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Abstract 
Citizen science data are valuable for addressing a wide range of ecological research questions, 
and there has been a rapid increase in the scope and volume of data available. However, data 
from large-scale citizen science projects typically present a number of challenges that can inhibit 
robust ecological inferences. These challenges include: species bias, spatial bias, and variation 
in effort.  
 
To demonstrate addressing key challenges in analysing citizen science data, we use the example 
of estimating species distributions with data from eBird, a large semi-structured citizen science 
project. We estimate two widely applied metrics of species distributions: encounter rate and 
occupancy probability. For each metric, we assess the impact of data processing steps that either 
degrade or refine the data used in the analyses. We also test whether differences in model 
performance are maintained at different sample sizes.  
 
Model performance improved when data processing and analytical methods addressed the 
challenges arising from citizen science data. The largest gains in model performance were 
achieved with: 1) the use of complete checklists (where observers report all the species they 
detect and identify); and 2) the use of covariates describing variation in effort and detectability for 
each checklist. Occupancy models were more robust to a lack of complete checklists and effort 
variables. Improvements in model performance with data refinement were more evident with 
larger sample sizes.  
 
Here, we describe processes to refine semi-structured citizen science data to estimate species 
distributions. We demonstrate the value of complete checklists, which can inform the design and 
adaptation of citizen science projects. We also demonstrate the value of information on effort. The 
methods we have outlined are also likely to improve other forms of inference, and will enable 
researchers to conduct robust analyses and harness the vast ecological knowledge that exists 
within citizen science data.  
 
 
Key words: citizen science, detectability, eBird, encounter rate, occupancy model, spatial bias, 
species distribution model  
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Introduction 
Citizen science data are increasingly making 
important contributions to basic and applied 
ecological research. One of the most 
common forms of citizen science data comes 
from members of the public recording 
species observations. These observations 
are being collected for a diverse array of 
taxa, including butterflies (Howard, Aschen, 
& Davis, 2010), sharks (Vianna, Meekan, 
Bornovski, & Meeuwig, 2014), lichen 
(Casanovas, Lynch, & Fagan, 2014), bats 
(Newson, Evans, & Gillings, 2015), and birds 
(Sauer et al., 2017). The number of these 
citizen science projects has been growing 
exponentially, but they vary widely in 
complexity, flexibility, and participation 
(Pocock, Tweddle, Savage, Robinson, & 
Roy, 2017; Wiggins & Crowston, 2011). 
Projects occur on a spectrum from those with 
a predefined sampling structure that 
resemble more traditional survey designs, to 
those that are unstructured and collect 
observations ‘opportunistically’. Projects with 
study designs and defined protocols 
generally produce data that are more 
informative for a particular objective, but are 
often limited to a specific time frame and 
region and have fewer participants. This can 
lead to a trade-off between the quality and 
quantity of data supported by citizen science 
projects (Bird et al., 2014; Pacifici et al., 
2017). Semi-structured citizen science 
projects have unstructured data collected, 
but critically also collect data on the 
observation process, which can be used to 
address many of the issues arising with 
citizen science data (Altwegg & Nichols, 
2019; Kelling et al., 2018). With the 
increasing popularity in the use and 
application of citizen-science data, we 
describe and evaluate steps for data 
processing and analysis that maximise the 
value of semi-structured citizen science data 
(Sullivan et al., 2014).  
 
Data consisting of species observations from 
citizen scientists present a number of 
challenges that are not as prevalent in 
conventional scientific data. Firstly, 
participants often have preferences for 

certain species, which may lead to 
preferential recording of some species over 
others (Troudet, Grandcolas, Blin, Vignes-
Lebbe, & Legendre, 2017; Tulloch & Szabo, 
2012). Secondly, the observation process is 
heterogeneous, with large variation in effort, 
time of day, observers, and weather, all of 
which can affect the detectability of species 
(Ellis & Taylor, 2018; Oliveira, Olmos, dos 
Santos-Filho, & Bernardo, 2018). Thirdly, the 
locations selected by participants to collect 
data usually are strongly spatially biased. For 
example, participants may preferentially visit 
locations that are close to where they live 
(Dennis & Thomas, 2000; Mair & Ruete, 
2016), more accessible (Botts, Erasmus, & 
Alexander, 2011; Kadmon, Farber, & Danin, 
2004), contain high species diversity 
(Hijmans et al., 2000; Tulloch, Possingham, 
Joseph, Szabo, & Martin, 2013), or are within 
protected areas (Tulloch et al., 2013). 
However, citizen science data also contain a 
wealth of ecological information and they are 
often the only source of biological knowledge 
for many biodiverse regions. Therefore it is 
imperative to define approaches that can 
maximise the value of increasing volumes of 
citizen science observations.  
 
