, E). The drift 

corrected positions of each individual molecule detected in multiple (5-100), successive frames 

were averaged to yield the molecular images (i.e., Figure 1E-G, Supplemental Figures 1E-G, 2E-

G, 3B, D, F). The pixel size in these images was chosen as 3 nm, half the value of the standard 

error on the mean for all molecular positions (6 nm) within a data set (Figure 5E). Nuclei in the 

detection images (12nm/pixel) were masked with the MATLAB gaussfit function (Figure 5G). 

Since most molecules were found within the nucleus, the nuclear mask sets boundaries within 

which the number of molecules per nucleus, number of clusters per nucleus and number of 

molecules per cluster were determined.  

Despite the inherent limitations of PALM for particle counting, the super-resolution images 

of Swi4, Mbp1 and Swi6 correspond to a reasonable representation of their actual distribution in 

the nucleus for several reasons. First, non-activated (and hence unobserved) mEos3.2 molecules 

should be randomly distributed and hence unlikely to bias the fraction of molecules detected in 

clusters vs non-clustered molecules. Secondly, our low intensity, continuous switching 

illumination parameters allow for relatively efficient photoactivation. Moreover, because the 

three TFs diffuse as dimers (Dorsey et al., 2018), the majority of dimers are detected via at least 

one of their constituent monomers. Finally, yeast chromosomes bearing the G1/S TF target sites 

occupy a limited volume of the nucleus which limits problems of detection due to depth of field.  

Thus, the number of clusters per cell and the cell size invariance of cluster size are reasonably well 

determined, while incomplete activation likely results in a slight underestimation of the number 

of molecules per cluster.  
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Fixed cells: cluster analysis 

We used the nuclear super-resolution molecular images to develop custom cluster analysis 

scripts in the MATLAB environment. For each nucleus, we ordered the particles in a list such that 

each particle was next to its nearest neighbor in the nucleus using an algorithm based on the 

OPTICS ranking algorithm (Kriegel et al., 2011). This list is referred to as the nearest-neighbor 

ranked particle list. We computed the list of distances between each particle and the next across 

this list (see Figure 2-Supplemental Figure3A). Plotting this list revealed two characteristic 

features: valleys (red arrows), wherein the distance between consecutive particles is small, 

separated by spikes corresponding to large distances (blue asterisks). Valleys represent particle 

clusters, wherein the inter-particle distance is small, whereas spikes are characteristic of the 

distance between clusters. These plots provided a tool to count the number of clusters in the 

nucleus, through the definition of a distance threshold (red line in Figure 2-Supplemental 

Figure3A), such that particles separated by a distance lower that the threshold were assigned to 

the same cluster. We computed the relative variation of the total number of clusters (across our 

entire dataset for each protein, Swi4, Mbp1 and Swi6) as a function of threshold (Figure 2-

Supplemental Figure3B). We found that the number of detected clusters is threshold-dependent 

for values lower than 10 super-resolution pixels (30 nm), whereas for values > 30 nm there is little 

dependence on the threshold.  This indicates that most clustered particles were within a 30 nm 

neighborhood of their closest neighbor, a distance which thus represented a logical cluster size 

detection threshold. The nearest-neighbor ranked list of particles provided a simple means to 

count clusters within each nucleus, to count the number of particles within each cluster, and to 

correlate these data with nuclear size.  

 

Live cells: Mean square displacement and jump-distance distribution analyses 

To analyze single particle tracking data and gain insight on the dynamic motion features at 

the molecular scale, we used two methods, each with complementary advantages and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574772doi: bioRxiv preprint 

https://doi.org/10.1101/574772
http://creativecommons.org/licenses/by/4.0/


 

28 
 

disadvantages. First, we selected entire individual trajectories, and computed the Mean Square 

Displacement (MSD) as a function of time shift along each trajectory (Figure 4-Supplemental 

Figure 1) using the sptPALM_CBS MATLAB script (Fiche et al., 2013). Although this analysis 

revealed a sub-diffusion type motion with confinement at large times, below 200ms the MSD 

curves could be fit reasonably well with a linear function. The slope provided the trajectory-

averaged instantaneous diffusion coefficient (as shown in Figure 4, and Figure 4-Supplemental 

Figure 1). We processed simulated in silico individual trajectories in the same manner (Figure 3-

Supplemental Figure 3).  

