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Abstract

The ability to predict health outcomes from gene expression would catalyze a revolution in molecular

diagnostics. This task is complicated because expression data are high dimensional whereas each experi-

ment is usually small (e.g., ∼20,000 genes may be measured for ∼100 subjects). However, thousands of

transcriptomics experiments with hundreds of thousands of samples are available in public repositories.

Can representation learning techniques leverage these public data to improve predictive performance on

other tasks? Here, we report a comprehensive analysis using different gene sets, normalization schemes,

and machine learning methods on a set of 24 binary and multiclass prediction problems and 26 survival

analysis tasks. Methods that combine large numbers of genes outperformed single gene methods, but

neither unsupervised nor semi-supervised representation learning techniques yielded consistent improve-

ments in out-of-sample performance across datasets. Our findings suggest that using l2-regularized

regression methods applied to centered log-ratio transformed transcript abundances provide the best

predictive analyses.

I. INTRODUCTION

The potential to tailor therapies for individual patients rests on the ability to accurately

diagnose disease and predict outcomes under various treatment conditions. Predictors based on

high-throughput ‘omics technologies hold great promise, but a number of technical challenges

have limited their applicability [1]. Phenotypes may be complex—involving contributions from

large numbers of genes—but ‘omics data are so high-dimensional that exploring all possible

interactions is intractable. This situation is further complicated by the small sample sizes of

typical biological studies and by large systematic sources of variation between experiments [2],[3].

However, recent developments in machine learning have raised hopes that new computational

methods integrating data from many studies may be able to overcome these difficulties. Accurate

prediction of phenotype or endpoint(s) from ‘omics data would usher in an era of molecular

diagnostics [4],[5].

Machine learning methods often benefit from large datasets where learning complex relation-

ships is feasible. Although individual biological experiments tend to be small, relatively large

amounts of ‘omics data are available in public repositories. For example, hundreds of thousands
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of samples from human RNA sequencing (RNA-seq) experiments are available from the recount2

and ARCHS4 databases [6–8]. Still, these data cover a wide variety of tissues and diseases.

Moreover, there are no specific diseases with large numbers of samples and, in many cases, the

metadata are not sufficient to determine basic experimental facts like the tissue of origin [9]. As a

result, leveraging these data to improve prediction tasks will require machine learning techniques

that can learn from large, heterogeneous datasets.

Genes rarely act in isolation, so it is reasonable to expect that combinations of genes may

be more effective than individual genes for predicting phenotypes. For example, linear models

operating on RNA-seq data create predictors from a weighted combination of gene expression

values. However, some of these features could reflect biological processes that are involved in

multiple phenotypes. Many previous analyses have explored this possibility by creating complex

features that incorporate biological knowledge from gene sets [10, 11], ontologies [12], or inter-

action graphs [13–15]. More recently, machine learning methods used with principal components

analysis [16], autoencoders [17–20], or other neural network architectures have been developed

to discover such features by analyzing large transcriptomics datasets. If these learned features

capture biologically relevant processes, then predictive models built from those features should

outperform models built directly from relative transcript abundances.

In this work, we present a comprehensive analysis of phenotype prediction from transcriptomics

data with a particular emphasis on representation learning. Using the recount2 database [7], we

systematically explored the impact of normalization techniques, gene sets, learned representations,

and machine learning methods on predictive performance for a set of 24 binary and multiclass

prediction problems and 26 survival analysis tasks. In total, we analyzed thousands of predictive

models using 5-fold nested cross validation to rigorously assess out-of-sample performance. We

found that predictors that combined multiple genes outperformed single gene predictors, that

logarithmic transformations outperformed untransformed relative expression measurements, and

that for survival analyses larger gene sets outperformed smaller gene sets. However, neither

unsupervised nor semi-supervised representation learning techniques yielded consistent improve-

ment on out-of-sample predictive performance across datasets. In fact, l2-regularized regression

methods applied directly to the centered log-ratio transform of transcript abundances performed

consistently well relative to the other methods. Therefore we recommend treating that particular

combination as a baseline method for predictive analysis on RNAseq data. Throughout this text

we refer to the combination of l2-regularized regression methods applied directly to the centered
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log-ratio transform of transcript abundances as the recommended model.

II. RESULTS

Approach

A high-level description of our quality control, data processing, and machine learning analyses

is provided in Figure 1. Details of these steps are provided in the online Methods.

Briefly, we selected a subset of experiments from the recount2 database [7] that did not

have sparse gene expression data and could be mapped to the same set of tissues covered in

the Genotype-Tissue Expression (GTEx) project [21]. We assigned the various experiments to

“training” (∼37k samples), “validation” (∼4k samples), and “test” sets (∼4k samples). All

samples lacking suitable metadata for supervised learning were allocated to the training set.

From metadata provided with recount2, the Gene Expression Omnibus [22], and The Cancer

Genome Atlas (TCGA) Pan-Cancer Clinical Data Resource [23] we derived labels for 24 binary

and multiclass and 26 survival analysis tasks. Descriptions of these tasks and their assignment

to the training, validation, and test sets are provided in the online Methods.

We considered four different normalization methods to correct for variance introduced in the

data collection and measurement process. We first converted the samples from counts to Tran-

scripts Per Million (TPM) [24], a normalization which estimates relative molar concentration

of transcripts in a sample. Under the operating assumption that transcript abundance is deter-

minant of downstream biological function, TPMs should be the baseline quantification to work

with from RNAseq. In contrast, raw counts (or CPMs) contain irrelevant counting bias stemming

from variable transcript length. Likewise, the common alternative of FPKMs do not coherently

measure relative molar concentration, because they rely on a sample-dependent normalization

factor. As such, FPKMs are not a useful measure when processing samples which are not entirely

technical replicates of a single tissue sample [24, 25]. Secondly we applied the centered log-ratio

transformation (CLR) [26] to the TPM data to address the fact that RNA-seq data quantify

relative, rather than absolute, gene expression [27],[28]. Since these two normalization methods

do not account for the tissue of origin of the sample, we evaluated additional normalization

methods based on differential expression with respect to normal tissue. The third normalization

method converted the CLR transformed expression data from each sample to a tissue-normalized
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Z-score by subtracting the mean and dividing by the standard deviation of the associated tissue in

GTEx. This mean and standard deviation of the CLR transformed expression data were computed

across the GTEx data in recount2 for each annotated tissue type. Finally, a fourth ternarized

normalization discretized the Z-scores into down-regulated (Z < −2), normal (−2 < Z < 2),

or up-regulated (Z > 2) categories.

