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Abstract

Globally, the bacterial genus Campylobacter is one of the leading causes of human

gastroenteritis, with its primary route of infection being through poultry meat. Despite

decades of study we appear to be no closer to preventing outbreaks within commercial

chicken flocks, and the application of biosecurity measures is limited by a lack of

understanding of the transmission dynamics within a flock. Our work is the first to

undertake a mathematical modelling approach to Campylobacter population dynamics

within a flock of broilers (chickens bred specifically for meat). A system of stochastic

differential equations is used to investigate the diverse and fluctuating conditions within

the gut of a broiler, and models the routes of infection between co-housed birds. The

presented model provides mechanistic explanations for key infection dynamics that have

been long-observed but very poorly understood. We highlight several driving

mechanisms behind observed infection phenomena, simulate experimentally observed

inter-strain competition, and present a promising approach to hypothesising new

methods of preventing flock outbreaks.
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Author summary

The bacteria Campylobacter is one of the most common causes of food poisoning

globally. The most common route of infection is through raw chicken meat, as a result

of many chicken farms across the world housing fully infected flocks. Despite the

magnitude of this public health risk, little is understood of the specifics of how chickens

become infected, and the ways that they then infect one another. Our work presents a

mathematical model of Campylobacter transmission dynamics within a flock of chickens.

We compare the results of the model to real world data sets, explore key dynamical

behaviours, and present a sensitivity analysis to highlight the most important factors

underpinning outbreaks.

Introduction 1

Campylobacter is recognised as the leading cause of human gastroenteritis in the 2

developed world [1]. While several transmission routes have been noted over the 3

years [2], poultry meat has been overwhelmingly attributed as the leading route of 4

ingestion for humans [3]. An ongoing study by Public Health England has highlighted 5

the extent to which Campylobacter spp. have dominated our commercial poultry. 73.3% 6

of supermarket chicken carcasses were found to contain Campylobacter and 6.8% of the 7

outer packaging was similarly contaminated [4]. An estimated 450,000 people across the 8

United Kingdom are infected every year, with 10% of these infections resulting in 9

hospitalisation [5]. The immediate impact of infection is rarely fatal in the developed 10

world, characterised by stomach cramps and diarrhoea, however the resulting sequelae, 11

while rare, are far more serious. Campylobacteriosis leaves the host ∼100 times more 12

likely to develop the auto-immune disorder Guillain-Barré syndrome [6]. 13

14

While the bacteria provoke an aggressive response in human hosts, the most common 15

species, Campylobacter jejuni, is commensal within its most common host, broiler 16

chickens. The term ‘broiler’ refers to any chicken bred and raised specifically for meat 17

production. Once Campylobacter is present in a flock, full colonisation of all birds 18

occurs very rapidly [7]. From the introduction of one infected bird, it can take only a 19
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single week for an entire flock to become infected [8]. The bacteria are spread via the 20

faecal-oral route. After becoming infected, the newly-infected host broiler spends a brief 21

period in a non-infectious incubation period, before excreting the bacteria in its faecal 22

and cecal matter. Surrounding susceptible broilers are then exposed to this by ingesting 23

the surrounding feed and water [9]. While the direct cause of introduction to the flock is 24

uncertain, an exhaustive review by Adkin et al. (2006) [10] considered that horizontal 25

transmission is by far the most likely route, primarily being brought into a susceptible 26

flock from some other source on the farm, such as the enclosures of other farm animals. 27

This is as opposed to vertical transmission from breeder flocks, which are themselves 28

often fully colonized by Campylobacter spp.. Nevertheless, there may be a combination 29

of both routes of entry into a flock, which deserves greater consideration. 30

31

Campylobacter is very rarely observed to colonise the gut of very young chickens (0 to 2 32

weeks of age) [11]. This is theorised to be the result of a supply of innate maternal 33

antibodies acquired during a pre-laying period. This immunity has been shown to have 34

significant bactericidal properties [12]. 35

36

Despite numerous intervention measures being trialled and employed on farms, little 37

impact has been seen in reducing outbreak incidence [13]. This is due in part to the 38

aggressive rate of proliferation once Campylobacter has entered a flock, coupled with 39

persisting uncertainty in the exact route of primary infection. Specifically designed 40

prevention methods are also marred by genetic variation and plasticity of 41

Campylobacter spp. [14]. 42

43

Of increasing concern is the growing trend of antimicrobial resistance in 44

campylobacteriosis outbreaks. Roughly 90% of the antibiotics applied in agriculture are 45

used only to promote growth or as prophylactic agents, as opposed to being used to 46

treat infection [15]. This overzealous use has been a major contributing factor to the 47

continuing spread of antibiotic resistance. Ge et al. (2003) [16] conducted a study 48

showing that 94% of tested raw chicken samples were resistant to at least one of seven 49

antibiotics being tested, 54% of which showed resistance to erythromycin, the antibiotic 50

most commonly used to treat campylobacteriosis. These anti-microbial strains cause 51
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more prolonged and severe illness in humans [17] and create a scenario where in-vitro 52

susceptibility testing may be necessary before any drugs may be prescribed. 53

54

Despite a wealth of empirical investigations, there is a lack of knowledge synthesising 55

these empirical findings through theoretical modelling frameworks. Only two studies 56

have considered a theoretical approach to understanding Campylobacter spp. outbreaks; 57

Van Gerwe et al. (2005) [18] and Hartnett et al. (2001) [19], who built a basic SI model 58

and a probabilistic model, respectively. Both frameworks only consider a model on the 59

scale of a flock through basic susceptible-infected interactions. These approaches are not 60

sophisticated enough to develop any meaningful theories on Campylobacter dynamics, 61

as they do not represent or convey any specific interbacterial actions by Campylobacter 62

populations. The lack of modelling approaches is likely due in part to the inherent 63

challenges of mathematically simulating a gut microbiome. Over 100 different bacterial 64

genera have been isolated from the intestines of chickens [20], all with a range of 65

individual ecological interactions with one-another. Questions must then be asked 66

regarding how to simulate the temporal and spatial impact of gut motility on the 67

development of a microbial community. Despite these challenges, simplified models of 68

stochastic differential equations have proved effective in capturing the often frenetic 69

bacterial population dynamics within the gut [21]. 70

71

Here, we introduce a framework of stochastic differential equations that captures the 72

basic interactions that are known to be observed within the broiler gut. Using this 73

framework we simulate the propagation of multiple strains of Campylobacter through 74

multiple birds in a flock. In the analysis presented below we observe key dynamical 75

behaviour commonly observed through experimentation, which can now be 76

mechanistically explained using this theoretical framework. The theoretical insights 77

derived from this model can be used to refine current hypotheses regarding 78

Campylobacter transmission and inform future experimental and control efforts. 79

