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Abstract
Many fast renewing tissues are characterized by a hierarchical cellular architecture, with tissue specific stem
cells at the root of the cellular hierarchy and differentiating into a whole range of specialized cells. There is
increasing evidence that tumors are structured in a very similar way, mirroring the hierarchical structure of
the host tissue. In some tissues, differentiated cells can also revert to the stem cell phenotype, which increases
the risk that cells that have already acquired mutations lead to long lasting clones in the tissue. Recently,
the modelling community has paid special attention to the consequences of de-differentiation on cellular
hierarchies. However, the adaptive significance of de-differentiation is still poorly understood and thus it is
unclear under which circumstances de-differentiating cells will invade a tissue. To address this, we developed
mathematical models to investigate how de-differentiation could be selected as an adaptive mechanism in the
context of cellular hierarchies. We consider the cases of stepwise and jumpwise de-differentiation in this study.
Our results show that the emergence of de-differentiation is driven by the combination of the properties of
the cellular hierarchy and the de-differentiation pattern and derive thresholds for which de-differentiation is
expected to emerge.

Introduction
In multicellular organisms, it is important that the inevitable replication errors of cells do not persist and
threaten the functioning of the organism as a whole. Many tissues that need to undergo continuous cell
turnover are organized in a hierarchical multi-compartment structure, which reduces the risk of the persis-
tence of such mutations [1–13]. Each compartment represents a certain stage of cellular differentiation (Fig
1). At the root of the cellular hierarchy are tissue specific stem cells (SCs) which are capable of self-renewal
and differentiation into more mature cells [14]. It is often argued that cancers may have similar hierarchical
structures, where cancer stem cells (CSCs) possess characteristics associated with SCs in normal tissues
[14, 15]. The CSCs scenario assumes that some cancerous tissues are hierarchically organized, similar to
normal tissues [16].

The hierarchical tissue architecture proposes a unidirectional cascade from less differentiated stages to
more differentiated stages (Fig 1 a). This would minimize the risk of the accumulation of genomic damage
in the long term self renewing stem cells. However, there is significant evidence that the directional relation
between different stages of differentiation could be broken in some tissues [17–22]. In other words, cells
in later differentiated stages can, under some circumstances, revert to earlier differentiated stages, or even
the stem cell stage, in a process known as de-differentiation (Fig 1 b and c). De-differentiation could play
an important role in regeneration and tumorigenesis [17]. In particular, even though the origin of cancer
stem cells is still an open question, growing evidence shows that non-stem cancer cells can reacquire stem-like
characteristics in colon cancer [23], breast cancer [20, 21], melanoma [24], leukemia [25–28], glioblastoma [29],
and other cancers. For example, expression of the MLL-AF9 gene in committed hematopoietic progenitor
cells led to the development of a leukemic stem cell population where only four of these cells were able to
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Figure 1: Representation of our models. We illustrate our models by considering a four-compartment
hierarchical structure. (a) Null model without de-differentiation. Each compartment represents a certain
stage of cell differentiation. For example, compartment 1 represents stem cell which performs cell division
with rate r1. In each cell division, it can either give birth to two identical stem cells (self-renewal) or two
identical daughter cells in adjacent downstream compartment 2 (differentiation). Similar division pattern
can also happen to cells in compartments 2 and 3 (with division rates r2 and r3 respectively). Compartment
4 represents terminally differentiated cells which cannot divide and are removed from the tissue at rate d.
(b) Stepwise de-differentiation case. Based on the hierarchical structure, we consider de-differentiation from
downstream compartment i+ 1 to adjacent upstream compartment i. (c) Jumpwise de-differentiation case,
in which de-differentiation happens directly from compartment 3 to 1 without cells reaching the state in
compartment 2. (d) The four cell division patterns used in our models.

result in disease in a mouse model that could be transferred from one mouse to another, confirming the
presence of a stem cell population [27].

More recently, special attention has been paid to the effect of de-differentiation on the cellular hierarchy by
mathematical modeling of their impact. Previous works have considered how de-differentiation influences the
waiting time to carcinogenesis [30], the fixation probability of a mutant [31, 32], the phenotypic equilibrium
[33–35], transient overshoots [36, 37], and radiation sensitivity [29]. However, the adaptive significance of
de-differentiation is still poorly understood: Under which circumstances would de-differentiation arise in the
first place and rise in abundance? It is still unclear whether de-differentiation is a crucial improvement or just
an unintended consequence of cellular hierarchy. A related problem is why de-differentiation arises in only
some tumors, but not in others. Moreover, the comparison between different patterns of de-differentiation
has received little attention.