For each of these normalization approaches, we also explored three gene sets corresponding

to transcription factors [29] (denoted OT ), protein coding genes annotated as with biological

processes or molecular functions in the Gene Ontology 12 (denoted O ), and all genes provided

by recount2 (denoted all ). The O and OT gene sets are substantially smaller than the all gene

set and allow exploration of the dependence on the number of genes. In total, we examined

twelve different normalization-gene set combinations for each predictive problem.

We considered four different types of representations of the gene expression data learned by

unsupervised models. First, supervised models were trained directly on the normalized expres-

sion data without a learned embedding. We also considered representations constructed with

Principal Components Analysis (PCA), a Stacked Denoising Autoencoder (SDAE), and a Varia-

tional Autoencoder (VAE) trained on the 37k samples in the training set without any supervising

information.

For each binary or multiclass prediction task, we trained a k-Nearest Neighbor (kNN) classi-

fier, a Random Forest (RF), and an l2-regularized multinomial Logistic Regression (LR) on the

normalized and transformed data using 5-fold nested cross validation. Using nested cross vali-

dation (Methods) is important because it accounts for performance variance that results from

different hyperparameter choices (e.g., the number of nearest neighbors, the depth of the trees

in the forest, or the strength of the regularization coefficient). An l2-regularized Cox proportional

hazards model was used for all survival tasks, also with 5-fold nested cross validation. Binary

tasks were compared using the Area Under the receiver operating characteristic Curve (AUC);

multiclass tasks were compared using the accuracy, and survival tasks were compared using the

concordance-index (C-index) [30],[31].

Our systematic model search covered four normalization methods, three gene sets, four rep-

resentations, and three supervised algorithms totaling 144 comparison models for each of the

24 binary and multiclass tasks. For the survival tasks we used the same normalization methods,

gene sets, and representations, but considered only one supervised algorithm (Cox proportional

hazards). For comparison, we also trained linear predictors using the recommended method that
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were only allowed to use a single gene. The choice of gene was treated as a hyperparameter and

optimized using 5-fold nested cross validation.

Analyses

The predictive performance assessed through 5-fold nested cross validation varied consider-

ably across and within the predictive problems (see Figure 2). Gene expression data improved

predictive performance relative to random guessing in almost all cases, indicating that RNA-seq

data do contain information that is broadly useful for out-of-sample prediction. Moreover, linear

predictors that used the expression data from all genes generally outperformed models that only

used a single, most predictive gene. It is still common to analyze genes independently in differen-

tial expression and regression analyses; our results indicate, however, that linear combinations of

genes are significantly more predictive than individual genes. Although there was sizable variance

in performance across tasks, predictive performance was not correlated with any obvious dataset

characteristics such as the number of subjects.

In order to compare the effects of the gene set size and transformation, it is helpful remove

between-task variance and then to aggregate results across tasks. To remove the between-task

variance, we defined a shifted statistic in which we subtracted the median value of all models

on the same task. For example, the AUC for the random forest classifier on the STAD stage

dataset was shifted by subtracting the median AUC for all of the binary classifiers trained on the

STAD stage dataset. Averages of the shifted statistics across predictive problems can be easily

interpreted: if the value is less than zero then the method underperformed the median, whereas

the method outperformed the median if the value is greater than zero.

Within-task variance in predictive performance was partially explained by the choice of gene

set and normalization method (see Figure 3). Because the number of samples in each dataset

was much smaller than the number of genes annotated in recount2, we hypothesized that using

prior knowledge to select small, biologically relevant gene sets based on the Gene Ontology or

transcription factor activity would improve out-of-sample predictive performance by preventing

overfitting. However, this hypothesis was not supported by our analyses. The choice of gene set

made no difference for the classification problems, whereas the smaller gene sets underperformed

on the survival tasks. The log-transformed normalization methods slightly outperformed TPMs,

and the Z-score normalization performed the best, on average. Performance improvements of
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FIG. 1: Schematic. An overview of the quality control, data processing, and training pipelines. Data

from recount undergoes several quality checks at the sample and study level, resulting in a dataset of

approximately 45,000 samples divided into training, testing, and validation datasets. Twelve different

datasets are created from these data, each with a different gene set (all , comprising all genes; O ,

comprising key GO categories; OT , comprising O genes that are known transcription factors) and

transform (“TPM”, transcripts per million; “CLR”, a centered-log-ratio transform of TPM; “Z-score”,

a Z-score normalization of the CLR data relative to healthy tissue expression levels in GTEx;

“Z-ternary”, a ternarization of Z-score). The training data is used to train unsupervised models

capable of embedding the data (a “no embedding” model is also included, which does not alter the

data). These embedded features, along with labels for individual tasks, are used to train a variety of

supervised models. The supervised models are trained and evaluated using nested cross validation.
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FIG. 2: Performance by predictive task. The performance of all models on each task, ordered by

the median performance on each task. The tasks are divided into three groups based on the type of

label; the top row shows classification tasks (binary and multiclass) while the bottom shows survival

tasks. Each task is labeled by an abbreviation at the top of the plot and the number of samples at the

bottom; see the appendix for more details on each task. The task label has one star if the data is in

the validation group and two stars if the data is in the test group. For each task, the gray points show

the results over the entire set of models and the horizontal line shows their median. The filled black

circle shows the performance of the recommended model, while the open black circle shows the

performance of the best single gene model. The recommended model uses no embedding, all genes,

and the CLR transform; the supervised model is logistic regression for the classifier tasks and a Cox

proportional hazards model for the survival tasks. The recommended model is often among the best

models on a problem and frequently outperforms the best single gene model; the primary exception is

the pancreatic adenocarcinoma overall survival (PAAD OS) dataset.

Z-score normalization relative to CLR were small, however, and we do not think that the small

gains justify the additional complexity introduced by referencing each sample to an external

dataset (i.e., GTEx).

Next, we examined differences in absolute performance between the kNN, RF, and LR models

on the classification problems (only a linear Cox proportional hazards model was tested on the

survival tasks). As shown in Figure 4, the kNN classifier consistently underperformed the RF and

LR classifiers. The RF was the best performing method for thirteen tasks, LR for nine tasks, and

kNN for two tasks, but LR was more consistent than RF and had better average performance.