80
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1 Modelling Frameworks 81

1.1 Deterministic Model 82

Before presenting the stochastic differential equation framework, we begin by

introducing the underlying deterministic core of the framework and the particular

interactions modelled. Consider four variables to describe the bacterial populations

within a broiler’s digestive tract. C, the proportion of a single bird’s gut flora made up

of Campylobacter. B, the proportion of the gut flora made up of other bacterial species

competing for space and resources. P , the proportion of the gut containing host defence

peptides (HDPs) (this may also be interpreted as other plausible forms of host

autoimmune response). Lastly, M , the proportion of the gut containing innate maternal

antibodies. These all take values ranging such that 0 ≤ C,B, P,M ≤ 1. The set of

ODEs describing the dynamics follows:

dC

dt
= r1C

(
1− C + α1B

K

)
− γCP − d1C − βCB − σCM, (1)

dB

dt
= r2B

(
1− B + α2C

K

)
− d2B, (2)

dP

dt
= ξCP − d3P, (3)

dM

dt
= −d4M. (4)

All rate constants are defined below in Table 1. The first term
(
r1C

(
1− C+α1B

K

))
in 83

equation (1) describes the logistic growth of Campylobacter to a carrying capacity, K, 84

while in competition with other bacteria B. Competition for resources is the key to 85

success within the gut. Campylobacter is known to be an effective coloniser [22], as it is 86

very effective at drawing zinc [23] and iron [24] from its environment. The second term 87

(γCP ) in equation (1) models the inhibitory effect of host defence peptides, P . These 88

peptides are created in response to challenge by Campylobacter, as shown by Cawthraw 89

et al. (1994) [25]. The third term (d1C) of equation (1) simply describes the natural 90

death rate of Campylobacter. The fourth term (βCB) simulates an important 91

interbacterial interaction; that some of the most abundant competing bacteria in the 92

microbiome have an inhibitory effect on Campylobacter [26]. The final term (σCM) of 93

equation (1) represents the strong bactericidal abilities of the bird’s maternal antibodies. 94

March 7, 2019 5/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574301doi: bioRxiv preprint 

https://doi.org/10.1101/574301
http://creativecommons.org/licenses/by/4.0/


All chickens hatch with an initial supply of antibodies that depletes over time, gone by 95

about three weeks of age [12] (most broilers are slaughtered at five or six weeks of age, 96

however some organic and free-range flocks are slaughtered at approximately eight 97

weeks). These antibodies have a strong inhibitory effect on Campylobacter, and many 98

studies are unable to detect Campylobacter (by culture methods) in birds under 2 weeks 99

of age under commercial conditions [27]. However, forced inoculation of high-quantities 100

of Campylobacter soon after hatching can still result in expression of the bacteria [28]. 101

102

Equations (2), (3) and (4) follow a similar logic to equation (1). Other bacteria, B, 103

grow in competition with Campylobacter to a carrying capacity. Defence peptides, P , 104

grow in response to Campylobacter expression (not in competition for resources), and 105

the population of maternal antibodies, M , does not grow. All variables decay at a rate 106

proportional to their respective populations. 107

108

Note that the above model could be reduced by amalgamating terms in equations (1) 109

and (2), however we choose to keep these separate to (i) keep biological processes clearly 110

defined, and (ii) make further model development and sensitivity analyses clearer. 111

112

Fig 1. Deterministic model for one chicken. An example of the typical dynamical
behaviour observed for simulations of equations (1) - (4). Parameters defined in Table 1.

Ignoring the trivial cases of complete domination by either C or B, the basic dynamical 113

behaviour observed for this simplified model is illustrated in Figure 1. Notably, 114

Campylobacter is absent from the microbiome until the maternal antibody population 115

has been exhausted. At this point a sudden, temporary, surge in the population of 116

Campylobacter is observed. This phenomena is due to the very low population of HDPs, 117

caused by the strong effect of the initial maternal antibodies. The HDP population then 118

quickly rises to meet this sudden challenge, bringing the Campylobacter population back 119

to a lower level in an oscillating manner, where it eventually reaches a steady-state 120

equilibrium. This behaviour is commonly observed in experimental studies [29] [30]. 121

122

From this simple core of four equations we adapt the model to allow for N unique
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strains of Campylobacter, by describing each strain as a separate variable. Equation (1)

is repeated for each individual strain, while altering the growth rate terms to reflect the

fact that all strains will also be in competition with one another. This alteration is

represented by the following set of ODEs:

dCj
dt

=rCj
Cj

(
1−

∑N
j=1 Cj + α1B

K

)
− γCj

CjP − dCj
Cj

− βCj
CjB − σCj

CjM, (5)

dB

dt
=r2B

(
1−

B + α2

∑N
j=1 Cj

K

)
− d2B, (6)

dP

dt
=

N∑
j=1

ξjCjP − d3P, (7)

dM

dt
=− d4M. (8)

Here Cj represents the jth strain of Campylobacter, where j ∈ {1, 2, ..., N}, and N is 123

the total number of strains. As such this adjusted model is composed of N + 3 variables. 124

The next alteration is to allow for multiple birds and the ability for Campylobacter to 125

move from one bird to another. This is done by repeating the N + 3 equations 126

presented in equations (5)-(8) for each bird, and introducing new variables to display 127

the saturation of Campylobacter strains in the shared living space. 128

129

As such, the newly adjusted model to describe the population dynamics of N strains of
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Campylobacter within L broilers, is written as,

dCij
dt

=rCj
Cij

(
1−

∑N
j=1 Cij + α1Bi

K

)
− γCj

CijPi − dCj
Cij

− βCj
CijBi − σCj

CijMi + a
Ej
Ω
, (9)

dBi
dt

=r2Bi

(
1−

Bi + α2

∑N
j=1 Cij

K

)
− d2Bi, (10)

dPi
dt

=
N∑
j=1

ξjCijPi − d3Pi, (11)

dMi

dt
=− d4Mi, (12)

dEj
dt

=
L∑
i=1

bCij

(
1− Ej

Ω

)
− d5Ej . (13)