Here we develop a matrix population model [38] of a stage-structured population for studying the evo-
lution of de-differentiation. Two typical de-differentiation cases are taken into account in our model: One is
stepwise de-differentiation which happens from a downstream compartment to an adjacent upstream com-
partment (Fig 1 b), the other is jumpwise de-differentiation which is directly from a highly differentiated
compartment to the stem cell compartment without there being in intermediate stages (Fig 1 c). Given hi-
erarchically structured multi-compartment cell population, we are concerned about the selection of stepwise
or jumpwise de-differentiating mutant cell population in the competition with non de-differentiating resident
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cell population. By comparing the growth rates of different cell populations, we analyze the favorable con-
ditions for different de-differentiation patterns to invade a tissue. We hope that our work contributes to the
theoretical understanding of the emergence of de-differentiation in multicellular tissues.

Methods

The matrix population model for cellular hierarchy
Consider a cell population composed of n compartments, each of which represents a certain stage of differen-
tiation [10, 13] (Fig. 1). For example, compartment 1 represents stem cells, and compartment n represents
terminally differentiated cells. Each cell in compartment i (1 ≤ i ≤ n − 1) divides at rate ri. With prob-
ability pi, it divides symmetrically, giving birth to two identical cells in compartment i (Fig. 1 d). With
probability qi, it differentiates symmetrically, generating two identical daughter cells in compartment i+ 1.
It should be pointed out that, for simplicity, asymmetric division [39, 40] (giving birth to one daughter cell
in compartment i and the other in compartment i + 1) is not taken into account here, but our approaches
and results are still applicable for the models with asymmetric division. The terminally differentiated cells
in compartment n cannot divide and are removed from the tissue at rate d.

We use the vector ~N = (N1, N2, ..., Nn)
T to denote the cell numbers in different compartments. Then,

the hierarchically structured population dynamics composed of non de-differentiating cells can be described
as a matrix population model [38]

d ~N

dt
= A0

~N, (1)

where A0 is the projection matrix which is given by

A0 =



r1(p1 − q1) 0 . . . . . . 0
2r1q1 r2(p2 − q2) . . . . . . 0

0 2r2q2 . . . . . . 0
0 0 . . . 0 0
...

...
. . . 0 0

...
... . . . rn−1(pn−1 − qn−1) 0

0 0 . . . 2rn−1qn−1 −d


. (2)

Here ri(pi − qi) represents the effective self-renewal rate of compartment i, and 2riqi represents the influx
rate from compartment i to compartment i + 1 due to differentiation. Let M(t) =

∑n
i=1Ni(t) be the total

cell number of the population. Note that A0 is an essentially non-negative (all the off-diagonal elements
are non-negative [41]) and lower triangular matrix. According to the standard theory of matrix population
models [38], the population grows exponentially in the long run, i.e.

M(t) ≈M(0) exp[λ0t] for large t, (3)

where λ0 is the real leading eigenvalue. The leading eigenvalue hence characterizes the asymptotic growth
rate of the whole population, which is often used as a measure of fitness in matrix population models [42, 43].
Here, we use this fitness measure to assess whether a mutant can invade a resident population.

Stepwise and jumpwise de-differentiation
Let us now introduce de-differentiation processes given the non de-differentiating resident cell population
Eq. (1). Since it is biologically unclear how a non de-differentiating resident cell acquires the ability for
de-differentiation, here we consider de-differentiation as a result of certain genetic or epigenetic alterations
(jointly referred to as mutations). It is assumed that the mutant cells are provided with the additional
ability of de-differentiation. More specifically, when these mutant cells divide, besides symmetric division
and symmetric differentiation, they can also perform symmetric de-differentiation (Fig. 1 d) with a small
probability. In principle, there are two different ways to do this: (i) stepwise de-differentiation, where cells

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574251doi: bioRxiv preprint 

https://doi.org/10.1101/574251
http://creativecommons.org/licenses/by-nc-nd/4.0/


de-differentiate to the previous compartment, and (ii) jumpwise de-differentiation, where de-differentiation
happens across multiple compartments at a time. These are the most extreme cases and a mixture between
them is possible.