Gene expression data are very high dimensional, with the number of genes ranging from ∼1.5k

in the transcription factor gene set to ∼56k in the gene set consisting of all genes annotated

in recount2. In contrast, the supervised task datasets typically consisted of only a few hundred
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FIG. 3: Figure 3. Performance by gene set and normalization. The performance of all models on

each gene set (left column) and transform (right column). The results are divided by row into binary,

multiclass, and survival tasks. For each gene set or normalization and task type, the gray points show

the shifted statistics computed by subtracting the median of all models trained on the same task as a

given model, and the black line is the median taken across all models and tasks.

samples. Moreover, it seems unlikely that genes actually coordinate in a linear fashion to generate

complex phenotypes. Therefore we hypothesized that predictive performance could be improved

by training predictors on lower dimensional representations derived from unsupervised analyses of

the ∼37k unlabeled samples in the training set. One could also view these analyses as a type of

transfer learning, in which biological knowledge derived from the analysis of one dataset is used

to inform the analyses of another.

The first feature representation that we considered was a Principal Components Analysis
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FIG. 4: Performance by supervised model. The classifier tasks are shown in the same format as

Figure 2. In this figure, the model results are divided into groups based on which supervised model is

used, kNN (k-nearest neighbors), LR (logistic regression), or RF (random forest). The three horizontal

lines for each task show the median result for each of these supervised models in this order (shown in

the upper left of the first column plot). For each task, the supervised model with the best median

result is shown at the bottom of the plot. While the median over the RF results is most frequently

best (for thirteen tasks, compared to nine for logistic regression and two for k-nearest neighbors), the

best performing logistic regression models are more consistently high performing among models.

(PCA) with 512 latent dimensions. These principal components are orthogonal linear combina-

tions of expression values that represent the directions of largest variance in the training set.

Together, the 512 principal components we used explained the majority of the variation in the

transcriptional datasets (Figure 9). We found that using PCA derived representations as features

decreased the out-of-sample performance of downstream predictive analyses (Figure 5). There-

fore, we do not recommend using features derived from PCA of large RNA-seq compendia for

predictive analyses.

Training a linear model on top of representations derived from a linear transformation like

PCA is equivalent to a regularized linear model trained on the unembedded data. Deep neural

network-based architectures like SDAEs and VAEs, by contrast, process an input expression vector

through a series of nonlinear transformations to learn more complex features. Therefore, we also

trained a 512-dimensional SDAE and VAE on the training set for each gene set-normalization

combination and used the representations derived from these neural networks as features for

downstream prediction tasks. Nevertheless, we found that preprocessing the expression data

using these networks decreased the out-of-sample performance of downstream prediction tasks

relative to just using the normalized expression data directly (Figure 5).
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FIG. 5: Performance by unsupervised model and gene set. The binary task performance of each

unique model type is shown, grouped by unsupervised model and gene set. A model type is a

combination of unsupervised model, supervised model, gene set, and normalization; for example, the

recommended model is one model type. Each model type is a single line on this plot. The

performance shown is the average of shifted AUCs across binary tasks, weighted by the number of

samples in each task to reduce the effect of fluctuations in tasks with fewer samples. There are four

unsupervised model types, VAE (variational autoencoder), SDAE (autoencoder), PCA (principal

components analysis), and no-embedding (in which the data is unchanged). The best results come

from using all genes without an unsupervised embedding.

Semi-supervised representation learning

There are a variety of reasons that unsupervised representation learning can fail to discover

features that are useful for downstream predictive tasks. For example, a small but consistent

difference in the expression of a gene between two groups (e.g., healthy and diseased) can be used

to train a highly accurate predictor. However, if this difference is much smaller than the variance

in the expression of other non-predictive genes, then it will be ignored by most unsupervised

representation learning algorithms. One way to avoid this problem is use a semi-supervised

method to learn the representation.

The goal of semi-supervised representation learning is to derive a common set of features that

are useful for multiple downstream predictive tasks. Our semi-supervised model consists of an

autoencoder along with a number of logistic regression classifiers, one for each supervised task

involved in the training set. The predictors operate on the 512-dimensional latent space embed-

ding of the autoencoder. For any expression vector the autoencoder contributes a reconstruction

loss. Furthermore, if there is a predictive task label associated to the expression vector, then the

associated linear predictor contributes a classification loss as well. We trained the model to mini-

mize a loss function that was a weighted combination of the autoencoder loss and the supervised

loss averaged across each of the predictive tasks. We considered the out-of-sample predictive

performance of four representations: the unembedded data, data embedded by a model trained

using only autoencoder loss, data embedded by a model trained on the combined autoencoder

and supervised losses, and data embedded by a model trained using only the supervised loss.
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More details are provided in the online Methods.

In order to test the semi-supervised model, we divided the larger labeled training datasets

into two halves. The first half of the labeled training datasets were combined with the unlabeled

data from the training set and used to train the semi-supervised autoencoder. The second half

of the training datasets were held out as validation. We also held out the validation and testing

labeled datasets as in the analyses of the representations learned by unsupervised algorithms. This

strategy provided two types of validation tasks: those in which the representation was trained

on similar data (e.g., from the same study), and those in which the representation had not been

trained on similar data. The results are shown in Figure 6. Using the learned features slightly

improved median predictive performance on the divided tasks but did not improve predictive

performance on the validation and testing tasks used in the previous analyses.

III. DISCUSSION

The hypothesis that gene expression measurements can be combined into higher level features

that should be useful for predicting phenotypic characteristics has intuitive appeal. Indeed, we

believe that genes act together as coordinated pathways that control cellular processes. More-

over, changes in expression at the tissue level could reflect higher level changes due to differences

in cellular composition. As a result, one would expect that it is possible to define useful high-

level features for expression data; this intuition has driven the development of pathway analyses

[32–34], gene set analyses [11],[10], knowledge graphs [15],[14], and cell-type deconvolution ap-

proaches [35–37] to analyzing transcriptomics experiments. More recently, a number of studies

have introduced deep learning methods that aim to discover useful gene, or transcript, combina-

tions that reflect the underlying biology without imposing particular prior knowledge [4],[5],[38–

40]. In theory, these learned representations should provide better predictive performance because

they are transferring biological knowledge derived from one dataset to another. In addition, they

reduce the dimension of the input data and, as a result, potentially mitigate overfitting. Here, we

set out to systematically and rigorously assess the impact of these representations on downstream

predictive tasks.

Our key results can be summarized in a few bullet points:

• Multivariate predictors outperformed predictors based on the best single gene.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/574723doi: bioRxiv preprint 

https://doi.org/10.1101/574723
http://creativecommons.org/licenses/by/4.0/


FIG. 6: Performance for semi-supervised models. The binary task performance is shown for four

different types of embedding models across two different datasets and two different gene sets. The

four models are a purely unsupervised autoencoder (autoenc.), a semi-supervised embedding model

(mixture), a purely supervised embedding model (pure sup.), and a no-embedding model (no emb.).