Here then, Cij represents the proportion of the ith broiler’s gut bacteria which is 130

composed of Campylobacter strain j. Bi is the proportion of the ith broiler’s gut 131

bacteria made up of other bacterial species competing for space and resources. Pi, the 132

proportion of the ith broiler’s gut containing host defence peptides. Mi is the 133

proportion of the ith broiler’s gut containing innate maternal antibodies. Here 134

i ∈ {1, 2, ..., L}, where L is the total number of broilers. Ej represents the amount of 135

Campylobacter strain j that is currently in the flock’s enclosed living space. We assume 136

a living space of fixed size shared by all broilers. As such, Ω represents this total size, or 137

carrying capacity for strains. The first term in equation (13) shows that the amount of 138

strain j in the environment is increased by being shed from birds that are already 139

infected with strain j at a rate b. Note from the final term
(
a
Ej

Ω

)
in equation (9) that 140

birds may then ingest strain j from the environment at a rate
a

Ω
. This route of 141

infection simulates the faecal-oral route of infection, but may be interpreted as some 142

other intermittent transmission stage between birds. The model is now composed of 143

L(N + 3) +N equations, for N strains of Campylobacter, and L individual broilers. 144

1.2 Stochastic Model 145

While several important biological phenomena can be discovered and better understood 146

with the model in its current, deterministic, form, there are key reasons to pursue a 147

stochastic framework. First, having one variable alone to represent the multitudes of 148
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bacterial species that make up the constantly-evolving gut microbiome is, of course, a 149

significant simplification. In practise, these other bacterial species competing with 150

Campylobacter will be constantly changing, both in resurgences of population and in 151

how they interact with Campylobacter. Adding stochastic elements to these populations 152

and interactions is a small step towards capturing some of this more unpredictable 153

behaviour. Indeed the biomass of Campylobacter measurable in faecal and cecal matter 154

has been observed to fluctuate widely [29] [31]. Secondly, the law of mass action 155

assumptions made when formulating the initial deterministic model are assumptions 156

that break down for smaller populations. The simulations undertaken often display 157

bacterial populations at very small quantities, especially in the initial period dominated 158

by maternal antibodies. A stochastic system behaves very differently under these 159

circumstances and means that the model is more likely to display cases of strain 160

extinction, a phenomena that the deterministic model cannot capture. Indeed, the very 161

nature of Campylobacter infections is one that is often described in the language of 162

probability. The all-or-nothing nature of flock infections means that we often must ask 163

what measures can reduce the likelihoods of infections, rather than the magnitude. 164

Through a stochastic framework we explore multiple realisations of potential outcomes, 165

and investigate reducing the likelihood of outbreaks. 166

167

For the stochastic framework, equations (9)-(13) are adjusted to the following set of
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stochastic differential equations,

dCij =

[
rCj

Cij

(
1−

∑N
j=1 Cij + α1Bi

K

)
− γCj

CijPi − dCj
Cij

− βCjCijBi − σCjCijMi + a(Ej)

]
dt

+
[
ηCjCij + λj(t)− ηBCjCijBi

]
dWt, (14)

dBi =

[
r2Bi

(
1−

Bi + α2

∑N
j=1 Cij

K

)
− d2Bi

]
dt + [η2Bi] dWt, (15)

dPi =

 N∑
j=1

ξjCijPi − d3Pi

dt + [η3Pi] dWt, (16)

dMi = [−d4Mi] dt + [η4Mi] dWt, (17)

dEj =

[
L∑
i=1

bCij

(
1− Ej

Ω

)
− d5Ej

]
dt + [η5Ej ] dWt, (18)

where λj(t) is defined by;

λj(t) =


0, if Cij(t) = 0.

0.00025, otherwise.

and where a(Ej) is defined by;

a(Ej) =


0.015, if X <

Ej

Ω for random variable X ∼ U(0, 1).

0, otherwise.

The stochastic additions in equations (15) - (18) are a Wiener process applied to the 168

population (standard Brownian motion process), scaled by the respective population 169

size and constants η2 through to η5. These constants dictate the variance of their 170

respective Wiener processes, defining the range of stochasticity attributed to the growth 171

rate of their respective variables. The changes and additions shown in equation (14) 172

warrant further explanation. The sixth term (a(Ej)) in equation (14) (the last of the 173

deterministic terms), has been changed from a constant rate of ingestion from the 174

environment, as seen in equation (9), to instead have ingestion modelled by a chance to 175

ingest Campylobacter depending on the amount of that strain in the environment, Ej . 176
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The greater Ej is, the more likely it is for ingestion to occur. 177

178

The eighth term (λj(t)) in equation (14) is a Wiener process independent of the 179

population of Cij . This is introduced to allow for the possibility of extinction events, 180

should the population of Cij reach a particularly low threshold. This threshold is 181

decided by the value taken by λj(t), in this case 0.00025. Finally, the ninth term of 182

equation (14) applies a Wiener process around the interactions between Cij and the 183

competing bacteria Bi. This term allows for instances when the particular biodiversity 184

and spatial structure of the gut microbiome may be more inhibitory towards 185

Campylobacter, or perhaps actually assisting its growth instead. 186

187

Table 1. Model parameters and baseline values. Descriptions for all parameter values appearing in the final
stochastic model, equations (14) - (18). Baseline values are given, used for model validation and simulation case studies.
∗ Ω value is dependent on the experiment specifics for model validation, but flock case studies consider a flock of 400
chickens, and an Ω value of 200,000.