There are two main approaches for 
addressing known challenges related to 
citizen-science data: 1) imposing a more 
structured protocol onto the dataset after 
collection via data filtering (Kamp, Oppel, 
Heldbjerg, Nyegaard, & Donald, 2016); 2) 
including covariates in a model to account for 
the variation (Miller, Pacifici, Sanderlin, & 
Reich, 2019). In this paper we advocate 
combining both of these approaches to 
increase the reliability of inferences made 
using citizen science observations.  
 
We describe analytical approaches for using 
semi-structured citizen science data, using 
the example of estimating species 
distributions from data collected by the eBird 
citizen science project (Sullivan et al., 2014). 
We use two critical aspects to these citizen 
science data that facilitate robust ecological 
inference. Firstly, data submitted to eBird are 
structured as ‘checklists’, where each 
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checklist is a list of bird species recorded 
during one period of bird-watching. 
Secondly, eBird is a semi-structured citizen 
science project, which means most eBird 
checklists have associated metadata 
describing the ‘effort’ or observation process 
(Kelling et al., 2018). While our examples 
focus on the use of eBird data, our results are 
important both for analysis of similar citizen 
science datasets, and for the design of future 
citizen science surveys. 
 
 
Methods 
We explored the impact of various analytical 
practices when using citizen science data to 
estimate species distributions. We used 
different modelling approaches to estimate: 
1) encounter rate with Maxent and a random 
forest model, and 2) occupancy rate with an 
occupancy model. Species encounters arise 
as a compound process requiring both the 
species to occur at a site and to be detected 
at that site. Encounter rate is defined as the 
average rate at which observers encounter 
the species, so it reflects the product of 
occurrence and detectability. Occupancy is 
defined as the probability that a species is 
present in a given location, because the 
model separates occurrence and 
detectability. While Maxent uses only 
detection (or “presence-only”) data, random 
forest and occupancy models use 
detection/non-detection data as their 
response variable. All analyses were 
conducted with R (R Core Team, 2018). As 
a case study we focussed on wood thrush 
Hylocichla mustelina in the breeding season. 
Wood thrush is a relatively common 
passerine in north east America, that is easily 
detected by its song. All data and code for 
this analysis are within Supporting 
information A4 and more examples of 
running species distributions with eBird data 
are in Strimas-Mackey et al. (2020). 
 
eBird data selection  
We used data from the eBird Basic Data 
(EBD), which is global in extent and updated 
monthly (www.ebird.org/science/download-
ebird-data-products). The most current 

version of the EBD can be freely accessed 
via an online data portal and processed with 
the auk R package (Strimas-Mackey, Miller, 
& Hochachka, 2018). eBird has a robust 
review process, focussed on ensuring 
correct locations and species identification, 
that is conducted before data enter the EBD; 
we provide further details on this and other 
aspects of eBird data in Supporting 
Information A1. Our data are from the EBD 
version released in May 2019. To model 
wood thrush distribution in the breeding 
season, we used checklists from 15 May - 30 
June. We restricted these data 
geographically to Bird Conservation Region 
27 “Southeastern coastal plain” (BCR27), a 
biogeographically uniform region that 
includes parts of the states: Mississippi, 
Alabama, Florida, Georgia, North Carolina, 
and South Carolina (NABCI 2000).   
 