Although MSD analysis is a powerful method to reveal particle confinement, because 

dynamics are averaged over entire trajectories (and further averaged across different trajectories), 

this approach only provided a global view of particle dynamics on the seconds timescale. To 

disentangle distinct molecular motion modes along individual trajectories, trajectories were also 

analyzed using the Jump Distance Distribution (Figure 4-Supplemental Figure 3) approach 

introduced in (Tollis, 2015) and further developed in (Menssen and Mani, 2018). Trajectories 

were subdivided into short sections (8 points, 210ms time bins) and analyzed collectively. From 

these sub-trajectories, a jump distance distribution (JDD, i.e., the distance covered along any 

given sub-trajectory within the 210ms of its duration) was computed for all data from a given 

experiment. This approach increases the likelihood of observing a unique mode of molecular 

motion along a shorter fraction of single molecule trajectories. We fitted the experimental JDDs 

with molecular motion models, including free (Brownian) diffusion, anomalous diffusion, 

directed transport along linear tracks, or more complex models that incorporates two of the 

classical motion models discussed above (i.e., where the population of sub-trajectories includes 

two subpopulations with different underlying transport modes). To select among these competing 

models, we used a Bayesian model selection procedure (see (Menssen and Mani, 2018; Tollis, 

2015)), which outputs the probability of each underlying motion model in a manner that balances 

the fitting quality of a given model to its complexity.  
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Mathematical modeling and Monte Carlo simulations. 

To model SBF/MBF formation and binding to target promoters, we used our previously 

published Start model (Dorsey et al., 2018). The model comprises a mass-action kinetics-based 

SBF/MBF binding module, resolution of which yields the concentrations of DNA-bound and 

DNA-free SBF/MBF complexes, and of Swi6-free Swi4/Mbp1 dimers bound to DNA in the cell 

nucleus as a function of cell size.  From previous fluctuation microscopy-based measurements 

(Dorsey et al., 2018), we used the size-independent nuclear Mbp1 and Swi6 concentrations 

(respectively, 110nM and 150nM) and the Swi4 concentration that doubles linearly between early 

G1 (50nM in 14 fL cells) and late G1 phase (100nM in 35 fL cells). We assumed that interaction Kd 

values for the DNA binding proteins (Swi4 or Mbp1 = DBP) to DNA were unaffected by Swi6 

binding, and vice-versa. In addition, our previous brightness data revealed that all measured Start 

proteins were predominantly dimeric (Dorsey et al., 2018). Thus, we reduced the model 

complexity by neglecting the equilibrium concentrations of protein complexes formed with 

monomer DNA-binding protein (DBP, Swi4 or Mbp1) and/or Swi6. As a result, in the steady state 

the SBF/MBF binding module reduces to 8 reactions (with effective dissociation constants 𝐾𝑑 

derived in (Dorsey et al., 2018): 

 

 

𝐷𝐵𝑃𝑑𝑖𝑚 + 𝐷𝑁𝐴            ⇆    𝐷𝑁𝐴𝑠,𝑚          , 𝐾𝑠/𝑚1𝑒𝑓𝑓 = 𝐾𝑠/𝑚1
2  

 𝐷𝐵𝑃𝑑𝑖𝑚 + 𝑆𝑤𝑖6𝑑𝑖𝑚        ⇆    𝑆(𝑀)𝐵𝐹         , 𝐾𝑠/𝑚2𝑒𝑓𝑓 =
𝐾𝑠/𝑚2

4 𝐾𝑠/𝑚3

𝐾𝑠/𝑚1
2  

𝐷𝑁𝐴𝑠,𝑚  + 𝑆𝑤𝑖6𝑑𝑖𝑚 ⇆    𝑆(𝑀)𝐵𝐹∗       , 𝐾𝑠/𝑚4𝑒𝑓𝑓 =
𝐾𝑠/𝑚2

4 𝐾𝑠/𝑚3
2

𝐾𝑠/𝑚1
4  

𝑆(𝑀)𝐵𝐹 + 𝐷𝑁𝐴     ⇆    𝑆(𝑀)𝐵𝐹∗       , 𝐾𝑠/𝑚3𝑒𝑓𝑓 = 𝐾𝑠/𝑚3 

 

Eq. 1                   

 

where dim stands for dimer and 𝐷𝐵𝑃 can be either Swi4 or Mbp1, 𝐷𝑁𝐴 and 𝐷𝑁𝐴𝑠,𝑚 represent a 

DBP-free and DBP dimer-bound target promoter respectively, 𝑆(𝑀)𝐵𝐹 and 𝑆(𝑀)𝐵𝐹 ∗ are fully 

formed DNA-free and DNA-bound DBP dimer-Swi6 dimer SBF and MBF complexes, and the 
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microscopic dissociation constants 𝐾𝑠/𝑚1−3 respectively characterize monomer DBP-DNA, 

monomer DBP-Swi6 and dimer DBP-DNA binding, with s and m lowercase subscripts standing 

for Swi4 and Mbp1, respectively. It is noteworthy that the dissociation constant of 𝑆(𝑀)𝐵𝐹 is not 

the microscopic DBP/monomeric-Swi6 constant but an effective dimer-DBP/dimer-Swi6 

dissociation constant that involves multiple interactions. Unless otherwise specified, we used the 

following default values: 𝐾𝑠1 = 𝐾𝑚1 = 100𝑛𝑀,  𝐾𝑠3 = 𝐾𝑚3 = 20𝑛𝑀, 𝐾𝑠2 = 20𝑛𝑀` <  𝐾𝑚2 = 50𝑛𝑀 

(Dorsey et al., 2018).  