Expression Description Value

rCj Growth rate for Campylobacter strain j. 0.27
r2 Growth rate for other bacteria (B). 0.15
α1 Campylobacter competition coefficient. 0.92
α2 Other bacteria competition coefficient. 1
K Carrying capacity. 1
γCj Rate of inhibition by host defence peptides (P ) on Campylobacter strain j. 0.2
ξj Rate of host defence peptide growth in response to Campylobacter strain j. 0.4
b Rate of broiler shedding Campylobacter into the environment, Ej . 10
Ω Total environmental carrying capacity of Campylobacter. 200, 000∗

dCj
Death rate of Campylobacter strain j. 0.02

d2 Death rate of other bacteria. 0.02
d3 Decay rate of host defence peptides. 0.05
d4 Decay rate of maternal antibodies. 0.005
d5 Death rate of Campylobacter in the environment. 0.05
βCj

Rate of inhibition by other bacteria on Campylobacter strain j. 0.03
σCj

Rate of inhibition by maternal antibodies on Campylobacter strain j. 0.07
ηCj

Scaling factor applied to stochastic Campylobacter growth in the gut. 0.01
ηBCj Scaling factor applied to stochastic Campylobacter inhibition by other competing bacteria. 0.09
η2 Scaling factor applied to stochastic competing bacteria (B) growth. 0.01
η3 Scaling factor applied to stochastic host defence peptide (P ) growth. 0.01
η4 Scaling factor applied to stochastic maternal antibody (M) decay. 0.01
η5 Scaling factor applied to stochastic Campylobacter growth in the environment. 0.01

Several interesting dynamical behaviours can be observed using this model, which are 188

highlighted through some specific question-led case studies. Table 1 defines all 189

parameters presented in the final stochastic model ((14) - (18)) as well as a baseline of 190
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parameter values that were used in model validation against real world data sets 191

(presented below). The model is constructed to an arbitrary timescale, however the 192

parameter values given in Table 1 ensure that multiple oscillations in the Campylobacter 193

population can be observed in the below case studies, a phenomena observed in the 194

lifespan of broilers [31]. Broilers are usually slaughtered at approximately five weeks of 195

age, and maternal antibodies (M) are usually depleted after approximately three weeks. 196

197

Note that throughout we have chosen to use a Campylobacter competition coefficient of 198

α1 = 0.92 < 1. This choice is justified in that bacterial populations can inhabit multiple 199

intestinal niches that cannot be colonised by other competing bacteria. Indeed 200

competitive exclusion therapies have been far less effective in tackling Campylobacter 201

compared to other foodborne illnesses such as Salmonella [32]. The deterministic model 202

is solved using the ode45 solver, a fifth-order Runge-Kutta method in Matlab. The 203

stochastic model is solved numerically using the Euler-Maruyama method [33] with 204

N = 214 timesteps, also programmed in Matlab. The code used to produce all figures 205

presented is available at: https://osf.io/b3duc/. 206

207

1.3 Model Validation 208

We test our model by comparing its predictions against three experimental studies on 209

Campylobacter expression and spread. Firstly, we consider the work of Achen et al. 210

(1998) [29]. Achen et al. performed an experiment with twenty-four broilers, who were 211

kept in individual, isolated wire-bottomed cages. Birds were confirmed as free of 212

Campylobacter before being inoculated with a C. jejuni suspension. A cloacal swab was 213

then obtained from each bird every day for forty two days, to monitor whether or not 214

each bird was shedding Campylobacter. Figure 2 shows their experimental results 215

alongside the predictions made by our model. 216

217

Fig 2. Model validation against data of Achen et al. (1998) [29]. A graph
plotting the percentage of a group of isolated broilers shedding Campylobacter across
several weeks following inoculation.

Specifically, the blue line represents the modal value of the percentage of the 24 birds 218
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shedding across a thousand simulations, with error bars depicting the standard 219

deviation across these simulations. Achen et al. (1998) also reports how most birds 220

would shift from phases of positive shedding to negative shedding, a phenomena also 221

captured by the oscillating behaviour displayed by the model. Sampling via culture 222

methods like those performed in this experiment is prone to false-negative results for 223

samples with very low quantities of Campylobacter [34]. Therefore, for this model 224

validation, we considered a broiler as being clear of Campylobacter if its proportion of 225

Campylobacter (variable C) was below 0.005. This was considered a more accurate 226

measure to correspond with the experimental data. While our model was constructed to 227

an arbitrary timescale, comparing to this real-world data set it was found that our 228

timescale is approximately equal to t = 1 ∼ 30 minutes. 229

230

Secondly, we consider the experiment conducted by Stern et al. (2001) [8]. Multiple 231

separates pens were prepared, each containing 70 broilers, all free of Campylobacter. A 232

Campylobacter -positive seeder bird was then added to the flock. Different pens had 233

seeder birds introduced at different points in time. 3, 5 and 7 days after a seeder bird 234

was introduced, a sample of chickens were tested for Campylobacter to estimate the 235

percentage of the flock that was currently Campylobacter -positive. We plot our model 236

predictions against Stern et al.’s (2001) experimental data below in Figure 3. To match 237

the housing density of the experiment, a value of Ω = 45, 369 was used for the model. 238

An error band is plotted around our model prediction displaying the standard deviation 239

of values across 100 simulations. 240

241

Fig 3. Model validation against data of Stern et al. (2001) [8]. Graphs plotting the percentage
of a flock of broilers shedding Campylobacter across several weeks after introduction of a
Campylobacter -positive seeder bird at (A) seven days, (B) fourteen days, (C) twenty one days, (D)
twenty eight days.

Lastly we simulated the experiment performed by Van Gerwe et al. (2005) [18]. Four 242

flocks of 400 birds were set up in individual enclosures from day of hatch. Four birds in 243

each flock were then inoculated with a Campylobacter suspension and returned to the 244

flock. Birds were then sampled from each flock throughout the next few weeks to record 245

the percentage of flock infection. Figure 4 plots their experimental data against our 246
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model prediction. For the experiments shown in Figure 4A and Figure 4B, the four 247

seeder birds were inoculated at day of hatch, and chickens were sampled by cloacal 248

swabbing. For the experiments shown in Figure 4C and Figure 4D, the seeder birds 249

were inoculated one day after hatch, and the flock was analysed by collecting fresh fecal 250

samples. 251

252

Fig 4. Model validation against data of Van Gerwe et al. (2005) [18]. Graphs plotting the
percentage of a flock of broilers shedding Campylobacter across several weeks after introduction of a
Campylobacter -positive seeder bird. (A)/(B) Seeder bird introduced at day of hatch, samples collected
via cloacal swab, (C)/(D) seeder bird introduced one day after hatch, samples collected via fresh fecal
droppings.