To train the supervised component of the embedding models, specific task datasets are divided into

two halves, one contributing to the supervised loss in training, and the other held out; the performance

of the four models on the held-out halves are shown in the left column. The performance of the same

models on the validation and testing tasks (which take no part in training any embedding model) are

shown in the right column. Models on the O gene set are shown in the upper row, and on the OT gene

set in the lower row. The gray points show the shifted AUCs on all tasks in each group and all model

types, which include all supervised model types and all transforms. The bars show the median score.

• Larger gene sets performed better than smaller gene sets.

• CLR and tissue-specific Z-score normalization were better than TPM.

• Logistic regression and random forests performed equally well.

Representations derived from unsupervised or semi-supervised methods did not improve

out-of-sample performance for phenotype prediction. Based on these key results, we conclude

that l2-regularized regression applied to the CLR transformed relative transcript abundances is

generally the best choice for predictive analyses using transcriptomics data. The Z-score and

Z-ternary normalizations generally perform comparably to CLR, but require the GTEx data as a

reference and hence CLR is recommended.
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Figures 2-5 present results for the evaluation of unsupervised models on supervised tasks,

studying performance as different aspects of the models change. Figure 2 shows how the perfor-

mance varies across supervised tasks and demonstrates that the recommended model is nearly

always one of the better performing models. Figure 3 presents the relative performance for the

choices of normalization and gene set, showing that using larger gene sets improves performance

on survival tasks. Figure 4 presents the performance across supervised tasks for different choices

of the supervised model, showing that random forest and logistic regression models perform well.

Figure 5 shows the relative performance across different unsupervised models, divided by gene

set, demonstrating that supervised models on unembedded data for all genes are the best per-

forming. All supervised evaluation results are recorded and further visualized in the appendices

(Results Table and Figure 7). Taken together, these motivate the choice of the recommended

model.

Our first conclusion, that multivariate predictors outperform predictors based on single gene

expression measurements, was the clearest cut. This has some practical consequences when

combined with our other conclusion that larger gene sets are better, especially for the fitting of

proportional hazards models used for survival analyses. First, using multivariate predictors on

large gene sets means that the number of covariates will almost always vastly outnumber the

subjects in a study. Therefore, it is absolutely necessary to regularize these models by adding

penalties to the coefficients. Moreover, nested cross validation should be used for all performance

assessments to mitigate overfitting to hyperparameter choices and to minimize variance in the

performance metric. Second, it is often impractical —or even impossible— to fit these models

using standard methods on typical computing architectures. For example, open source packages

for survival analyses typically use second-order methods to optimize the objective function. This

works for a single gene, but fitting the multivariate model requires computing a very large matrix

of second derivatives, e.g., 56,000 x 56,000 in this study. As a result, it was necessary to

implement first-order optimization methods and perform most of the matrix operations using

graphical processing units to make the survival analyses in this study feasible.

Overall, we found that choices such as the normalization method, the gene set, the type

of supervised prediction algorithm, and the use of a learned representation made surprisingly

little impact on out-of-sample predictive performance. Moreover, we could not identify any clear

trends. For example, it is not necessarily better to use smaller gene sets or other lower dimensional

representations for studies with smaller sample sizes. In light of these results, it is not clear that
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features derived from either prior knowledge or from representation learning methods have much

value in the analyses of bulk RNA-seq data. If the relationship between bulk gene expression

and phenotype is not one-to-one, then there is already a limit on how well one could predict

phenotype from gene expression. Relatively simple methods may be already very close to this

limit. Improving ‘omics-based phenotype prediction is likely to be contingent on other factors

including reduction of systematic errors in sequencing data, incorporation of other data types

such as single-cell sequencing and proteomics, and improved use of prior knowledge.

IV. METHODS

The analysis presented here and depicted in Figure 1 is a multi-step procedure, starting

from read counts data in the recount2 database and ending at performance metrics for various

models. There are principally three stages: dataset preparation, unsupervised model training,

and supervised model training.

Dataset preparation

The recount2 database [7] is a repository of transcriptomics data sourced from over 2000

independent transcriptomics experiments. The transcriptomics data from these experiments has

been reprocessed using a uniform processing pipeline, forming a single dataset amenable to large

scale computational analyses. Such analyses would otherwise be problematic due to systematic

differences between the original processing pipelines. The data in recount2 consists of counts

of gene reads as well as exon-level quantifications. Our study concerned the gene counts data

exclusively.

The data comprising recount2 can be divided into three broad groups according to their

sources: GTEx, TCGA, and SRA. The GTEx group was sourced from the Genotype Tissue

Expression program and contains 9538 samples from healthy individuals across 30 tissue types.

The TCGA group was sourced from the Cancer Genome Atlas project and contains 11284 samples

from individuals with cancer across 21 tissue types. In that group samples were taken from

tumor sites as well as normal tissue adjacent to tumor (NAT) sites. GTEx and TCGA are each

single, large collaboration projects with high quality control standards and protocols for sample

processing. Metadata for these projects is extensive. The SRA group contains 49638 samples
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from 2033 smaller, distinct experiments collected in the Sequence Read Archive. Metadata for

experiments in SRA are sparser, with tissue labels occasionally absent.

In total, 70460 samples were available in recount2 when the database was downloaded. How-

ever, many of these samples are not ideal for representation learning with transcriptomics data.

We developed a quality control (QC) pipeline to remove samples or entire SRA studies. The

number of samples remaining after the QC pipeline is 39848. The QC steps are as follows:

• Remove samples in which the reported cell type is a cell line. 9644 samples fit this criterion.

• Remove studies in SRA from single-cell sequencing. Examining metadata from GEO, 38

studies in SRA with 5865 samples in recount2 have single-cell transcriptomic data.

• Remove samples in which the reported tissue does not match any tissue in GTEx. 6824

samples fit this criterion (see Z-score normalization later).

• Remove samples in SRA which have duplicate GEO accession numbers (GSMs). There

were 9601 samples that met this criterion.

• Remove samples in which more than 30% of genes listed in the Gene Ontology (GO) 12

under the “biological process” or “molecular function” categories have a counts value of

0. 15390 samples met this criterion.

The number of matching samples in each step are non-exclusive, meaning a sample can match

more than one of the exclusion criteria. These effect of these exclusion criteria are depicted in

the supplementary figures (Figure 8). In total we removed 30612 samples, approximately 43%

of the total. No GTEx samples were removed; and only 521 TCGA samples were removed.