The mass action-like ordinary differential equations corresponding to this equilibrium relate 

the variation of the concentrations of the transcription complexes (right-hand side of Eq.1) to their 

formation rates (𝑘𝑜𝑛1−4𝑠/𝑚 *[interacting species], left-hand side of Eq.1) and their dissociation 

rates (𝑘𝑜𝑓𝑓1−4𝑠/𝑚 = 𝐾𝑠/𝑚1−4𝑒𝑓𝑓 ∗ 𝑘𝑜𝑛1−4𝑠/𝑚 x [TF complex]): 

 

𝜕𝐷𝑁𝐴𝑠,𝑚 

𝜕𝑡
= 𝑘𝑜𝑛1𝑠/𝑚[𝐷𝐵𝑃𝑑𝑖𝑚][𝐷𝑁𝐴] − 𝑘𝑜𝑓𝑓1𝑠/𝑚[𝐷𝑁𝐴𝑠,𝑚 ] 

𝜕𝑆(𝑀)𝐵𝐹

𝜕𝑡
= 𝑘𝑜𝑛2𝑠/𝑚[𝐷𝐵𝑃𝑑𝑖𝑚][𝑆𝑤𝑖6𝑑𝑖𝑚] − 𝑘𝑜𝑓𝑓2𝑠/𝑚[𝑆(𝑀)𝐵𝐹] 

𝜕𝑆(𝑀)𝐵𝐹∗

𝜕𝑡
= 𝑘𝑜𝑛3𝑠/𝑚[𝐷𝑁𝐴𝑠,𝑚][𝑆𝑤𝑖6𝑑𝑖𝑚] − 𝑘𝑜𝑓𝑓3𝑠/𝑚[𝑆(𝑀)𝐵𝐹∗] 

𝜕𝑆(𝑀)𝐵𝐹∗

𝜕𝑡
= 𝑘𝑜𝑛4𝑠/𝑚[𝑆(𝑀)𝐵𝐹][𝐷𝑁𝐴] − 𝑘𝑜𝑓𝑓4𝑠/𝑚[𝑆(𝑀)𝐵𝐹∗] 

 

Default kinetic on-off rates are given in main text Table 1. These ODEs were converted to 

stochastic simulations using the Gillespie algorithm modified to account for diffusion (David 

Bernstein, 2005; Jose et al., 2013). The Gillespie algorithm is a particular class of Monte Carlo 

simulation algorithm originally developed to stochastically simulate biochemical systems with 

molecules binding to and dissociating from each other in a homogeneous, well-mixed solution 

(Gillespie, 1976). For any given state of the system at a given time, the algorithm associates each 
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type of species (individual molecule or complex) a propensity (in 𝑠−1) to convert into another (i.e., 

a reaction). The sum of all propensities is then used to randomly determine the time to the next 

reaction, and another random number is generated to determine the type of the next reaction such 

that reactions with high propensities are more likely to be chosen than reactions with low 

propensities. Propensities are next re-evaluated at the new time, and successive iterations of this 

algorithm simulate the stochastic behavior of the chemical system as a function of time. The 

Gillespie framework has been successfully used by us and others to address various cell biological 

questions including, for instance, RNA secondary structure folding kinetics (Clote and Bayegan, 

2018), stochastic gene expression (Ferguson et al., 2012) and yeast polarity establishment (Jose 

et al., 2013).   