2 Simulations 253

We now use a series of (simulated) case studies to investigate key dynamical behaviours 254

and predictions from the model. 255

2.1 Staggered Strain Infection 256

In this first example, the deterministic model for multiple strains in one broiler 257

(equations (5) - (8)) is considered. Five strains of Campylobacter within one chicken are 258

simulated, all with the exact same respective rate constants as shown in Table 1. Figure 259

5A shows the results when all five strains are introduced at t = 0 with the same initial 260

inoculation amount of Ci(0) = 0.0001. Figure 5B shows instead when each strain is 261

introduced in intervals of t = 250. Therefore only strain 1 is introduced at t = 0, strain 262

2 is introduced at t = 250 and so on until finally strain 5 is introduced at t = 1000. In 263

both cases the other three variables are initialised at B(0) = 0.4, P (0) = 0.01 and 264

M(0) = 0.5. 265

266
Fig 5. Simulations of multiple Campylobacter strains within one broiler.
Population growth of five strains of Campylobacter within one broiler that are (A) all
introduced at t = 0 (B) introduced in intervals of t = 250. Strains are initialised at
Cj(t) = 0.0001 at their respective time of introduction. Other variables are initialised at
B(0) = 0.4, P (0) = 0.01 and M(0) = 0.5. Note that the single green line in Figure 5A is
due to overlap, all five strains exhibit the exact same dynamical behaviour, as would be
expected.
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While the maternal antibodies (M) are not plotted on these figures, they approach 0 at 267

approximately t = 1, 000, as can be seen by the following surge in Campylobacter 268

populations following this point in Figure 5. While, unsurprisingly, all strains perform 269

identically in figure 5A (where strains are initialised at the same point in time), a more 270

curious dynamic is observed in Figure 5B. The strain that performs best and exists at 271

the highest proportion in the staggered release example is strain 2, the second strain to 272

be introduced. The reason for this is that strain 1, present at t = 0, is initially 273

suppressed by the maternal antibodies (parameter M), reducing the proportion of strain 274

1. As a result, when strain 2 is introduced, it is able to capitalise on the severely 275

reduced amount of strain 1, and the reduced amount of maternal antibodies, to quickly 276

grow and dominate the competitive space. Strain 2’s increased presence then puts 277

future strains at a disadvantage as it has already had the opportunity to establish itself 278

within the gut. These results suggest that dominant Campylobacter strains can prevent 279

new strains from taking hold. Moreover, there is an optimal point in time for 280

inoculation to occur for a strain to become dominant, as shown in Figure 5B where 281

strain 2 is consistently occupying a higher proportion of the gut than other strains. 282

2.2 Stochastic model - One strain in one broiler 283

The stochastic model (equations (14) - (17)) is run to simulate one strain of 284

Campylobacter within one broiler. In this scenario, we ignore the environmental variable 285

E (equation (18)), as its input is negligible for only one broiler. The rate constants are 286

kept at the same values as used previously, defined in Table 1, with the additions of the 287

stochastic variance scaling rate constants, parameters that limit the variance of the 288

stochastic additions. These are set as ηCj
= η2 = η3 = η4 = 0.01, and ηBCj

= 0.09. 289

ηBCj is set higher than the other stochastic rate constants to capture the greater 290

unpredictability surrounding these bacterial interactions. Four different realisations of 291

this model are presented in Figure 6, all initialised at C(0) = 0.02, B(0) = 0.4, 292

P (0) = 0.01, M(0) = 0.5. 293

294
Fig 6. Stochastic simulations of one Campylobacter strain within one
broiler. Four different realisations of a stochastic model simulating one strain of
Campylobacter within one isolated broiler.
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Empirical studies measuring the amount of Campylobacter in the faecal matter of 295

isolated broilers have shown a spectrum of results. Some broilers display sustained high 296

populations, others express initial peaks followed by great reduction and potentially 297

later resurgence, and sometimes extinction cases are observed [29]. All these dynamical 298

behaviours can be observed in different realisations of this model (Figure 6). Figure 6A 299

shows an instance where a broiler is consistently infected and shedding into the 300

environment, unable to effectively clear the Campylobacter from its system. Figure 6B 301

instead shows an instance where a broiler has multiple periods of high infection and 302

shedding, before being able to clear the infection. Figure 6C shows similar behaviour to 303

6A, whereby the broiler is unable to clear the bacteria, however 6C shows more dramatic 304

peaks and troughs in its dynamic profile, suggesting it may have longer periods of 305

reduced shedding. Finally, Figure 6D shows an instance where the broiler successfully 306

clears Campylobacter at the initial point of inoculation. All these realisations are run 307

with the same parameters given in Table 1, demonstrating the benefit of a stochastic 308

framework being able to better capture the more diverse range of possible events. 309

2.3 Stochastic model - One strain in multiple broilers 310

The previous scenario is now extended to consider multiple broilers. Figure 7 presents 311

the results for one Campylobacter strain in a flock of 400 broilers. We use the parameter 312

values stated in Table 1. The total size of the enclosure, or the carrying capacity of E, 313

is set at Ω = 200, 000. This value is considered in cm2, and so with 400 broilers, 314

translates to 500cm2 per broiler. EU directive 2007/43/CE states that broilers may 315

never be stocked at more than 42kg/m2 [35]. Assuming a targeted bird weight of 1.5kg, 316

this translates to 357cm2 per bird. This simulation models slightly more space allowed 317

to each bird than the limit. The death rate of Campylobacter in the environment is set 318

at d5 = 0.05, higher than the death rate within a broiler as, despite their many survival 319

mechanisms [36] Campylobacter is susceptible to many exterior environmental 320

stresses [37] and is exceptionally fragile outside of its host. The simulation began with 321

no Campylobacter in the surrounding environment (E(0) = 0) and the other initial 322

conditions are set the same as for the previous example, with the exception that two of 323

the 400 broilers start with an initial condition of C1(0) = C2(0) = 0.02, while the others 324
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are initialised without any Campylobacter. These results are shown in Figure 7. 325

326
Fig 7. Stochastic simulations of one Campylobacter strain within multiple
broilers. The proportion of a broiler’s gut containing Campylobacter for (A) a broiler
in the flock initialised with a small proportion of Campylobacter (B) a broiler in the
flock initialised with no Campylobacter. (C) shows how much of the environment (total
size of 200,000) contains Campylobacter. This is variable E in the model.