eBird data processing 
We split the eBird data into a dataset to use 
to train (or fit) the models, and semi-
independent datasets to validate (or test) the 
models (Figure 1 and S1). To train the 
models we used eBird data from 2018. We 
created two validation datasets, chosen 
because of their different forms of 
independence from these training data. The 
form of validation data should be tailored to 
a specific intent (Valavi, Elith, Lahoz-
Monfort, & Guillera-Arroita, 2018). Our main 
validation set was temporally independent, 
using the using eBird data from 2017 to 
create a balanced validation set (equal 
detections and non-detections) with reduced 
spatial bias (Figure 1). The reduced spatial 
bias ensured that the data represent the 
study region more evenly, and the balance of 
detections and non-detections tested the 
ability of the model to discriminate between 
areas of species presence and absence. Our 
second validation dataset was the 2018 data 
from the North American Breeding Bird 
Survey that were also submitted to eBird. 
This created a validation against a 
standardized and pre-designed survey 
(Figure 1). See supporting information A2 for 
more details. 
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We used a hierarchy of data processing 
steps on the training data, applying these 
sequentially to create a set of differently 
processed datasets. These data processing 
steps were designed to highlight or address 
the challenges with citizen science data 
outlined in the introduction. We applied these 

datasets to each of the model types to 
estimate both encounter rate and occupancy 
(Table 1). Two data processing steps were 
designed to degrade the data: i) select only 
detections; ii) select only ‘incomplete’ 
checklists. The models with these data 
(models 1 and 2) highlight the impact of 

 
 
Figure 1. Schematic diagram of the flow of data into each of the 6 model types for the encounter rate 
model. The sizes of the boxes and the numbers inside them are the number of checklists. The blue 
processes occur once, the pink processes occur 25 times, once for each model run. The numbers 
shown will therefore vary slightly each time within the pink box. The dark colours represent training 
data and the pale colours validation data. Arrows represent data processing steps, or projection of the 
same data forward to the next stage.  
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having these degraded data. Three data 
processing steps were designed to refine the 
data: iii) selecting only ‘complete’ checklists; 
iv) spatially subsampling; and v) selecting 
checklists with standard effort (Table 1). 
Using non-detections allows the model to 
have knowledge of where effort was 
expended, but the species was not recorded. 
Data processing step (iii) ensures that all the 
inferred ‘non-detections’ are actually non-
detections, by only including checklists 

where observers report all the species they 
could detect and identify (complete 
checklists). This addresses the challenge of 
species bias. Step (iv) spatial subsampling 
reduces the over-influence of well-surveyed 
locations in the analysis. This addresses the 
challenge of spatial bias. Step (v) reduces 
the range of checklist effort, creating a more 
consistent and standardised set of checklists 
for analysis. This addresses the challenge of 
variable effort. Methodological details for 

Table 1. Descriptions of the elements in models 1-7 that include different data processing 
treatments. Models 3 uses all the data with no processing. Models 1-2 use data degraded in 
different ways by processes (i) and (ii). Models 4-6 use data refined in different ways by 
processes (iii), (iv), and (v). Model 7 uses the same data as Model 6, but additionally 
includes effort variables as covariates.  
  
  

Data processing 
treatment 

Model 

1 2 3 4 5 6 7 

D
EG

R
AD

E i) 
Select detections 
only (‘presence 
only’) 

✓       

ii) 
Select 
incomplete 
checklists only 

 ✓      

R
EF

IN
E 

iii) Select complete 
checklists only     ✓ ✓ ✓ ✓ 

iv) Spatial 
subsampling     ✓ ✓ ✓ 

v) Effort filters      ✓ ✓ 

vi) Effort covariates       ✓ 

MODEL 
TYPE 

Encounter rate 
model type 

Maxen
t 

Random 
forest 

Random 
forest 

Random 
forest 

Random 
forest 

Random 
forest 

Random 
forest 

Occupancy 
model   ✓ ✓ ✓ ✓ ✓ ✓ 
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how we performed each of these data 
processing steps is giving in supporting 
information A2. 
 
Preparing data for the occupancy models 
required some additional data processing. 
There are many decisions required when 
using citizen science data for occupancy 
models and we describe these in greater 
detail in the supporting information A3 with 
only a brief overview here. We defined a ‘site’ 
as a location (defined by latitude and 
longitude) with at least two visits during May 
15 - June 30 2018. Where there were more 
than 10 visits to a single site, we randomly 
selected 10 of the visits. For the occupancy 
models we also created a separate validation 
set. We wanted to validate the estimates of 
occupancy, whilst limiting the effects of 
detectability. We therefore selected sites 
with high detectability and determined 
whether wood thrush was recorded on any 
visit. Using this validation dataset we 
compared the estimated occupancy to the 
observed occurrence.  
 