It is useful to present some detailed commentary on the duplicate GEO accession number

criterion. We observed that several samples have duplicate GSMs, and that many such samples

had the same number of reads (a round number, e.g., 8 million). This suggests that the individual

samples could be chunks of reads from the same underlying sample. However, we could find no

satisfying reason for duplicate GSMs or the round number of read counts for these samples, and

therefore excluded them from the dataset.

The QC pipeline determines which samples are admitted to the final dataset; there are also

choices to be made about which genes to consider in the analysis, and which normalizing proce-

dures to apply to the expression data.
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We considered three different gene sets in the analysis:

• all genes: (57992 genes).

• O genes: genes in GO under the “biological process” or “molecular function” categories

(17970 genes at the time of dataset creation).

• OT genes: O genes also labeled as transcription factors 29 (1530 genes at the time of

dataset creation).

In addition, we considered four different normalizing transformations of the counts data:

• TPM: The counts are transformed into transcripts per million (tpm), which account for

gene length to normalize reads. The TPM value is determined in terms of the counts as,

tpmi =
106 · (countsi/lengthi)∑

j(countsj/lengthj)
, in which i and j index genes.

• CLR: A centered-log-ratio transform is carried out on the TPM vectors. The CLR value is

determined in terms of the TPM values as,

clri = log(tpmi)−
1

N

∑
j

log(tpmj), in which N is the number of genes.

• Z-score: The Z-score transform is carried out on the CLR features. The Z-score is the

CLR value standardized by the mean expression of a gene in healthy tissue, determined by

the GTEx samples for the same tissue. The Z-score value is determined in terms of the

CLR value as,

z-scorei =
clri −mean(clr, tissue)i

std(clr, tissue)i
.

• Z-ternary: The Z-ternary transform is carried out on the Z-score features. The Z-score

values are ternarized based on their value, and the ternarization indicates whether the

gene’s expression is increased, decreased, or unchanged relative to the mean expression in

healthy tissue. Since the distribution of Z-score values is expected to be approximately

normal for healthy tissue, any Z-score value below -2 is assigned the Z-ternary value of

-1; any Z-score value above 2 is assigned the Z-ternary value of 1, and any Z-score value

between -2 and 2 is assigned the Z-ternary value of 0.
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We made use of the open-source python library genemunge [41] for making these normaliza-

tions and selecting the gene sets. Each of the normalizations are carried out on the expression

data for all genes. Whenever a smaller gene set is used, the values of the features for the selected

genes are simply taken from the data for all genes. The three gene sets and four normalizations

yield twelve different datasets that are used in the analysis.

Tasks and dataset allocation

The above procedure describes the preparation of the gene expression datasets. In addition

to the expression data, some samples have one or more labels suitable for predictive modeling.

TCGA has rich metadata with natural label types, available in the TCGA Pan-Cancer Clinical

Data Resource [23]; some SRA studies also contain useful metadata in GEO [22] relevant to

human disease. From the TCGA and recount2 metadata we selected four categories of predictive

tasks: binary labels for the grade of a tumor in various cancer types (8 tasks); binary labels for

the stage of a tumor in various cancer types (10 tasks); times for overall survival in various cancer

types (13 tasks); and times for progression free interval in various cancer types (13 tasks). From

the GEO metadata we selected binary and multiclass labels for various clinical characteristics (6

tasks) [42–47]. In total there are 50 tasks for which supervised models may be built.

We divided the 50 predictive tasks into three groups, “training”, “validation”, and “test”.

We then built a “training” gene expression dataset consisting of any samples with a label in

the training task group, as well as any samples with no label. This dataset, which has 36794

gene expression samples, was used to train the unsupervised models. A sample’s inclusion in this

dataset distinguishes the training and validation task groups. Both the training and validation

tasks were used in the analysis, whereas tasks in the test group were held out until the end of

the project so that no model selection criteria might influence performance on these tasks in any

way. The supervised tasks are summarized in the appendix (Tables I,II,III,IV).

Unsupervised models

Three different types of unsupervised models were trained on the gene expression datasets:

principal components analysis (PCA), stacked denoising autoencoders (SDAE), and variational

autoencoders (VAE).
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Principal components analysis (PCA)

The problem of finding the kprincipal components of a suitably large collection of vectors of

dimension n admits an analytic solution. But the computation required to perform this calculation

is in O(n3), making it intractable in high dimensions. Due to the high dimension of the larger

gene sets (>17k), we performed the PCA analysis via stochastic gradient descent following the

algorithm introduced by Arora et. al. [48] called “Stochastic Approximation.” The leading 512

principal components were retained.

Stacked denoising autoencoders (SDAE)

We employed denoising autoencoder architectures of “hourglass” shape with seven layers.

The hourglass narrows to a middle layer of 512 dimensions, yielding a 512-dimensional encoder.

The details of the architecture are recorded in the appendix. The models were trained with

stochastic gradient descent to minimize the mean squared reconstruction loss. We found that

pre-training the models layerwise before end-to-end training produced the best results. Therefore

these models are best described as stacked denoising autoencoders per the original presentation

[49]. The models were regularized by input noise variance and an l2 weight penalty, with these

hyperparameters selected by sweeping a range.

Variational autoencoders (VAE)

We also included a deep generative model among our unsupervised model types, the variational

autoencoder [50]. In particular, we employed the methods of Klambauer, et. al. [51] which

make use of self-normalizing units, SNNs, for improved training dynamics and representational

capability. We trained the models using the KL-annealing method of Bowman et. al. [52] during

the first 100 epochs and then let training proceed with the normal loss function for the remaining

epochs. The layer dimensions are recorded in the appendix. The latent encodings consist of 512

dimensions for the distributional means and 512 for the distributional log variances. Therefore the

trained model’s feature encoder is the restriction to the 512 dimensions of the means variables.
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The “no-embedding” model

In addition to these unsupervised models, we also employed a kind of control comparator: a

“no-embedding” model which does nothing to the expression data. The dimension of the gene

expression data is not reduced under the no-embedding model; the features are the normalized

gene expression vectors themselves.

Computational constraints

We trained the PCA model on each of the four normalizations for each of the three gene

sets. Due to computational constraints we applied the SDAE and VAE models to each of

the four normalizations for the O and OT gene sets excluding the all genes set. The lack of

an improvement in performance on smaller gene sets indicated the dataset with all genes was

unlikely to provide quality embedding models.

Supervised models

We evaluated the ability of a unsupervised model to learn useful representations across tran-

scriptomics data by assessing the performance of supervised models operating on the learned

representations. For each unsupervised model and predictive task, we trained and evaluated

supervised models using nested cross validation. The performance of these predictive models

gave an indication of how well the learned representation captured features in the data useful for

various kinds of phenotype prediction. Before presenting the different kinds of supervised models,

we present a small primer on nested cross validation.