The inclusion of diffusion in this framework is straightforward: it requires partition of the 

reaction-diffusion volume into small elements, considers identical molecules in different 

elements as different diffusing-reacting species and extends the list of possible reactions between 

species such that regular reactions (converting species A into B) are only possible between 

molecules within the same volume-element i (A,i -> B,i) and that molecule A diffusing from one 

element i to a neighbor j is a reaction that converts the species A,i into the species A,j.   We divided 

the nuclear volume into infinitesimal volume elements (in 3D Cartesian coordinates, with xyz 

mesh-size =30nm, the maximal size that still provides sub-cluster resolution), and defined for 

each diffusible particle (i.e., free Swi4, Swi6, Mbp1 dimers, and DNA-free SBF and MBF) a 

propensity to isotropically diffuse to a neighboring element (in 6 directions, see grey arrows), or 

bind to another particle (black arrows pointing towards each other) or DNA (black arrows 

pointing towards a DNA site), as defined by the model Eq.1 (see Figure 3A). In contrast, DNA-

bound species are not assumed to diffuse at all, since chromosomal motion is expected to be 

negligible on the short time scale of our measurements and simulations (<2s, 10s respectively) 

(Marshall et al., 1997). However, DNA-bound species have propensities to dissociate from each 

other or from DNA (black arrows pointing away from DNA sites) according to the model Eq.1. 
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Importantly, for a given set of on rates and microscopic Kd’s (which define the effective Kd’s for 

dimer interactions, see (Dorsey et al., 2018)) propensities depend on the mesh size ℎ (Figure 3A). 

This follows from the fact that propensities are defined for individual particles or pairs of particles 

for complex formation. In the latter case, for any individual particles of type A and B, the rate of 

A-B complex formation depends linearly on the apparent concentration of particle B, which is 

proportional to the inverse of the element volume (
1

ℎ3). This term is absent in complex dissociation 

events (David Bernstein, 2005). The presence of the term  
1

ℎ2 in the propensity of diffusion events 

follows from the second order spatial derivative in the diffusion equation. One critical condition 

for the use of the Gillespie algorithm is that the reaction-diffusion volumes are well mixed. This 

is achieved as long as the simulated number of diffusion events is significantly larger than the 

number of biochemical reaction events. This condition is fulfilled in our simulations since 

diffusion events typically exceed reactions by 2-3 orders of magnitude.       

This algorithm was implemented numerically in MATLAB, for small, medium and large cells 

with nuclear radii of 0.67, 0.8 and 0.98 µm (corresponding to cell volumes respectively of 10, 17.1 

and 31.5 fL), using a cell size-independent karyoplasmic ratio (Jorgensen et al., 2007) on a h=0.03 

µm three-dimensional mesh and 200 DNA promoters randomly distributed across 35 clusters, 

themselves randomly distributed within the nucleus for each simulation. Specifically, each 

promoter assigned to a cluster was either positioned within the element containing the cluster 

center, or in an immediate neighbor element (a total of 7 possible positions). Given the mesh size 

of h=30nm, this procedure ensured that DNA promoters belonging to the same cluster are within 

a 30-60nm distance from each other, in agreement with observed cluster sizes (Figures 1E-G, 

Figure 1-Supplemental Figures 1E-G, 2E-G, 3B, D, F and insets, and Figure 2-Supplemental 

Figure 3).  We recorded the simulation data every millisecond. Unless otherwise specified, we 

used a nuclear diffusion coefficient of 2 µm2/s, concentrations of 110 nM for Mbp1 and 150 nM 

for Swi6 in cells of all sizes, and 50 and 100 nM for Swi4 in small and large cells respectively, 
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previously determined by N&B-based absolute measurements (Dorsey et al., 2018). All species 

were assumed dimeric to yield the total number of Mbp1, Swi4 and Swi6 dimers in small (42, 15, 

57), medium (71, 37, 97) and large (131, 109, 178) simulated cells.  
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Figure Legends 

Figure 1. Super-resolution PALM imaging reveals clustering of Swi4-mEos3.2 in 

fixed budding yeast cells.  

A) Composite image of the phase contrast and PALM images of a FOV of Swi4-mEos3.2 cells 

grown in SC+2%glucose. Detection image outputs (pink dots; one for each detection) were 

obtained with the Thunderstorm plugin from ImageJ. Detection images were not filtered for 

blinking. High intensity purple in the image corresponds to out of focus beads. Zoomed cells 1-3 

are indicated by yellow circles and numbers. Scale bar is 10 μm. B-D) Zoomed composite images 

of small (1), medium (2) and large (3) cells. Scale bars are 1 μm. E-F) Molecular images of the 

nuclei of cells 1-3, respectively. Scale bars are 0.15 μm in panel E, 0.24 μm in panel F and 0.30 

μm in panel G. 

Figure 1-Supplementary Figure 1. Super-resolution PALM imaging of Mbp1-

mEos3.2 in fixed yeast cells.  