Environmental data 
As environmental covariates we used land 
cover data derived from MODIS product 
MCD12Q1 v006 (Friedl & Sulla-Menashe, 
2015). We estimated the land cover 
associated with each checklist as the 
proportion of each land cover category in a 
2.5 km x 2.5 km square surrounding the 
checklist location in the year the 
observations were made. We included the 
proportions of each land cover type in the 
MCD12Q1 v006 classification. See 
Supporting Information A2 for a list of the 
landcover types. 
 
Estimating species encounter rate 
We estimated the encounter rate of wood 
thrush on eBird checklists in relation to the 
environmental covariates. The response was 
the detection/non-detection of wood thrush 
and the environmental covariates were 16 
landcover covariates as described above. 
Model 1 used presence-only records of wood 
thrush on a checklist, fitted with a Maxent 
model through the R package maxnet 

(Phillips, 2016). Models 2-7 fitted a random 
forest with detection/non-detection records 
of wood thrush on checklists, followed by 
calibration with a Generalized Additive Model 
(GAM). The random forest models were 
fitted with the R package ranger (Wright & 
Ziegler, 2017) and the GAMs within R 
package scam (Pya, 2013). We ran the set 
of seven models 25 times, and for each set 
we randomly selected 0.75 of the training 
and validation datasets before applying the 
relevant data processing (Figure 1). For 
further details of the model fitting see the 
supporting information A2 and the code in 
supporting information A4. 
 
We validated the fitted model and calibration 
model with the semi-independent validation 
datasets. We used a range of performance 
metrics to compare the estimates to the 
observations: sensitivity, specificity, True 
Skill Statistic (TSS), Area Under the Curve 
(AUC), Kappa, and Mean Squared Error 
(MSE, also named Brier score). To quantify 
the additional benefit of running the different 
models, for each set of seven models, we 
calculated the differences in performance 
metrics between each model and model 3. 
We examined these differences across the 
25 different runs of the model set.  
 
For a random set of the seven models, we 
mapped the estimated encounter rate across 
the whole region of the BCR27. We 
produced a dataset with the land cover for 
each 2.5 km x 2.5 km grid cell across the 
entire region and we set effort variables to be 
constant across the region. The predictions 
relate to the hypothetical encounter rate of 
an average eBird participant conducting a 1 
hour, 1 km complete checklist on 15 June 
2018 at the optimal time of day for species 
detection. We used the random forest model 
and the calibration GAM to estimate 
encounter rate for this standardised checklist 
in each grid cell in BCR27.  
 
Estimating species occupancy  
To assess the effects of these data 
processing steps in an alternative modelling 
framework, we applied single-species 
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occupancy models to estimate occupancy 
and detectability of wood thrush. We 
modeled occupancy probability as a function 
of MODIS land cover categories (Friedl & 
Sulla-Menashe, 2015) and we selected four 
categories considered a priori to have the 
most ecological relevance: deciduous 
broadleaf forest, mixed forest, croplands, 
and urban. For modelling detection 
probability, we used the five effort covariates 
described in the ‘encounter rate model’ 
above. We used the R package unmarked to 
fit single-season models (Fiske & Chandler, 
2011). We ran these occupancy models 
using a set of six different combinations of 
data processing and model structure (Table 
1). For further details of the model fitting see 
the supporting information A2. We validated 
the occupancy predictions against the 
specific occupancy validation dataset of sites 
with high detectability. As above, we also 
mappedthe occupancy rate across the whole 
region by predicting to the whole of the 
BCR27. 
 
Varying sample size 
Our study area has a relatively high density 
of eBird data, but other regions and other 
citizen science projects may often have 
fewer data. Therefore we wanted to assess 
whether the results we found would be the 
same smaller datasets. We estimated wood 
thrush encounter rate using model 3 and 
model 7 for a range of sample sizes. For 
each model set we randomly selected 0.75 
of the training and validation datasets (as 
above). We then further reduced the data to 
proportions of this new total: 0.1, 0.3, 0.5, 
0.7, or 0.9. We ran this set of 10 models (five 
sample sizes, two models) 25 times. For 
each run, we compared the difference in 
predictive performance metrics (as 
described above) between model 7 and 
model 3.  
 