Nested cross validation

Nested cross validation is designed to provide a robust estimate of the expected (predictive)

model performance on new data, optimizing over a set of hyperparameter values (such as the

maximum depth in a random forest). In nested cross validation, there are two loops over the

data, the outer and inner loop. The inner loop is used to select an optimal hyperparameter value,

and the outer loop is used to estimate the performance of the model with this hyperparameter

value. In the outer loop, data is divided evenly into K groups, or folds (we use K = 5). For each
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fold, the data for that fold is held out and the remaining K − 1 folds are used for the inner loop.

In the inner loop, this data is divided into K folds, and on each fold the data for that fold is held

out and the model is trained on the remaining K − 1 folds for each hyperparameter value. The

held-out fold is used to estimate the model performance for each hyperparameter value, and this

performance is averaged over all folds in the inner loop. The best performing hyperparameter

value is selected, and the model is re-trained on all data used in the inner loop. The model

performance is then evaluated on the held out data from the outer fold. This value is averaged

over all folds in the outer loop, and this final average is the estimated model performance.

Note that a different optimal hyperparameter may be selected for each outer fold. Nested cross

validation is resistant to hyperparameter overfitting, as the model is evaluated on data completely

held out from the process of selecting the optimal hyperparameter. With this robustness comes

increased computational complexity —if there are N hyperparameter values tested, nested cross

validation requires training K(KN + 1) individual models.

Classification tasks

For classification tasks we applied three different types of supervised models:

• Logistic regression (LR). Logistic regression with an l2 penalty, trained via stochastic

gradient descent. The logistic regression model is a single layer neural network with a

softmax activation on the output. The hyperparameter optimized was the l2 penalty,

logarithmically spaced between 10−6 and 103 in ten steps. The model was implemented in

pytorch [53]. Hyperparameters and training notes are provided in the appendix.

• Random forest (RF). Random forest models with 100 trees per forest. The hyperpa-

rameter optimized was the maximum depth of the random forest, logarithmically spaced

between 2 and 27 in seven steps. We relied on the scikit-learn [54] implementation of

random forest.

• K-nearest neighbors (kNN). The hyperparameter optimized was the value of k, the

number of neighbors used, taking a value of 1, 3, 5, 7, or 9.
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Survival tasks

For survival tasks, in which the overall survival time or the progression free interval time

were predicted, we trained a Cox proportional hazard (CPH) model. The standard solvers for

CPH models use second-order methods, such as versions of Newton’s method, making them

unsuitable for use with a large number of features. The computation time required for the

512-dimensional embedding, using nested cross validation, is already immense; training CPH

models on data without an embedding is completely impractical. Instead, we implemented a

CPH model in pytorch, and trained it via stochastic gradient descent by backpropagating through

the Cox-Efron pseudolikelihood[55]. Such models can be trained with a large number of features

—even all genes— and can be GPU accelerated. We regularized these models with an l2 penalty

whose strength, logarithmically spaced between 10−6 and 103 in ten steps, was optimized in the

inner cross-validation loop. Even with this computational speedup, evaluating the survival tasks

requires the bulk of compute time. It bears noting that these models were still trained with a fixed

initial learning rate which was small enough to guarantee controlled gradient descent across all

tasks. It is certain that absolute performance on individual contrasts could be improved by also

optimizing the learning rate in the nested cross validation. However, because the study concerns

the relative performance of this algorithm across gene sets, embeddings, and normalizations, we

avoided this additional multiplier on the computational time.

Single-gene comparators

All of the above supervised models are trained on features from multiple genes. In order to

compare our embedding models to single-gene analysis, we also trained a set of models on single

genes with no-embedding model. For these models the hyperparameter optimized in the inner

cross validation loop is the gene selected for the model. We had no need to run these comparators

across all transform/predictor combinations so we restricted these examples to clr-transformed

data and used only the univariate logistic regression models for classification tasks. For survival

tasks, single-gene CPH models were trained. No regularization term was necessary in either case

because these models have so few parameters. These results provide a direct comparison to the

multi-gene, CLR-transformed, no-embedding results.
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Components of supervised model results

In total, we evaluated a very large number of (multi-gene) supervised models. There are five

different characteristics of a single result:

• Task. There are 24 classification tasks and 26 survival tasks.

• Gene set. There are three gene sets, all genes, O genes, and OT genes.

• Normalization. There are four data normalizations, TPM, CLR, Z-score, and Z-ternary.

• Unsupervised model. There are four types of unsupervised model, PCA, SDAE, VAE,

and no-embedding. SDAE and VAE were only trained on the O and OT gene sets.

• Supervised model. For classification tasks, three different supervised models were trained,

LR, RF, and kNN. For survival tasks, a CPH model was trained.

This amounts to 3920 results. In terms of individual models trained during nested cross

validation, there are 807600 models.

Semi-supervised models

The semi-supervised models are designed to learn a feature embedding which is co-adapted

to the purpose of reconstruction as well as the performance of supervised models operating on

the embedding. Each of the semi-supervised models consists of a linear, single-hidden layer

autoencoder coupled to a number of logistic regression predictors —one for each supervised

task involved in the training dataset. The supervised predictors operate on the autoencoder’s

512-dimensional encoding. Both a schematic diagram of the model architecture and the details

of the architectures are recorded in the supplementary figure (Figure 10).

Data preparation

In order to be able to assess the performance of semi-supervised representation learning with-

in-task, we had to further subdivide some of the labeled expression data. In particular, we

subdivided into two halves the binary predictive tasks within the “training set” which contained

at least 200 samples. The first half was used in the training of the semi-supervised model; the
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second half was held out for validation. We called these sets the “divided tasks”; they were

drawn from the following binary tasks:

{CESC grade, COAD stage, KIRC grade, KIRC stage, LGG grade, LIHC stage, LIHC grade,

LUAD stage, SKCM stage, STAD stage, STAD grade, THCA stage, UCEC stage, UCEC grade}.

The rest of the tasks which constituted the original “validation” and “test” sets were used for

validation. So the training set for each semi-supervised model consisted of all expression data

from the first halves of the fourteen divided tasks along with their associated binary labels.

Training of semi-supervised models

Given any sample expression vector x from the training set we can compute the autoencoder

reconstruction loss on that sample, specifically as the squared reconstruction error,

R(x)i := (AE(x)i − xi)2, in which AE(x) denotes the action of the autoencoder on x.

Supposing that x has a class label lx ∈ {0, 1} from the jth predictive task, we can also compute

a classification error of the associated binary logistic regression classifier Pj,

C(x, lx) = CrossEntropy(Pj, x, lx) := −log(Pj(x)lx + (1− Pj(x))(1− lx)).