A) Composite phase contrast image of a FOV of Mbp1-mEos3.2 and the detection image (pink 

dots; one for each detection) output produced with Thunderstorm. The detection image is not 

filtered for blinking. Saturated purple intensity in the image corresponds to out of focus beads or 

compromised cells. Zoomed cells 1, 2 and 3 described below are indicated by red circles and 

numbers. Cells were grown in SC+2% glucose. Scale bar is 10 m. B-D) Zoomed composite images 

of small (1), medium (2) and large (3) cells. Scale bars are 1 m. E-F) Molecular images of the 

nuclei of indicated cells were created as described in the text and SI and corrected for blinking. 

Scale bars are 0.21 m in E, 0.21 m in F and 0.30 m in G. 

Figure 1-Supplementary Figure 2. Super-resolution PALM imaging of Swi6-mEos3.2 

in fixed yeast cells.  

A) Composite phase contrast image of a FOV of Swi6-mEos3.2 and the detection image (pink dots; 

one for each detection) output by Thunderstorm. The detection image is not filtered for blinking. 

Saturating purple intensity in the image corresponds to out of focus beads or compromised cells. 
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Zoomed cells 1, 2 and 3 described below are indicated by yellow circles and numbers. Cells were 

grown in SC+2% glucose. Scale bar is 10 m. B-D) Zoomed composite images of small (1), medium 

(2) and large (3) cells. Scale bars are 1 m. E-F) Molecular images of the nuclei of cells indicated 

above. Molecular images were created as described in the text and SI and corrected for blinking. 

Scale bars are 0.15 m in E, 0.15 m in F and 0.27 m in G.  

Figure 1-Supplementary Figure 3. PALM images in poor nutrients. Swi4-mEos3.2 (A, 

B), Mbp1-mEos3.2 (C, D) and Swi6-mEos3.2 (E, F) in cells grown in SC + 2% glycerol medium. 

A, C, E) Detection images. Scale bars are 240 nm. B, D, F) Molecular images as described in the 

text and SI. Scales bars are 180, 240 and 300 nm, respectively. Shown in insets are zooms of 

particular clusters as indicated by the box in the larger image. Red crosses in zoomed image show 

the central position of each molecule ± the standard error of the mean. 

 

Figure 2. Copy numbers and the number of clusters per cell for Swi4, Mbp1 and Swi6 

increase with cell size. 

A-C) Total number of Swi4-, Mbp1-, and Swi6-mEos3.2 molecules in each nucleus as a function 

of nuclear size, a proxy for cell size. Each point represents an individual nucleus. D-F) Number of 

Swi4-, Mbp1-, and Swi6-mEos3.2 clusters per nucleus as a function of cell size. G-I) Average 

number of Swi4-, Mbp1-and Swi6-mEos3.2 molecules per cluster for each nucleus as a function 

of cell size. Left-hand panels correspond to Swi4-mEos3.2 (green, 370 cells), middle panels 

correspond to Mbp1-mEos3.2 (red, 536 cells) and right-hand panels correspond to Swi6-mEos3.2 

(blue, 222 cells). Each point represents one nucleus. Nuclear size is given in pixels. To the left of 

the dashed lines at 20000 pixels the majority of cells are in G1 phase (see Supplementary Methods 

and Figure S5).  

Figure 2-Supplementary Figure 1. Nuclear size distribution, as determined by our 

masking algorithm.  Distribution of nuclear sizes (in pixel units) obtained from our entire 

dataset of Mbp1-mEOS3.2 cells grown in SC+2%glucose medium. This distribution resembles cell 
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size distribution of asynchronously growing cultures, therefore we used it as a proxy for cell size 

and in particular the size of G1/S cells (mode size, 20.000pix). Assuming spherical cells and 

nuclei, and the 1/7 karyoplasmic ratio (Jorgensen et al., 2007), this corresponds to a cell size of 

30 fL. The Mbp1-mEOS3.2 strain was chosen in this purpose, because our analysis algorithm uses 

the mEOS3.2 signal to mask nuclei and, unlike Swi4, Swi6, Mbp1 nuclear signal shows no cell 

cycle-dependence yielding a (masked) nuclear size distribution that mirrors the entire cell size 

distribution.  

Figure 2-Supplementary Figure 2. Comparison of the copy numbers of Swi4, Mbp1 

and Swi6 determined by scanning number and brightness and PALM.  

Left panels) Copy number vs cell size (in fL) for Swi4, Mbp1 and Swi6 as indicated determined by 

sN&B (Dorsey et al., 2018). Only G1 cells are shown. Right panels) Copy number vs nuclear size 

(in pixels) for Swi4, Mbp1 and Swi6 as indicated determined by PALM. These are the data from 

Figure 2 A, C, and E of the main text, in which a dotted line has been placed at the critical cell size 

below which the majority of cell are in G1 phase. As cells become larger, the efficiency of PALM 

detection decreases due to out of focus, and hence, undetected molecules. This effect is 

particularly clear for Mbp1 and Swi6. 