For stepwise de-differentiation, a mutant cell in compartment i gives rise to two daughter cells in its
adjacent upstream compartment i − 1 (Fig. 1 b) when de-differentiation happens. Suppose that the de-
differentiation probability from compartment i to i − 1 is δi. Then the influx rate from compartment i to
i−1 due to de-differentiation is given by 2riδi. When de-differentiation is taken into account, the self-renewal
probability of each mutant cell in compartment i becomes p′i = pi − κδi, and its differentiation probability
becomes q′i = qi−(1−κ)δi, such that we have p′i+q′i+δi = 1. Here, the parameter κ (0 ≤ κ ≤ 1) governs how
mutant cell redistributes the probabilities for self-renewal and differentiation when taking de-differentiation
into account. We call κ the redistributing factor. De-differentiation is generally a rare event [21], we thus
assume that ρi = 2riδi � 1. As the occurrence of de-differentiation for different stages of differentiation is
poorly understood, for simplicity we assume that all the ρi are the same, i.e. they are independent of index
i and denoted as ρ for short. In this way, the population dynamics of the stepwise de-differentiating mutant
population can be modeled with a projection matrix given by

AS =



r1(p1 − q1) ρ . . . . . . . . . 0
2r1q1 r2(p2 − q2)− κρ . . . . . . . . . 0

0 2r2q2 − (1− κ)ρ . . . . . . . . . 0

0 0
. . .

... 0 0
...

...
...

. . . ρ 0
...

... . . . . . . rn−1(pn−1 − qn−1)− κρ 0
0 0 . . . . . . 2rn−1qn−1 − (1− κ)ρ −d


. (4)

Jumpwise de-differentiation provides an alternative pattern where even highly differentiated cells can
directly revert to stem cells without being in intermediate stages (Fig 1 c). Formally, it is assumed that the
jumpwise de-differentiating mutant cell in compartment n − 1 can give birth to two daughter stem cells in
compartment 1 (Fig 1 d). Therefore, the projection matrix is given by

AJ =



r1(p1 − q1) 0 0 . . . ρ 0
2r1q1 r2(p2 − q2) 0 . . . . . . 0

0 2r2q2 0 . . . . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . 0 0

...
... . . . . . . rn−1(pn−1 − qn−1)− κρ 0

0 0 . . . . . . 2rn−1qn−1 − (1− κ)ρ −d


. (5)

Selection gradient for de-differentiation
In the following, we consider the competition between a non de-differentiating resident cell population and
a stepwise de-differentiating mutant cell population (which is called S mutant cell population for short), as
well as between a non de-differentiating resident cell population and a jumpwise de-differentiating mutant
cell population (which is called J mutant cell population for short) by comparing their fitness measures,
i.e. the leading eigenvalues λ0, λS and λJ of A0, AS and AJ , respectively. Note that ρ is very small, such
that both AS and AJ can be seen as matrix perturbations to A0. According to the eigenvalue perturbation
method [44], we have

λS ≈ λ0 + ∆λSρ, λJ ≈ λ0 + ∆λJρ. (6)

Here, ∆λS and ∆λJ are given by

∆λS = ~µT
[
∂AS
∂ρ

]
ρ=0

~η, ∆λJ = ~µT
[
∂AJ
∂ρ

]
ρ=0

~η, (7)
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where ~µ and ~η are the left and right eigenvectors associated with λ0 respectively (see Supplementary Infor-
mation).

For a given parameter set (ri, pi, qi, d, κ), ∆λS characterizes the selective difference between an S
mutant cell population and a non de-differentiating cell population. If ∆λS > 0, for example, the S mutant
population is favored in this competition — a non de-differentiating resident cell population is invaded by
an S mutant cell population. Therefore, ∆λS corresponds to a selection gradient and acts as a comparative
fitness measure of the S mutant cell population relative to the non de-differentiating resident cell population.
A similar argument also applies for ∆λJ . We thus term ∆λS and ∆λJ as selection gradients of the S mutant
cell population and the J mutant cell population, respectively. Based on these quantities, we will analyze
the favorable condition for de-differentiation.

Results
We infer whether de-differentiation leads to an increased fitness in the different cases (stepwise and jumpwise),
both analytically and numerically.