 
Results 
Estimating species encounter rate 
Model 7 had the highest estimates of 
encounter rate (Figure 2) and the best model 
performance. Model performance was 

consistently the best with model 7, across 
both validation datasets and most of the 
performance metrics (Figures 3, S2). Thus 
the combination of all data processing steps 
resulted in the best model, with adding effort 
variables as covariates producing the 
biggest improvement in our example 
(compare models 6 and 7). 
 
Models 1 and 2 had substantially worse 
model performance with both the temporally 
independent validation and the BBS 
validation (Figures 3, S2). Their estimates of 
encounter rate were poorly correlated with 
those from model 7 (Figure S3), although 
there are some broad similarities in spatial 
patterns (Figure 2). These results 
demonstrate that using presence-only or 
casual records only is likely to result in poorer 
ecological inference. Models 3-5 all 
displayed similar model performance 
(Figures 3, S2), similar absolute encounter 
rate (Figure S4), and similar correlations with 
the predictions from model 7 (Figure S3). All 
these results suggest that the largest gains 
in model performance are achieved from 
using complete checklists (rather than casual 
records), and including effort variables as 
covariates.  
 
Estimating species occupancy 
Across models, the estimates of occupancy 
were less variable than those of encounter 
rate. The six occupancy models showed 
relatively consistent spatial patterns (Figure 
4), high correlation between estimates 
(Figure S5), similar absolute estimates of 
occupancy (Figure S7), and similar model 
performance at well-monitored sites (Figure 
S8). Therefore with these training and 
validation datasets we could not strongly 
identify improvements with the data 
processing steps. Despite these apparent 
similarities, there were large differences in 
the distributions of estimated detectability 
within the training data (Figure S6). 
Therefore using the effort variables did 
enable the model to account for 
heterogeneity in detectability, expected to 
lead to more precise estimates of 
occupancy. 
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Figure 2. Estimated wood thrush encounter rate across the BCR27 region for models 1 - 7. Estimated 
encounter rate is the expected proportion of standardised checklists that would record Wood Thrush. 
These hypothetical standardised checklists are conducted by an average eBirder, travelling 1km over 
1 hour, at the optimal time of day for detecting Wood Thrush. Darker colours denote higher estimated 
encounter rate. 
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Figure 3. Differences in predictive performance metrics for the encounter rate models 1-7 against 
balanced and subsampled eBird data from 2017. Metrics are compared to the performance from 
model 3 and the y-axis values show differences relative to model 3. The white halves of the plots 
indicate where model performance is better than model 3. The grey halves of the plots indicate where 
model performance is worse than model 3. Model 3 uses all the data in a random forest encounter 
rate model. Model 7 is the random forest encounter rate model using complete checklists, spatial 
subsampling, effort variable filters, and effort variables as covariates. The validation metrics are 
calculated for 25 different model runs. For details of models 1-7 see Table 1 and the text. 
Boxes show the median, the interquartile range, and whisker ends denote the extremes of 
the distributions.  
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Figure 4. Estimated occupancy of wood thrush across the BCR27 region for occupancy models 2-7 
calculated with data processing steps (ii) to (v). The occupancy is the expected probability that cells are 
occupied by Wood Thrush. Darker colours denote higher estimated occupancy.  
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Figure 5. Effect of sample size on differences in predictive performance metrics for the encounter 
rate models 3 and 7. Differences were computed between the metrics as (model 7 - model 3); the y-
axis values show differences relative to model 3. The white halves of the plots indicate where model 7 
performance is better than model 3. The grey half of the plots indicate where model 7 performance is 
worse than model 3. The test dataset was balanced and subsampled eBird data from 2017. The 
datasets were random subsampled to 0.75 of the original checklists. Then they were further reduced 
to a proportion of this dataset: 0.1, 0.3, 0.5, 0.7, 0.9. This process was repeated 25 times to produce 
25 paired comparisons of model performance for each dataset size. Each paired comparison between 
model 3 and model 7 used the same randomly subsampled test and train datasets. See Table 1 for 
further details of model 3 and model 7. Panels show the following performance metrics: A Mean 
Squared Error (MSE); B Area Under the Curve (AUC); C Kappa; D sensitivity; E specificity; and F 
True Skill Statistic (TSS). Boxes show the median, the interquartile range, and the extremes of the 
distributions.  
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Varying sample size 
Model 7 (using all refining data processing 
steps) was better than model 3 (using all the 
data without any data processing) (Figure 2). 
However, the benefits of using model 7 were 
reduced at smaller sample sizes (Figures 5, 
S6). This may be because reducing the 
dataset size by filtering (Figure 1) also has a 
cost when there are fewer data. However, we 
find that even with the smallest datasets, 
there is no disadvantage to using model 7 — 
it performs equivalent to or better than model  
3, across all sample sizes that we tested 
(Figures 5, S6).  
 