Figure 2-Supplementary Figure 3. Cluster quantification algorithm. A) Distance to the 

next particle (vertical axis, in high resolution pixel units, 1pix=3nm) as a function of the position 

of the particle in the nearest-neighbor ranked list (see Methods and Supplemental Methods for 

details). Clusters appear as valleys (arrows), wherein inter-particle distances fall below the chosen 

cluster detection threshold (10pix=30nm, red line), and are separated by larger distances (blue 

asterisks). B) Relative variation of the number of clusters (vertical axis, cluster count change upon 

3nm threshold increment over initial cluster count ratio) as a function of the specific choice of the 

cluster detection threshold (horizontal axis, in high resolution pixel unit, 1 pix=3 nm). 

Figure 2-Supplementary Figure 4. Cluster statistics are largely independent of 

carbon source. A) Number of clusters (left panel) and number of TF protein molecules per 
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cluster (right panel) for Swi4, Swi6 and Mbp1 in small (<20000pix, left of each panel) and large 

(>20000pix, right of each panel) cells grown in glucose (blue) and glycerol (red). The Box and 

Whisker plots represent the distribution of values across 3-5 experiments encompassing >100 

cells each for each condition, and blue and yellow diamonds represent distribution outliers. The 

difference in cluster counts between small and large cells was statistically significant in each 

condition (p-values <1e-40). There were significantly more Swi6 clusters than Swi4/Mbp1 

clusters, both in large and small cells and in glucose and glycerol (p-values ranging from 10e-23 

to 0.0197). B) Histograms for all clusters of Swi4, Mbp1 and Swi6 as indicated in all nuclei for 

cells grown in SC + 2% glucose (blue) and SC + 2% glycerol (red). The frequency unit (vertical 

axis) is actual cluster counts within each bin across all datasets (3-5 experiments, >100 cells each) 

for each condition. 

 

 

Figure 3.  Stochastic modeling predicts Swi4, Mbp1 and Swi6 clustering.  

A) Schematic of SBF/MBF binding model (left), encompassing mobile Swi4 dimers (green dots), 

Mbp1 dimers (red dots), Swi6 dimers (blue dots) and immobile G1/S DNA promoters (black dots), 

moving and interacting in the nucleus discretized in infinitesimal volume elements (cubes 

separated by thin black lines, only a few of them are shown here). Swi4/Mbp1 can associate with 

Swi6 to form mobile SBF/MBF, and/or bind (immobile) promoter DNA. For illustrative purposes, 

the leftmost element shows SBF formation from Swi4 and Swi6 (convergent thick black arrows). 

The bottommost element shows MBF dissociation into Mbp1 and Swi6 (divergent thick black 

arrows) and diffusion (thin grey arrows). Also shown is SBF dissociation from DNA. The 

rightmost element shows Mbp1 and SBF association with 2 promoters within a cluster. All 

interactions (i.e., promoter DNA binding and dissociation, complex formation and dissociation, 

diffusion) accounted for in the model are indicated (right). The corresponding propensities (in s-

1) were derived from (D. Bernstein, 2005) and are listed below for all five reaction types 

respectively: 
𝑘𝑜𝑛1/3/4,𝑠/𝑚

602.2ℎ3 , 𝑘𝑜𝑛1/3/4,𝑠/𝑚*𝐾𝑠/𝑚1/3/4𝑒𝑓𝑓 , 
𝑘𝑜𝑛2,𝑠/𝑚

602.2ℎ3  , 𝑘𝑜𝑛2,𝑠/𝑚*𝐾𝑠/𝑚2𝑒𝑓𝑓 , and 
6∗𝐷𝑛𝑢𝑐

ℎ2  , where h 

is the mesh size, and the reaction “on” rates 𝑘𝑜𝑛 (and the equilibrium constants 𝐾 such that 𝑘𝑜𝑓𝑓 =

𝐾 ∗ 𝑘𝑜𝑛) are defined in Methods and SI.. B) 2-D projection of the 3-dimensional output of a typical 
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simulation showing clusters of Swi4 dimers (green dots), Mbp1 dimers (red), Swi6 dimers (blue) 

and G1/S DNA promoters (black dots) in small (10fL, left) and large (31.5fL, right) cells. C) Plots 

of clusters per nucleus (left) and molecules per cluster (right) of Swi4 (green), Mbp1 (red) and 

Swi6 (cyan) for cells of three sizes. 