Let us first focus on the null model without de-differentiation. In this case, the projection matrix A0 is
a lower triangular matrix whose eigenvalues are just the diagonal elements. Suppose that the resident cell
population in Eq. (1) is not shrinking, which implies that there exists at least one non-negative diagonal
element in A0. In this way, the leading eigenvalue λ0 is the largest among all the non-negative diagonal
elements of A0. Note that −d is always negative, such that λ0 is always in the form of rj0(pj0 − qj0), where
j0 is the compartment that maximizes this quantity.

Next, we turn to stepwise de-differentiation, cf. Eq. (4). Given λ0 = rj0(pj0 − qj0), the selection gradient
(comparative fitness) of an S mutant cell population is given by (see Supplementary Information)

∆λS =

 Γ1,1,2 for j0 = 1
Γj0−1,j0,j0−1 + Γj0,j0,j0+1 − κ for 1 < j0 < n− 1
Γn−2,n−1,n−2 − κ for j0 = n− 1

(8)

where Γj,k,l =
2rjqj

rk(pk−qk)−rl(pl−ql) . In reality, cells in different compartments do not have exactly the same
effective self-renewal rate, because of internal or external noise in cellular dynamics [36]. It is thus reasonable
to assume that the leading eigenvalue λ0 is unique, which implies that rj0(pj0 − qj0) is strictly larger than
any other rj(pj − qj) for j 6= j0.

Thus, all the Γj,k,l in Eq. (8) are positive. In particular, for j0 = 1, ∆λS = Γ1,1,2 is positive. In
other words, an S mutant cell population is always favored in the competition with non de-differentiating
resident cell population provided that stem cells have the largest effective self-renewal rate among all cell
compartments. We performed exact numerical solutions to verify our theoretical approximation and find a
very good agreement, see Fig. 2. Furthermore, with the increase of symmetric division probability of stem
cells (p1), the selection gradient ∆λS gradually tends to zero (Fig. 2).

Let us now consider the cases with j0 > 1. In reality, stem cells may have slower cycling time than
more differentiated cells [45], or stem cell differentiation and self-renewal could be balanced (p1 = q1 = 0.5),
maintaining a stable stem cell population [10]. Thus, sometimes it is more likely for other cell compartments
(j0 > 1) to have the largest effective self-renewal rate. From Eq. (8) we can see that ∆λS is a linear
combination of Γj,k,l and κ. It is interesting to see that ∆λS is negatively correlated with κ. Note that κ is the
redistributing factor that characterizes how the introduction of de-differentiation reshapes the probabilities
for self-renewal and differentiation. For κ = 0, ∆λS is positive. With an increase of κ, ∆λS could become
negative. Fig. 3 typically shows two scenarios of ∆λS : either it is always larger than zero for any κ, or it
changes from positive to negative at some critical point 0 < κ∗ < 1. For the latter scenario, Fig 4 illustrates
how ∆λS changes with both the redistributing factor κ and the symmetric division probability p2 provided
that compartment 2 has the largest effective self-renewal rate (j0 = 2). It is shown that with the increase of
p2, the critical value κ∗ decreases, which means it is getting less likely for the S mutant cell population to
be favored. Note that Γj,k,l represents the effect of cellular hierarchy on de-differentiation, and κ represents
how de-differentiation reshapes the cellular division patterns. Therefore, the selection of de-differentiation
is a combined result of cellular hierarchy and de-differentiation pattern.
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Figure 2: Selection for stepwise de-differentiation when the effective rate of self renewal is
highest for stem cells. Illustration of the selection gradient (comparative fitness) of the S mutant cell
population ∆λS as a function of the symmetric division probability p1, provided that the stem cell com-
partment has the largest effective self-renewal rate, i.e. λ0 = r1(p1 − q1). Colored lines represent analytical
approximations from Eq. (8) by using the eigenvalue perturbation method and symbols represent exact
numerical solutions, which agree very well with each other. In this case, de-differentiation provides a fitness
advantage for all values of p1 and r2. The parameters are n = 4, κ = 0.1, ρ = 0.001, d = 0.05, p2 = 0.55,
p3 = 0.6, r1=0.99, r3 = 0.3. The range of p1 (0.55 < p1 < 1.0) ensures that r1(p1 − q1) is the leading
eigenvalue.
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Figure 3: Selection for stepwise de-differentiation when the effective rate of self renewal is
highest in compartment 2. Illustration of the selection gradient (comparative fitness) of the S mutant
cell population ∆λS as a function of redistributing factor κ provided that λ0 = r2(p2 − q2). Colored lines
represent eigenvalue perturbation results from Eq. (8) and symbols represent exact numerical solutions.
There are two different scenarios: For r1 <