While birds who are not initialised with Campylobacter become infected at a slightly 327

later time, the dynamical behaviour is very similar across all birds in the flock. Multiple 328

realisations do not display the broader spectrum of behaviour observed in the one 329

broiler case (Figure 6). The implication is that housing a greater number of birds causes 330

more homogeneous dynamical behaviour, and indeed the wide variety of Campylobacter 331

expression seen in the isolated bird experiments of Achen et al. (1998) [29] is not so 332

commonly observed in experiments with group-housed birds [18]. 333

2.4 Stochastic model - Five strains in multiple broilers 334

We extend the previous scenario to investigate dynamics of multiple strains. Five 335

strains of competing Campylobacter are modelled within the same flock of 400 birds. 336

The same constants are used as in the previous scenario, with each strain having 337

identical rate constants. One key difference is that all broilers are initialised without 338

any Campylobacter, instead an initial amount is present in the environment. Each strain 339

of Campylobacter in the environment is initialised at 340

E1(0) = E2(0) = E3(0) = E4(0) = E5(0) = 100. The results of this simulation are 341

shown in Figure 8. 342

343
Fig 8. Stochastic simulations of multiple Campylobacter strains within
multiple broilers. The proportion of four different broilers’ microbiomes that contain
five strains of Campylobacter. All birds are within the same flock. (E) shows how much
of the environment (total size of 200,000) contains the five strains of Campylobacter.
These are variables Ej in the model.

On average, all strains perform equally well across the flock, as shown in Figure 8E. All 344

strains are present at roughly equal amounts in the environment, reflecting an equal 345

presence on average across all birds in the flock. However, when observing the 346

Campylobacter proportions within individual broilers, one or two strains will tend to 347

dominate early on in colonising a broiler’s gut, which can in turn prevent other strains 348
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from taking hold (seen most clearly in Figure 8C). This dynamical behaviour was first 349

observed in our deterministic simulations (see Figure 5B), however unlike in the 350

deterministic case, stochastic events can cause dominant Campylobacter strains to 351

reduce in population, presenting an opportunity for a different strain to establish itself. 352

353

This phenomena is more clearly seen if the timescale of the simulation is extended, as 354

illustrated in Figure 9. Although the average population of strains across the flock is 355

equal, the stochastic model shows that a single strain of Campylobacter tends to 356

dominate the gut of individual broilers at any one time. Although there are brief 357

periods where strains exist in equal amounts, eventually the balance shifts again to 358

longer periods of dominance by one or perhaps two strains. 359

360Fig 9. Stochastic simulations of multiple Campylobacter strains within
multiple broilers across a greater timescale. The proportion of two different
broilers’ microbiomes that contain five identical strains of Campylobacter.

Disadvantaged strains of Campylobacter are quickly eliminated. Figure 10 shows the 361

results for a simulation where strain 4’s growth rate, rC4
, is reduced from 0.27 to 0.265, 362

and strain 5’s growth rate, rC5 , is reduced to 0.26. Strains 1, 2 and 3 are kept with a 363

growth rate of 0.27. As Figure 10 shows, the weaker strains are unable to outcompete 364

the other three and are quickly eliminated. Changing other constants relating to the 365

fitness of a strain achieve similar effects, the phenomenon is not unique to only altering 366

the growth rate. Making only very small reductions to the growth rate can result in a 367

strain surviving at a lower average population size, although this may only be due to 368

the time needed for extinction to occur being too long to observe in these simulations. 369

Fig 10. Stochastic simulations of multiple Campylobacter strains, differing
in growth rates, within multiple broilers. The proportion of four different
broilers’ microbiomes that contain five strains of Campylobacter. Strain 4 has had it’s
growth rate reduced from 0.27 to 0.265 and strain 5 has had its growth rate reduced to
0.26. Strains 1, 2 and 3 have a growth rate of 0.27. (E) shows how much of the
environment (total size of 200,000) contains the five strains of Campylobacter. These are
variables Ej in the model.
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3 Sensitivity Analysis 370

A powerful use of this model is to conduct a robust sensitivity analysis to identify the 371

parameters of greatest impact in driving outbreaks of Campylobacter. We adopt a 372

variance-based analysis of the model, and investigate the likelihood of flocks remaining 373

free of Campylobacter based on a random assignment of parameter values. 374

375

We consider the case of a flock of broilers infected with a single strain of Campylobacter, 376

the scenario shown in section 2.3. Model parameters are sampled randomly from a 377

uniform range, and the model is run multiple times for these values. We then record 378

how many of these stochastic runs resulted in the flock successfully eliminating 379

Campylobacter infections, before drawing a new random sample of parameters values 380

and repeating as necessary. Eventually we finish with a final data set which we display 381

an example of below in Figure 11. 382

383
Fig 11. Scatter plots displaying probability of a flock clearing
Campylobacter infection against randomly sampled parameter values. Each
scatter plot depicts the results for a specific parameter value. Probability is calculated
by running the model for a sampled parameter set twenty times, and recording how
many of those runs resulted in the flock not becoming infected with Campylobacter.

As such, the most “important” parameters will be the ones which exhibit a strong trend

in their scatter plot. A seemingly randomly distributed scatter plot would indicate a

parameter value which has little impact on our output. To report more accurately this

measure we use the first-order sensitivity index, Si, and the total effect index, STi
,

defined as:

Si =
VXi(EX∼i(Y |Xi))

V (Y )
, STi =

E(V (Y |X∼i))

V (Y )
,

where Xi denotes parameter i, and Y denotes the model output. X∼i denotes the 384

vector of all factors but Xi. V (·) denotes the variance, and E(·) the expectation. 385

Specifically E(A|B) denotes the expectation of variable A when B is held fixed. In short 386

Si will measure the changes observed in the output when parameter Xi is kept fixed, 387

while STi
measures the changes to the output when all other parameters are kept fixed. 388

A full derivation and explanation can be found in Saltelli et al. (2008) [38]. In short, 389
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both are values that range from zero to one, that explain the impact of a parameter on 390

the model output. The higher the value, the more “important” the parameter is. STi
is 391

considered a stronger metric, as it also considers the higher-order impact of a parameter, 392

whereas Si only considers the immediate first-order impact. As such Si would be a 393

sufficient measure for a linear model, but for a more complex model such as the one 394

presented in this paper, STi
can better reveal the impact that each parameter plays. An 395

initial sensitivity analysis was run for twenty parameters with 1, 000 parameter set 396

samples, drawn from a quasi-random Sobol set [38]. The results of this analysis are 397

displayed in Table 2, and the code used to produce them is available to access at: 398

https://osf.io/b3duc/. 399

400

Table 2. Sensitivity analysis of parameters in a stochastic model for one
Campylobacter strain in a flock of broilers. The first-order sensitivity index and
total effect index is given for a sensitivity analysis of 1, 000 runs for 20 parameters. The
output function considered is the probability of Campylobacter going extinct within the
flock based on the given parameter set.