Figure 3-Supplementary Figure 1. Simulated transcription factor dynamics and 

DNA site occupancy. A and B) Typical time evolution of the number of transcription factor 

complexes in small (10fL) cells showing the number of each molecular species, (A) Swi4-

containing species: DNA-free Swi4 (dimer) (blue), DNA-free SBF (grey), DNA-bound Swi4d 

(dimer) (orange), DNA-bound SBF (yellow) and (B) Mbp1-containing species: DNA-free Mbp1d 

(dimer) (blue), DNA-free MBF (grey), DNA-bound Mbp1d (dimer) (orange), DNA-bound MBF 

(yellow). Plots are for averages over 10 independent simulations. Error bars indicate the standard 

error on the mean at each time point for each species. C) Clustering homogenizes DNA occupancy. 

Promoter occupancy represented as fraction of time in the steady state (vertical axis, % of 

simulated time (5s) beyond 0.6s) during which each individual G1/S promoter (represented by 

individual dots) is occupied by SBF in small (blue), medium size (orange) and large (grey) cells. 

To facilitate data visualization, promoters were ranked according to increasing occupancy, which 

was averaged at each ranking position (rather than each individual promoter) over 5 simulations 

conducted in the presence of G1/S promoter clusters. Error bars represent the standard error on 

the mean. Promoter occupancy defined similarly but in the absence of G1/S promoter clustering 

is shown as dotted lines for comparison. D) Clustering improves Start synchrony. Promoter SBF-

occupancy represented as fractions of time (vertical axis, %) within the last second of large time 

(30s) simulations in large cells (i.e., close to the G1/S transition). As in C), promoters were ranked 

according to increasing occupancy, which was averaged at each ranking position (rather than each 

individual promoter) over 5 simulations conducted in the presence of G1/S promoter clusters. 

Error bars represent the standard error on the mean. Promoter occupancy defined similarly but 

in the absence of G1/S promoter clustering (and thus, TF clustering, see Figure S10) is shown as 
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a dotted line for comparison. The number of promoters that are never SBF-bound during this 

critical time where the cell is susceptible to trigger Start at any time is 2-fold larger in the absence 

of clustering, indicating that clustering may improve Start synchrony. 

Figure 3-Supplementary Figure 2. G1/S TFs do not cluster in simulations where the 

promoter target sites are not clustered. 

2-D projections of the 3-dimensional output of a typical simulation in a small cell (A) and a large 

cell (B) in the absence of G1/S promoters clustering, showing Swi4 dimers (green dots), Mbp1 

dimers (red), Swi6 dimers (blue) and G1/S DNA promoters (black dots) in small (10fL, left) and 

large (31.5fL, right) cells. Not all molecules/sites are shown since at many pixels Swi4, Mbp1, Swi6 

and G1/S promoters overlap.  

Figure 3-Supplementary Figure 3. Stochastic modeling predicts a bimodal motion 

of individual molecules. A) Example of simulated Swi4 (dimer) (left, green), Mbp1d (middle, 

red), Swi6d (right, blue) single dimer trajectories in 3-dimensions, showing for each particle 

alternations between anomalous sub-diffusive motion confined within cluster and fast, freely-

diffusive motion between clusters. Black circles represent DNA G1/S promoter target sites B) 

Example of MSD versus time lag curves corresponding to all individual Swi4 (left), Mbp1 (middle) 

and Swi6 (right) dimer trajectories (color curves) of one small cell simulation. The thick black 

curve represent the MSD averaged over all the trajectories for each protein. Computation of MSD 

curves were restricted to the steady state section of each trajectory, corresponding to times beyond 

0.6s from the onset of the simulation (see Figure S9A, B). C) Histograms of single trajectory 

diffusion coefficients extracted from the slope of linear fits of the first 4 points of individual MSD 

curves from panel B. Data was gathered from 5-7 independent simulations. Red arrows indicate 

the approximate positions of main peaks underlying the distribution. We note that simulations 

predicted a significant fraction of quasi-immobile molecules with effective diffusion coefficient 

lower than 0.001. We did not observe this fraction in experiments, possibly due to instrument 

jitter which sets a lower bound to the slowness of motions we can quantify. 
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Figure 4.  Swi4, Mbp1 and Swi6 dynamics are comparable in simulations and 

experiment.  