We trained our semi-supervised models (via stochastic gradient descent) to minimize a convex

combination of these two error terms. The constant controlling the interpolation of these two

losses we called the “predictor strength,” π, which ranged from 0 to 1. Our training algorithm

allowed different batch sizes for the autoencoder loss and the predictor losses; let these be denoted

by BR, and BC, respectively. Let {xm}, {xn, lxn} be batches drawn randomly from the training

data, the first consisting of only expression vectors, the second containing both expression vectors

and paired class labels. Our loss term takes the form,

L({xm}, {xn, lxn}) :=
1− π
BR

·
BR∑
m=1

R(xm)+
π

BC
·
BC∑
n=1

C(xn, lxn)+λAE · l2(AE)+λP ·
J∑

j=1

l2(Pj).

Here, J denotes the total number of predictive tasks. The last two terms are l2 weight penalties

on the model parameters; these are controlled by adjustable constants λAE and λP.
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We compared three scenarios for the predictor strength in our analysis,

• π = 0.0, i.e. the model is an autoencoder only.

• π = 0.1, the model is trained with a mixture of both losses.

• π = 1.0, i.e. the model is a purely supervised shared-embedding model.

We also compared results to a no-embedding model as a kind of control.

For each gene set, data normalization, and predictor strength scenario, we performed a sweep

over all 16 pairs of values for λAE and λP in the cartesian product {0, 0.1, 0.01, 0.001}2. We

selected the l2 coefficient pair which minimized average error on the held-out half of the divided

contrasts.

Finally, we assessed the performance of predictive models (across all three types, LR, RF, kNN)

operating on the learned data embedding to compare the effect of semi-supervised representation

learning across these three scenarios. Those results are displayed in Figure 6 in the main text.

DATA AVAILABILITY

The gene expression data used to train the unsupervised models and the gene expression data

and labels used to train and evaluate the supervised models are available on figshare, and can be

accessed at datasets. These data include the gene expression data for all three gene sets and all

four normalizations, and the accompanying supervised labels.

CODE AVAILABILITY

The code used to process the data and train the unsupervised, supervised, and semi-supervised

models is a combination of open source and proprietary, licensable software. The open source

software made available on GitHub, accessible at representation learning for transcriptomics, is a

framework to carry out nested cross validation and includes an example to train the recommended

model on a particular supervised task.
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APPENDIX: SUPPLEMENTARY FIGURES AND TABLES

FIG. 7: Performance over all model types. The binary task performance of each unique model

type is shown for each combination of gene set, transform, supervised model, and unsupervised model.

Each plot is a specific gene set and transform combination, and inside each plot results are grouped by

supervised model and colored by unsupervised model. The performance shown is the average of

shifted AUCs across binary tasks, weighted by the number of samples in each task to reduce the effect

of fluctuations in tasks with fewer samples. The best results come from using all genes without an

unsupervised embedding.
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FIG. 8: Effect of the quality control cuts. Gene expression samples plotted in terms of two quality

metrics, the number of reads and the fraction of genes with zero reads. The upper left plot shows

each sample in the recount2 database passing quality cuts. The remaining plots show samples failing

each of the quality cuts. The cuts remove a swath of samples whose characteristics are distinct from

the bulk of high-quality samples retained in the dataset.

FIG. 9: Variance explained by PCA. Per-component variance explained by PCA for each gene set

and normalization combination. The total variance explained by all 512 components is displayed on

each plot. The majority of variance is captured by the PCA in all cases; in some nearly all variance is

captured.
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FIG. 10: Semi-supervised model schematic. The semi-supervised model consists of a denoising

autoencoder coupled to one or more predictors. The training loss is a combination of reconstruction

error and classification error.
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TCGA stage tasks
project disease label label type group samples
COAD colon adenocarcinoma II- vs. III+ binary train 505
KIRC clear cell renal cell carcinoma II- vs. III+ binary train 544
LIHC hepatocellular carcinoma I- vs. II+ binary train 374
LUAD lung adenocarcinoma I- vs. II+ binary train 542
SKCM cutaneous melanoma II- vs. III+ binary train 249
STAD stomach adenocarcinoma II- vs. III+ binary train 416
THCA thyroid cancer I- vs. II+ binary train 513
UCEC uterine corpus endometrial carcinoma I- vs. II+ binary train 554
LUSC lung squamous cell carcinoma I- vs. II+ binary validate 504
BRCA breast invasive carcinoma II- vs. III+ binary test 1134

TCGA grade tasks
project disease label label type group samples
CESC cervical squamous cell carcinoma II- vs. III+ binary train 306
KIRC clear cell renal cell carcinoma II- vs. III+ binary train 544
LGG low grade glioma II- vs. III+ binary train 532
LIHC hepatocellular carcinoma II- vs. III+ binary train 374
PAAD pancreatic adenocarcinoma II- vs. III+ binary train 179
STAD stomach adenocarcinoma II- vs. III+ binary train 416
UCEC uterine corpus endometrial carcinoma II- vs. III+ binary train 554
HNSC head-neck squamous cell carcinoma II- vs. III+ binary test 504

TABLE I: TCGA binary tasks. The 18 binary tasks derived from TCGA used to train supervised

models and validate the unsupervised embeddings. The tasks are grouped into two categories, TCGA

tumor stage tasks (10), and TCGA tumor grade tasks (8). The project names correspond to those in

Figure 2.

SRA tasks
project disease label label type group samples
GSE65832 atopic dermatitis lesional vs. not binary train 40
GSE66207 Crohn’s disease type: B1, B2 or B3 multiclass (3) train 20
GSE72819 ulcerative colitis treatment remission binary validate 69
GSE47944 psoriasis lesional vs. not multiclass (3) validate 63
GSE50244 diabetes normoglycemic, impaired, diabetic multiclass (3) validate 76
GSE67785 psoriasis lesional vs. not binary test 28

TABLE II: SRA tasks. The 8 tasks derived from SRA used to train supervised models and validate

the unsupervised embeddings. The project names correspond to those in Figure 2.
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TCGA OS tasks
project disease label label type group samples
CESC cervical squamous cell carcinoma OS survival train 304
COAD colon adenocarcinoma OS survival train 455
ECSA esophageal carcinoma OS survival train 184
KIRP papillary renal cell carcinoma OS survival train 289
LUAD lung adenocarcinoma OS survival train 507
OV ovarian cancer OS survival train 420
PAAD pancreatic adenocarcinoma OS survival train 178
SARC sarcoma OS survival train 259
STAD stomach adenocarcinoma OS survival train 409
UCEC uterine corpus endometrial carcinoma OS survival train 540
HNSC head-neck squamous cell carcinoma OS survival validate 501
BLCA urothelial bladder carcinoma OS survival test 407
LUSC lung squamous cell carcinoma OS survival test 495

TABLE III: TCGA overall survival (OS) tasks. The 13 overall survival tasks derived from TCGA

used to train supervised models and validate the unsupervised embeddings. The project names

correspond to those in Figure 2.