Si Parameter STi
Parameter

−0.1246 ξ 0.0945 ηBC
−0.1168 d4 0.1038 η4

−0.1164 η2 0.1059 γC
−0.1161 ηC 0.1098 η6

−0.1144 a 0.1143 σC
−0.1124 η4 0.1144 b
−0.1117 η6 0.1256 d4

−0.1110 σC 0.1340 Ω
−0.1081 rC 0.1476 a
−0.1076 γC 0.1510 η3

−0.0975 Ω 0.1551 η2

−0.0786 η3 0.1678 ηC
−0.0759 b 0.2035 d5

−0.0658 ηBC 0.2151 dC
−0.0638 d5 0.2470 ξ
−0.0474 dC 0.2560 rC
−0.0340 d3 0.3635 d3

0.0076 d2 0.4170 βC
0.0396 βC 0.4808 d2

0.0892 r2 0.6897 r2

Specifically, our objective function will run the stochastic model for a flock of chickens 401

with the random parameter set drawn. If this model run results in no Campylobacter 402

being present in the flock, it is considered to have successfully eliminated infection. The 403

March 7, 2019 20/32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574301doi: bioRxiv preprint 

https://doi.org/10.1101/574301
http://creativecommons.org/licenses/by/4.0/


model is run twenty times with this parameter set, and the proportion of these twenty 404

runs that results in an elimination of Campylobacter is the final output value, the 405

‘probability of flock clearing infection’. 406

407

Note that many of the Si values in Table 2 are negative, despite Si being limited to 408

being between zero and one. This is due to the computational error in estimating the 409

value, however the ordering of parameters for these particular runs will not be affected 410

by this error. Table 2 shows that the STi values associated with most parameters ranges 411

between 0.1 and 0.2. The “most important” parameters however have a wider spread of 412

associated STi
values. Stochastic simulations in particular are intensely computationally 413

expensive, and as such, we run our sensitivity analysis a second time with a larger 414

number of samples, using a reduced parameter set based on the initial sensitivity 415

analysis, which we present in Table 3. We focus on the eight most important 416

parameters from Table 2, as their sensitivity indices were highest and most varied, 417

suggesting their impact was most distinguishable from the other parameters. 418

419

Table 3. Repeated sensitivity analysis of parameters in a stochastic model
for one Campylobacter strain in a flock of broilers. The first-order sensitivity
index and total effect index is given for a sensitivity analysis of now 4, 000 runs for 8
parameters. The output function considered is the probability of Campylobacter going
extinct within the flock based on the given parameter set.

Si Parameter STi Parameter

−0.0001 ξ 0.0624 d5

0.0011 dC 0.0750 ξ
0.0020 d5 0.1667 d3

0.0027 d3 0.1989 dC
0.0077 rC 0.3041 rC
0.0557 d2 0.4929 βC
0.0599 βC 0.5309 d2

0.1826 r2 0.6794 r2

The main result from these analyses is that the growth, death and inhibition rates of 420

the other bacteria present in a broiler’s gut (parameters r2, d2 and βC) have the largest 421

impact in eliminating Campylobacter from a flock. As such, we can begin to consider 422

which preventative methods could best take advantage of this heightened sensitivity. 423
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4 Discussion 424

Here, we have investigated the dynamics of Campylobacter across a range of model 425

applications. Our framework reveals several key dynamics of microbial interaction that 426

explain many experimentally observed phenomena. This presents promising new 427

approaches to understanding and tackling this bacteria. 428

429

First, the most apparent prediction is that the Campylobacter population is successfully 430

suppressed by the innate maternal antibodies (an experimentally observed 431

phenomenon [39]), until these antibodies are eventually removed from the system. At 432

this point an initial surge in the population of Campylobacter is observed, before it 433

comes to rest at a lower level, reaching an equilibrium with the broiler’s 434

immune-response. This can be seen in all of the above figures, but most clearly in 435

Figure 1. This initial surge creates an interesting opportunity for certain strains of 436

Campylobacter to emerge as an early dominating strain. Figure 5B shows that, due to 437

the antibacterial properties of a broiler’s maternal antibodies, any strains that infect a 438

broiler early on in its lifespan will be heavily inhibited. This creates a brief window at 439

the point in which maternal antibodies have depleted, whereby any new strain 440

introduced is observed to quickly colonise and dominate the gut flora, suppressing other 441

strains (see Figure 10C). This hypothesis has been verified experimentally [39]. 442

443

The proposition of damped oscillations between Campylobacter population size and the 444

host’s immune-response is better reinforced by observations that host antibody 445

populations will also oscillate in birds infected with Campylobacter [25]. This basic 446

interaction has been experimentally observed by Achen et al. (1998) [29], with a high 447

degree of variability between birds. This variability is better captured by the stochastic 448

model, as shown in Figure 6. Indeed, many birds in Achen et al.’s study are shown to 449

successfully clear Campylobacter from their system, a result rarely observed on 450

commercial broiler farms. Likewise this result was only observed in the model case of 451

individual, isolated broilers (see Figure 6D). 452

453

Most important is the mechanism observed in Figure 7, where the broad spectrum of 454
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oscillatory behaviour observed within a broiler is greatly reduced in a large flock of 455

birds. Indeed the vast examples of individual dynamics observed in Figure 6, large 456

oscilations and perhaps extinctions, are completely replaced by the same, homogenised 457

dynamics seen within flock-reared birds in Figures 7A and 7B, as the populations of 458

Campylobacter within each bird are consistently reinforced by the amount of 459

Campylobacter in the environment. The wealth of experiments in monitoring flock 460

Campylobacter expression for varying flock sizes means this effect can be observed 461

taking place across multiple experiments of different flock magnitudes and densities. 462

Morishita et al. (1997) [31] measured the amount of Campylobacter in a flock of thirty 463

birds in a sizeable pen. This flock was small enough to observe oscillating behaviour in 464

the prevalence of Campylobacter, and yet there do not appear to be any clear cases of 465

birds being able to clear the bacteria from their system. Stern et al. (2001) [8] 466

experimented with flocks of 70 birds at a density of 15.4 birds/m2. A small cyclic 467

pattern is observable in their results but there are clearly far higher incidence rates. 468

Lastly, Van Gerwe et al. (2005) [18] studied flocks of 400 birds housed at 20 birds/m2
469