A) Example of individual molecule trajectory of Swi6 dimers from the simulations. B) Histograms 

of the log of the apparent diffusion coefficient of Swi6 from all simulation trajectories. Black 

arrows highlight two modes of motion. A third slower mode (grey arrow) likely arises from Swi6 

dimers that spent most of their time bound to Mbp1/Swi4 DNA complexes during the 5s window 

of Monte Carlo simulations, and cannot be resolved in experiments due to instrument jitter and 

localization uncertainties. C) Experimental individual molecule trajectories of Swi6-mEos3.2 in 

the nucleus of a live cell grown in SC+2%glucose medium. Each individual trajectory is 

represented by a different color. D) Histogram of the log of apparent diffusion coefficients, Dapp, 

calculated from all individual trajectories of Swi6-mEos3.2 for all cells in three FOV (red) (~5000 

trajectories per FOV). The distribution was fit to two Gaussians. The distribution for Swi6 Log 

Dapp obtained from spt tracking in fixed cells (light grey - immobile, except for instrument jitter) 

and the distribution of Log Dapp of Zwf1 (glucose phosphate dehydrogenase)-mEos3.2 (also light 

grey) diffusing freely in the cytoplasm are plotted for comparison and indicated by the arrows. 

Figure 4-Supplementary Figure 1. Two regimes of TF motion are evident in rich and 

poor carbon sources. A and B) Plots of the average mean squared displacements for all 

trajectories of mEos3.2-tagged Swi4, Mbp1 and Swi6 are shown for SC+2% glucose (A) or SC+2% 

glycerol (B) medium. Two classes of motion are apparent in all cases, one fast (green) and one 

slow (blue). C and D) Distributions of diffusion coefficients from two component analysis of 

complete individual molecule trajectories for mEos3.2-labeled Swi4, Mbp1 and Swi6 (left, middle 

and right) in SC+2%glucose (C) and SC+2%glycerol (D) medium. A decrease in the fraction of the 

fast component is apparent for Mbp1 and Swi6 in the poor carbon source. 

Figure 4-Supplementary Figure 2. ARICS Analysis of Diffusion of G1/S TF-GFP 

fusion constructs. Strains expressing GFPmut3 fusion constructs of Swi4, Mbp1 and Swi6 from 

their natural loci were as previously described (Dorsey et al., 2018). ARICS analysis (Hendrix et 
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al., 2016) allows RICS analysis of arbitrary regions of an FOV. ROI were selected based on 

intensity threshold values that selected only pixels in the nuclei. Spatio-temporal correlation of 

the intensity values was carried out as described previously (Digman et al., 2013). Left panels 

correspond to grey scale intensity images. Middle panels correspond to arbitrary thresholding in 

which only grey pixels are analyzed and red pixels are eliminated. Right panels show the RICS 

image. A) Swi4-GFPmut3, B) Mbp1-GFPmut3 and C) Swi6-GFPmut3. Cells were grown in SC+2% 

glucose medium. Note that RICS analysis is limited to timescales faster than ~50 ms, with any 

slower dynamics appearing to be immobile on the RICS timescale. Thus, these spatio-temporal 

correlation patterns are a signature of TF motion at shorter timescales. 

Figure 4-Supplementary Figure 3. Jump size distribution analysis of spt-PALM 

experiments. JDD analysis is shown for Swi4 (dotted lines), Mbp1 (filled lines) and Swi6 

(dashed lines) in (A) fixed cells and (B) live cells grown in SC+2%glucose medium (blue) and 

SC+2% glycerol medium (red). Red arrows point to the regions of the distributions which show 

less steep drop in probability with jump distance than the trajectories from fixed cells (A). This 

deviation indicates long jumps that exceed confined diffusion.  

 

Figure 5. Drift, resolution, masking and blinking correction of PALM images.  

A) Example of the typical x positional drift during the acquisition of 30,000 frames. (B) Example 

of the typical y positional drift during the acquisition of 30,000 frames. C) Example of the typical 

z positional drift vs time with the active drift correction during the acquisition of 30,000 frames. 

D) Example of a histogram of positional uncertainties for all detections of Mbp1-mEos3.2 in a 

FOV. E) Example of a histogram of positional uncertainties for all molecules of Mbp1-mEos3.2 in 

a FOV calculated from averaging the position of the same molecules in multiple successive 

detections and then calculating the standard error on the mean for all detections of the same 

molecule. F) Plot of the number of molecules detected versus blinking time threshold using a 10 

nm spatial cutoff. The decay time resulting from the fit of these data to a single exponential decay 
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was 1.2 s, in good agreement with previously reported values (Lee et al., 2012). Based on these 

results the threshold for eliminating blinking molecules was set to 2 s and 10 nm. G) Result of the 

MATLAB gaussfit masking of yeast nuclei. Each white area represents one nucleus within an FOV 

(61.44 x 61.44 m). The white masks for the nuclei were calculated from the intensity of the 

detection images using the MATLAB gaussfit function. The blue crosses represent individual 

molecule positions within the nuclei. Here the scale is set to help visualize the masking of nuclei, 

not individual molecules. The individual molecules are better visualized in Figures 1E-G, S2E-G 

and S3 E-G. 
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