 
Discussion 
Citizen science data sets are becoming 
increasingly valuable research tools for 
ecology and conservation due to their 
increasing prevalence (Pocock et al., 2017) 
and broad spatiotemporal scope (Chandler 
et al., 2017). For example, eBird data have 
been used to study phenology, species 
distributions, population trends, evolution, 
behaviour, global change, and conservation 
(Lang, Mann, & Farine, 2018; MacPherson et 
al., 2018; Mattsson et al., 2018; Mayor et al., 
2017; Seeholzer, Claramunt, & Brumfield, 
2017). However, citizen science data 
generally have more errors, assumptions, 
and biases associated with them, often a 
result of relatively unconstrained survey 
design and a highly heterogeneous 
observation process. Here we demonstrate 
how thoughtful combinations of data filtering 
and analysis can remove relatively 
uninformative data and control for much of 
the statistical noise in citizen science data. 
 
Spatial subsampling resulted in a greater 
reduction in dataset size than filtering to 
remove extreme values of observer effort 
(Figure 1), although this is dependent on the 
parameters selected for both of these 
filtering processes. In our case study, neither 
of these reductions in sample size led to 
changes in the accuracy of species 
distribution models (cf models 3-5), 
indicating no loss of information was incurred 

by even the removal of substantial 
proportions of the data (Figure 1). 
 
Including information on the observation 
process has been shown to produce more 
accurate and robust results (Isaac, Van 
Strien, August, de Zeeuw, & Roy, 2014; 
Johnston, Fink, Hochachka, & Kelling, 2018). 
Including effort variables had a larger impact 
on the accuracy of our encounter rate models 
than removing records based on extreme 
observer effort (Figure 2). However, the 
advantages of effort variables were less 
apparent with occupancy models, although 
we recognise that our validation was less 
strong for the occupancy models. 
Nonetheless, our results suggest that where 
these effort data do not exist, occupancy 
models may be a more robust modelling 
approach.  
 
We considered the impacts of degrading the 
data in two separate ways - to detections 
only (presence only data) and to incomplete 
checklists only. The data degraded in these 
two ways led to consistently poorer model 
performance. There are clear limitations to 
the ecological insights that can be gained 
from presence-only data (Aranda & Lobo, 
2011; Václavík & Meentemeyer, 2009). As a 
result, multiple approaches have been 
suggested for inferring non-detection events 
when data are stored in a presence-only 
format (Hill, 2012; van Strien, van Swaay, & 
Termaat, 2013). Our case study suggests 
that when complete checklists are available, 
it is very beneficial to use this information 
rather than degrade the data quality.  
Our general recommendation is that both 
filtering and modelling variation in observer 
effort are important analytical tools, however 
their benefits will vary across datasets and 
modelling objectives. In our example we find 
that analysing some complete checklists and 
using effort variables as covariates made the 
largest difference to the model quality. 
However, the raw data, the volume of data, 
the model type, and the modelling objective 
will all affect the utility of the data processing 
steps that we describe. To produce a more 
comprehensive understanding, To provide a 
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more comprehensive understanding, these 
filtering and modelling practices should be 
evaluated in different circumstances and with 
different datasets. 
 