(the same density considered in the above flock modelling), where now no cyclic 470

patterns can be observed, and all birds quickly reach a constant state of Campylobacter 471

expression. This effect is seen in Figure 7, and almost always observed in commercial 472

farms [7] [40]. Our work presented here is the first, to our knowledge, to be able to 473

propose a mechanistic explanation for this observed effect. 474

475

This dynamic, whereby broilers are consistently infected with Campylobacter due to 476

highly contaminated living space, can also explain the observed phenomena whereby 477

broiler breeder flocks (flocks kept for the breeding of meat birds) display a consistently 478

lower Campylobacter prevalence rate than commercial broiler flocks [41]. Breeder birds 479

will regularly move between periods of testing positive and negative for Campylobacter, 480

inconsistently with the state of other birds in the flock, unlike the much younger birds 481

grown for meat which remain consistently positive. Our case studies suggest that this 482

may be due to the lower stocking density afforded to breeder birds, as it would appear 483

the route of infection between breeder birds is weaker than that between broilers. Our 484

sensitivity analysis however also highlighted that the gut flora can have a strong impact 485

on the survival of Campylobacter. The differences in diet and management practise for 486
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breeder birds likely results in a different variety of bacterial colonies to broilers, which 487

could also be a cause of the differences seen between breeders and broilers in 488

Campylobacter expression. 489

490

Over time, our model shows strains of equal fitness will tend to settle at equal levels of 491

prevalence on average across a flock (Figure 8E), a result that has also been shown 492

experimentally [42] [43]. However, it is very common for an individual broiler to have 493

only one or two dominant strains against far smaller proportions of other strains 494

(Figures 8A - 8D and Figure 9). This effect is most prominently seen early on in the 495

chicken’s lifespan, where usually only one strain will be present during the initial 496

population surge of Campylobacter. Evidently, when one strain is already 497

well-established within a chicken’s gut, it is difficult for a new competing strains to 498

grow. This is due to the broiler already having a heightened level of immune response 499

(P ) due to the currently present strain. In the deterministic case, later strains would 500

never be able to establish themselves as much as strains that were earlier to arrive 501

(Figure 5B). However, in the stochastic model, there is the potential for a stochastic 502

event to reduce the population of the currently dominating strain, and increase the 503

population of a less-established strain. 504

505

Across the whole flock, weaker strains can be quickly out-competed by other strains. 506

Figure 10 shows two weaker strains (strains with lower growth rates) attempting to 507

survive within a flock, even having a slight population peak at the optimal point of 508

strain introduction, before eventually being forced to extinction by the other three 509

strains. Parameter variation showed that reducing a strain’s capabilities by a very small 510

amount can allow it to persist still in the flock at a smaller average population than the 511

others, but the majority of realisations would always end with weaker strains becoming 512

extinct. Clearly this shows an environment where genetic dominance is very quickly 513

selected for. 514

515

These results have considerable implications for biosecurity. While smaller flocks may 516

have a very real opportunity to be protected from Campylobacter invasions, larger 517

commercial flocks are seemingly an all-or-nothing affair. Efforts can be made to prevent 518
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initial inoculations, but once a bacterial presence is established, it may be all but 519

impossible to remove from a flock. Considerable improvements to biosecurity have been 520

made in recent years, but very little impact has been observed in this having reduced 521

Campylobacter incidence [13]. These measures do not reduce the speed of proliferation 522

of the bacteria, and our results suggest that better attention to bird health is likely to 523

have a greater effect on preventing flock infection. 524

525

This model’s greatest strength is its lack of overarching assumptions. We model only 526

the most basic bacterial interactions, all supported and verified through experimental 527

work. Our stochastic system is capable of exhibiting a plethora of interesting dynamical 528

interactions based on just a few known biological interactions. In moving forward with 529

this work, the model can be used to theorise optimal methods by which to decrease the 530

likelihood of Campylobacter outbreaks, and begin collaborative efforts in better 531

explaining the evolving genetic diversity of this bacteria. 532

533

One area in which the model is admittedly lacking currently, is that it does not 534

represent the physiological changes that occur as a bird grows. Broilers have been 535

genetically selected over the many decades to grow excessively fast, which has been 536

shown to have numerous concerning implications for their health [44]. This is likely to 537

then result in differences to their auto-immune capabilities over time. More pertinently, 538

the gut flora of a chicken is known to change and develop as the birds age [45], 539

suggesting varying degrees of inter-bacterial uncertainty. 540

Our sensitivity analysis gives great insight into the optimal routes of infection 541

prevention. Table 2 clearly shows that bolstering the growth rate and inhibition 542

capabilities of the other bacteria populating a broiler’s gut is the best way to force 543

extinction of Campylobacter, primarily through suppressing Campylobacter at its initial 544

appearance in a system, before it has the opportunity to propagate. As such, the 545

sensitivity analysis suggests further exploration and experimentation into the impact of 546

factors which would affect the gut flora of a broiler. Probiotics are a clear way of 547

impacting the microflora [46] and have shown some effect in studies into their impact on 548

Campylobacter expression [47]. Equally, the stressors linked with stocking density have 549

been shown to affect the gut microflora by Guardia et al. (2011) [48]. Burkholder et al. 550
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(2008) [49] have shown that feed withdrawal and heat stress can considerably alter and 551

limit the gut microflora. These highlight that general bird health and welfare can be 552

equally strong factors in determining the values of r2, d2 and βC ; the parameters 553

highlight as most “important” by the sensitivity analysis. Table 2 also however 554

highlights the importance of parameters ξ and d3, the growth and death rate of host 555

defence peptides respectively. These parameters have been shown to be strongly 556

affected by stressors such as overcrowding [50]. As such, this result would lend further 557

support to giving greater care to the health and welfare of broilers, as the resulting 558

improvement to host defence peptide production would have a positive impact on 559

helping prevent Campylobacter outbreaks. 560

561

These caveats notwithstanding, the model presented is capable of mechanistically 562

explaining a wealth of experimentally observed Campylobacter population dynamics, 563

further elucidating an urgent public health risk. We have used our framework to 564

investigate multiple strain interactions, to understand better the spread of genotypes 565

across a flock. Finally, we were able to use the model to highlight the factors most 566

responsible for causing outbreaks of infection. Looking forward, this work can be used 567

to understand better observed differences in outbreak dynamics between different farms 568

and indeed countries, and further our goal of minimising public exposure to this 569

dangerous pathogen. 570
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