TCGA PFI tasks
project disease label label type group samples
CESC cervical squamous cell carcinoma PFI survival train 304
COAD colon adenocarcinoma PFI survival train 455
ECSA esophageal carcinoma PFI survival train 184
KIRP papillary renal cell carcinoma PFI survival train 288
LUAD lung adenocarcinoma PFI survival train 507
OV ovarian cancer PFI survival train 420
PAAD pancreatic adenocarcinoma PFI survival train 178
SARC sarcoma PFI survival train 259
STAD stomach adenocarcinoma PFI survival train 411
UCEC uterine corpus endometrial carcinoma PFI survival train 540
HNSC head-neck squamous cell carcinoma PFI survival validate 501
BLCA urothelial bladder carcinoma PFI survival test 408
LUSC lung squamous cell carcinoma PFI survival test 496

TABLE IV: TCGA progression-free interval (PFI) tasks. The 13 progression-free surivival tasks

derived from TCGA used to train supervised models and validate the unsupervised embeddings. The

project names correspond to those in Figure 2.
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gene set layer dimensions
O 17970 - 2048 - 1024 - 512 - 1024 - 2048 - 17970
OT 1530 - 1530 - 1024 - 512 - 1024 - 1530 - 1530

init. weight
std. dev.

noise
std. dev.

epochs
batch
size

init. LR LR step LR gamma l2-coeff.

0.01 0.3 500 50 0.0001 50 0.8 0

TABLE V: SDAE Architectures and Hyperparameters.

• All data was standardized before training.

• Weights were intialized randomly according to a central Gaussian distribution of standard devia-

tion init. weight std. dev..

• The learning rate was reduced from init. LR by a factor of LR gamma every LR step epochs.

• All activations were ReLU except for the final layer, which was linear or hardtanh in the case of

Z-ternary normalization.

• We saw no perceived benefit from l2-regularization over-against selection of the noise level, and

so simply fixed the l2 coefficient l2-coeff. to 0. The value of noise std. dev. was selected

by assessing validation performance over a range of values from 0 to 0.5.

• All SGD used ADAM [56] with parameters (0.5, 0.999).

• Models were first trained in a greedy-layerwise fashion before being trained end-to-end. Both

training eras used the same set of hyperparameters.

gene set layer dimensions
O 17970 - 1024 - 1024 - 1024 - 1024 - 1024 - 17970
OT 1530 - 1024 - 1024 - 1024 - 1024 - 1024 - 1530

epochs batch size learning rate KL-annealing rate
10000: tpm

1000: clr, Z-score, Z-ternary
100 0.0001 0.01 per epoch

TABLE VI: VAE Architectures and Hyperparameters.

• Weights were intialized with a centered Gaussian distribution with a standard deviation equal to

the inverse of the number of input features.

• Models were trained with the KL-annealing rate [52] moving from 0 to 1 linearly over the first

100 epochs.

• The learning rate was held constant in training.

• No additional regularization was performed due to a strong correlation between training and

validation loss.
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epochs batch size init. LR LR step LR gamma
200: binary

300: multiclass
floor(num. samples / 10) 0.001 10 0.9

TABLE VII: Logistic Regression Hyperparameters.

• Weights were initialized randomly according to the standard (Xavier) Glorot normal [57] prescrip-

tion.

• The learning rate was reduced from init. LR by a factor of LR gamma every LR step epochs.

• The l2-coeff value is selected by cross-validation over the range 10−6 to 103 in logarithmic

steps of 10.

• All SGD used ADAM [56] with parameters (0.5, 0.999).

epochs batch size init. LR
500 floor(num. samples / 5) 0.00001

TABLE VIII: Cox Proportional Hazards Hyperparameters.

• The neural network model consists of a batch-normalization layer [58] followed by a single, linear

fully-connected to compute the relative risk function.

• Weights were initialized randomly according to the standard (Xavier) Glorot normal [57] prescrip-

tion.

• The learning rate was held constant during training.

• The l2-coeff value is selected by cross-validation over the range 10−6 to 103 in logarithmic

steps of 10.

• All SGD used ADAM [56] with parameters (0.5, 0.9).
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gene set autoencoder layer dimensions predictor layer dimensions
O 17970 - 512 - 17970 512 - [num labels]
OT 1530 - 512 - 1530 512 - [num labels]

epochs
unlabeled
batch size

labeled
batch size

noise
std. dev.

AE l2-coeff.

200 50 10 0.3 [0, 0.0001, 0.01, 0.1]

predictor
l2-coeff.

init. LR LR step LR gamma
predictor
strength

[0, 0.001, 0.1] 0.0001 10 0.8 [0, 0.1, 1]

TABLE IX: Semi-supervised Model Architectures and Hyperparameters.

• All data was standardized before training.

• Brackets indicate different possible values. All possible combinations of parameters were tried

with the best parameter set chosen by virtue of performance on held-out half of the divided

predictive tasks.

• Weights were initialized randomly according to a central Gaussian distribution with standard

deviation of 0.01.

• The learning rate was reduced from init. LR by a factor of LR gamma every LR step epochs.

• All SGD used ADAM [56] with parameters (0.9, 0.9).

38

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2019. ; https://doi.org/10.1101/574723doi: bioRxiv preprint 

https://doi.org/10.1101/574723
http://creativecommons.org/licenses/by/4.0/

	Deep learning of representations for transcriptomics-based phenotype prediction
	Abstract
	Introduction
	Results
	Approach
	Analyses
	Semi-supervised representation learning

	Discussion
	Methods
	Dataset preparation
	Tasks and dataset allocation
	Unsupervised models
	Principal components analysis (PCA)
	Stacked denoising autoencoders (SDAE)
	Variational autoencoders (VAE)
	The “no-embedding” model
	Computational constraints

	Supervised models
	Nested cross validation
	Classification tasks
	Survival tasks
	Single-gene comparators
	Components of supervised model results

	Semi-supervised models
	Data preparation
	Training of semi@let@token --supervised models


	Data availability
	Code availability
	Author Contributions
	Competing Interests
	References
	Appendix: supplementary figures and tables