r2(2p2−1)(Γ2,2,3−1)
(2p1−1)(Γ2,2,3−1)−2(1−p1) ≈ 0.1950, ∆λS is always positive (blue

color); For r1 > 0.1950, ∆λS changes from positive to negative with the increase of κ (red color). The
background parameters are n = 4, ρ = 0.01, d = 0.05, p1 = 0.5, p2 = 0.95, p3 = 0.55, r2=0.44, r3=0.17.
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Figure 4: Selection for stepwise de-differentiation in a landscape composed of the symmetric
division probability p2 and redistributing factor κ when the effective rate of self renewal is
highest in compartment 2. The curve represents the boundary with ∆λS = 0, which is generated by
the eigenvalue perturbation approximation in Eq. (8). The symbols represent the exact numerical solutions
for ∆λS = 0. The parameters are n = 4, ρ = 0.01, r1 = 0.0885, r2 = 0.4145, r3 = 0.5555, p1 = 0.4723,
p3 = 0.0727, d = 0.005.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/574251doi: bioRxiv preprint 

https://doi.org/10.1101/574251
http://creativecommons.org/licenses/by-nc-nd/4.0/


We now turn our attention to the selection gradient (comparative fitness) of the J mutant cell population,
which is given by (see Supplementary Information for mathematical details)

∆λJ =

{ (∏j0−1
i=1 Γi,j0,i

)(∏n−1
i=j0+1 Γi−1,j0,i

)
for 1 ≤ j0 < n− 1∏n−2

i=1 Γi,n−1,i − κ for j0 = n− 1
(9)

Similar to Eq. (8), here all the Γj,k,l in Eq. (9) are positive. For the cases with 1 ≤ j0 < n−1, in particular,
∆λJ is always positive (Fig. 5), i.e. the J mutant cell population is favored in all these cases. On the other
hand, for j0 = n − 1, ∆λJ is negatively correlated with the redistributing factor κ which is similar to ∆λS
(Fig. 6).
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Figure 5: Selection for jumpwise de-differentiation. Illustrations of the selection gradient (comparative
fitness) of the J mutant cell population ∆λJ for the cases j0 = 1 (a) and j0 = 2 (b). In both panels,
colored lines represent analytical approximations from Eq. (9) by using eigenvalue perturbation and symbols
represent exact numerical solutions. (a) ∆λJ as a function of p1 provided that compartment 1 has the largest
effective self renewal rate, λ0 = r1(p1−q1) for p2 = 0.55. (b) ∆λJ as a function of p2 provided compartment
2 has the largest effective self renewal rate, λ0 = r2(p2 − q2) for p1 = 0.55 (joint parameters n = 4, κ = 0.1,
ρ = 0.01, d = 0.05, p3 = 0.6, r1=0.2, r3 = 0.3).

A comparison between Eqs. (8) and (9) reveals some important differences between stepwise and jumpwise
de-differentiation patterns. First of all, jumpwise de-differentiation provides a much wider range of favorable
condition for de-differentiation than stepwise de-differentiation in the sense that ∆λJ is always positive for
any 1 ≤ j0 < n − 1, but ∆λS is always positive only for j0 = 1. Secondly, ∆λS only depends on the
parameters related to the neighborhood compartments of j0, but ∆λJ depends on the parameters related to
all compartments, ranging from the stem cell stage to the stage where de-differentiation occurs. This implies
that, the total number of compartment does matter in the jumpwise case, but not in the stepwise case. In
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Figure 6: Selection for jumpwise de-differentiation when the effective rate of self renewal is high-
est in compartment 3. Illustration of the selection gradient ∆λJ as a function of the redistributing factor κ
provided that λ0 = r3(p3−q3). Colored lines represent eigenvalue perturbation results in Eq. (9) and symbols
represent exact numerical solutions. There are two different scenarios: For r1 >

r3(2p3−1)
2(1−p1)Γ2,3,2+(2p1−1) ≈ 0.45,

∆λJ is always positive (blue color). For r1 < 0.45, ∆λS is changed from positive to negative with the
increase of κ (red color). The background parameters are n = 4, ρ = 0.01, d = 0.05, p1 = 0.5, p2 = 0.65,
p3 = 0.85, r2 = 0.4, r3=0.6.
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other words, stepwise de-differentiation utilizes the local structure around the compartment with the largest
effective self-renewal rate, whereas jumpwise de-differentiation utilizes the global structure throughout the
multi-compartment hierarchy.