In conclusion, the data processing steps to 
refine the data are most relevant to semi-
structured citizen science projects designed 
to collect a large quantity of data, and with 
information describing the observation 
process (Kelling et al., 2018). There are 
numerous citizen science programs in the 
world today, but only a limited number of 
them collect the information needed to infer 
absences (Pocock et al., 2017). eBird 

provides evidence that for birds, information 
on observer effort and completeness of 
species lists can be collected whilst 
maintaining high participation. While we 
focused on modelling species distributions, 
many other types of ecological inference will 
also benefit from these data processing 
steps. In combination, the approaches 
outlined here for collecting, processing and 
modeling citizen science data can inform 
ways to improve existing and future 
programmes, while increasing our current 
capacity to conduct robust analyses using 
growing volumes of citizen science data. 
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Appendix A1: eBird data description 
 
Appendix A2: Detailed methods for data processing and model fitting 
 
Appendix A3: Fitting species distribution and abundance models with eBird data 
 
Appendix A4: Code and data for the analyses in this paper 
https://github.com/ali-johnston/ebird_analysis_woodthrush 
 
Figure S1. Location of checklists for A all training data 2018; B example of training data 
selecting only complete checklists and then spatially subsampled (data for Model 5);  
C test data 2017; D test data eBird-entered BBS data 2018.  
 
Figure S2. Differences in predictive performance metrics for the encounter rate models 1-7 
against BBS data within eBird from 2018, aggregated to BBS routes. Metrics are compared to 
the performance from model 3, with the y-axis values showing the differences relative to model 
3. The white halves of the plots indicate where model performance is better than model 3. The 
grey halves of the plots indicate where model performance is worse than model 3. Model 1 is 
the Maxent model which uses only presences and produces background psuedo-absences. 
Model 7 is the random forest encounter rate model using complete checklists, spatial 
subsampling, effort variable filters, and effort variables as covariates. The validation metrics are 
calculated for 25 different model runs. Further details of models 1-7 are in the text and Table 1. 
Boxes show the median, the interquartile range, and the extremes of the distributions.  
 
Figure S3. Density scatterplots comparing estimates of encounter rate across the BCR27 
region for models 1 - 6 against model 7. Brighter colours indicate a higher density of points in 
that region of the scatterplot. The high densities along the bottom of the figures represent many 
locations that are predicted to have low encounter rate with models 1-6 and higher encounter 
rate with model 7. R values show the Pearson correlation coefficient and the associated p-
value.  
 
Figure S4. Estimated encounter rates across BCR27 for models 1-7. See Table 1, Figure 1, 
Appendix S2 and the main text for full details of each model.  
 
Figure S5. Density scatterplots comparing estimates of occupancy rate across the BCR27 
region for models 2 - 6 against model 7. Brighter colours indicate a higher density of points in 
that region of the scatterplot. R values show the Pearson correlation coefficient and the 
associated p-value. 
 
Figure S6.  Estimated occupancy rates across BCR27 for models 2-7. See Table 1, Figure 1, 
Appendix S2 and the main text for full details of each model.  
 
Figure S7. Estimated detectability rates in the training data used for model 7, but predicted from 
models 2-7. See Table 1, Figure 1, Appendix S2 and the main text for full details of each model.  
 
Figure S8. Performance metrics for occupancy models 2-7, created with 2018 data and 
validated with well-surveyed sites in 2017.  
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Figure S9. Effect of sample size on differences in predictive performance metrics for the 
encounter rate models 3 and 7. Differences were computed between the metrics as (Model 7 - 
Model 3). The white half of the plots indicating where Model 7 performance is better than Model 
3. The grey half of the plots indicating where Model 7 performance is worse than Model 3. The 
test dataset was BBS data within eBird from 2018, aggregated to routes. The datasets were 
random subsampled to 0.75 of the original checklists. Then they were further reduced to a 
proportion of this dataset: 0.1, 0.3, 0.5, 0.7, 0.9. This process was repeated 25 times to produce 
25 paired comparisons of model performance for each dataset size. Each paired comparison 
between Model 3 and Model 7 used the same randomly subsampled test and train datasets. 
See Table 1 for further details of Model 3 and Model 7. Panels show the following performance 
metrics: A Mean Squared Error (MSE); B Area Under the Curve (AUC); C Kappa; D sensitivity; 
E specificity; and F True Skill Statistic (TSS). Boxes show the median, the interquartile range, 
and the extremes of the distributions.  
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