Discussion
In this study, we have explored the adaptive significance of de-differentiation in hierarchical multi-compartment
structured cell populations. By establishing a matrix population model, we study the competition between
resident hierarchical structured cell populations without de-differentiation and mutant cell populations with
different modes of de-differentiation.

In principle, there are two main factors that could influence the selection of de-differentiation: cellular
hierarchy and the de-differentiation pattern. Cellular hierarchy refers e.g. to the number of cell compartments,
the inherent cell division pattern, or the cell division rate. These correspond to the parameter landscape
of (n, pi, qi, ri) in our model. The de-differentiation pattern refers to different modes of de-differentiation
(stepwise or jumpwise), as well as how de-differentiation reshapes the division pattern in the cellular hierarchy
(corresponding to κ in our model). Interestingly, our results show that the selection gradients for de-
differentiation (∆λS and ∆λJ) can generally be decomposed into a sum of a cellular hierarchy part and a
de-differentiation part, showing that the selection of de-differentiation is a result of the linear combinations
of these two factors.

Among all factors in the cellular hierarchy, the most important one is which of the cell compartments
has the largest effective self-renewal rate. This is because de-differentiation is more likely to be favored
when earlier compartments have the largest effective self-renewal rate. For example, in the stepwise case,
de-differentiation is favored provided that the stem cell has the largest effective self-renewal rate. In the
jumpwise case, de-differentiation is favored in all cases except when the latest divisible cell compartment has
the largest effective self-renewal rate.

Given all the factors in the cellular hierarchy, we are most concerned about how different de-differentiation
patterns shape the evolution of de-differentiation. In particular the redistributing factor, i.e. the effect of de-
differentiation on self-renewal and differentiation probabilities greatly influences the selection condition. Our
results suggest that de-differentiation is more likely to be favored if there is less effect on self-renewal than on
differentiation. In addition, the de-differentiation mode (stepwise or jumpwise) has enormous implications
for the selection condition. Our results suggest that de-differentiation is more likely to be favored in the
jumpwise case than in the stepwise case. However, jumpwise de-differentiation seems to be biologically much
more difficult to achieve, the overall incidence of it would still be very low. Perhaps an example of the
differences between stepwise and jumpwise de-differentiation and the implications of the subsequent disease
behavior can be illustrated by various types of leukemia. As already mentioned, MLL-AF9 expression in
a committed progenitor cells can lead to the development of leukemic stem cells that can result in disease
transmission across mice [27, 46]. In general MLL expression is associated with a poor prognosis in acute
myeloid leukemia [47, 48]. This may be an example of jumpwise de-differentiation. In contrast, acute
promyelocytic leukemia (APL) is an example of acute leukemia that is highly curable [49]. It is therefore
possible that in this disease, stepwise de-differentiation – or a situation where a mutant cell can stick in a
compartment without differentiating, similar to a stem cell – is occurring that in part makes the disease still
potentially curable.

Note that the presented study is based on a matrix population model with constant elements, which in
principle captures an exponential growing population. Even though there are still uncertainties regarding
the growth patterns of cell populations in different contexts (cancer or normal, solid or hematologic tumor,
in vivo or in vitro) [7, 50] and exponential growth is often considered to be unable to capture the biological
processes in reality, exponential-like growth models are widely used as default models to describe growing
cell populations, especially in early cancer development [21, 51–53]. We followed this idea and used it
as a starting point to explore the adaptive significance of de-differentiation. In the future, more complex
biological mechanisms such as density-dependent population growth could be taken into account in models
for de-differentiation. Moreover, while the hierarchical architecture of tissues is considered to have been
selected to minimize the risk of retention of mutations, the risk of acquisition of stem cell line properties by
the large population of progenitor cells introduces new dynamics - perhaps in such a scenario two additional
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considerations could reduce the risk of cancer - namely the low probability that specific mutations lead to
acquisition of stem cell like behavior or the average survival of progenitor cells may be low enough to prevent
the acquisition of the additional mutations needed to reach the full cancer phenotype. This could be an
extension of this work in future.
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