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Learning-accelerated Discovery of Immune-Tumour Interactions 
Jonathan Ozik,*a,b Nicholson Collier,a,b Randy Heiland, c Gary An,d Paul Macklinc 

We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with 
detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an 
open source agent-based simulation platform for cancer and other multicellular systems, and EMEWS, an open source 
platform for extreme-scale model exploration. We build an agent-based model of immunosurveillance against 
heterogeneous tumours, which includes spatial dynamics of stochastic tumour-immune contact interactions. We implement 
active learning and genetic algorithms using high-performance computing workflows to adaptively sample the model 
parameter space and iteratively discover optimal cancer regression regions within biological and clinical constraints. 

Introduction 
The Translational Dilemma in Cancer 

Immunotherapy—which retunes the body’s immune system to 
control cancer progression or eliminate it altogether—is one of 
the most promising cancer treatment strategies to emerge in 
the past ten years1. In 2010, Hodi et al. reported that some 
patients with metastatic melanoma had improved survival time 
after potentiating anti-tumour T-cell response (by targeting 
CTLA-4)2. Durable (and even complete) responses were 
observed in a significant fraction of those receiving the immune 
treatment2. More recent immunotherapies targeting PD-1 or 
PD-L1 have significantly improved 3-year overall survival and 
progression-free survival time in melanoma3. Similar advances 
have been reported in diverse cancers such as non small-cell 
lung carcinoma, hepatocellular carcinoma, and renal 
carcinoma4,5.  
 However, cancer immunotherapies do not benefit all 
patients equally: only 10-20% of patients receiving 
immunotherapy experience durable, partial or complete 
responses, and far more experience only temporary responses 
or none whatsoever4,5. Much work has focused on finding 
biomarkers to identify the 20% who can best benefit from 
immunotherapy6, while many others have focused on 
improving immunogenicity4,5.  

This work has been complicated by the complex dynamics 
of tumour-immune interactions that change through the stages 
of immunoediting7. In the elimination phase, the innate and 

adoptive responses are effective in eliminating cancer cells as 
they emerge. In the equilibrium phase, some tumour cells 
escape, but the immune system keeps the overall tumour cell 
population under control. In the final escape phase, tumour 
cells evolve to evade immune recognition or even subvert 
immune processes (e.g., inflammation) to drive further 
growth7,8. Immune interactions can both harm and help 
growing tumours, thus complicating efforts to develop 
immunotherapy strategies. Moreover, even effective 
immunotherapeutic responses can follow an initial period of 
tumour growth or pseudoprogression9.  

Dynamical mathematical models can pierce the complexity 
of tumour-immune interactions and inform our therapeutic 
strategies10–12. Due to the dynamical nature of individual 
immune cells, the nuances of individual immune-immune and 
immune-cancer cell interactions, and tumour cell 
heterogeneity, it is advantageous to use agent-based models 
(ABMs) to mathematically model individual cancer and immune 
cells (each with individual positions, states, and immune 
characteristics), rather than simulate populations of cells with 
blurred positions and properties13. 

Numerous agent-based models have been developed to 
study cancer-immune interactions and immunotherapy. (See 
the excellent recent review by Norton et al. 201914, and our own 
recent work by Ghaffarizadeh et al.15 and Ozik et al.16.) By 
adjusting model parameters and simulation rules, we can 
explore the characteristics of successful and unsuccessful 
treatments, and learn how the "best policies" vary with a 
patient's tumour characteristics16–18.  

If we can identify the "behavioural rules" of a successful 
immunotherapy, we can seek molecular interventions to 
implement those rules. For example, we could modify immune 
receptor binding efficiencies and protein lifetimes to influence 
downstream behaviours such as contact-based interactions19–

21, or introduce virotherapies that introduce new genes to a 
system22. Immune cells could be engineered to secrete co-
stimulatory ligands to modify differentiation, activation, cell 
trafficking, and other critical multicellular behaviours23. T-cell 
motility varies from random to strongly directed to help balance 
exploration and exploitation, based in part upon how well cells 
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can detect gradients of chemotactic signals24–26. Chemotactic 
motility could potentially be modulated by modifying 
chemotactic receptor expression, receptor-ligand binding 
efficiency, or receptor trafficking characteristics. Cancer 
immunotherapy could thus benefit from simultaneously 
employing molecular approaches (What medicinal chemistry 
can be employed to target specific molecular biology?) and 
multicellular systems-level approaches (What immune cell rules 
lead to the best cancer control and remission?).  

 
Computational challenges: Scalability  

However, the benefits that arise from ABMs being able to 
reproduce the complexity of their referent biological systems 
also present challenges to how they are used. Specifically, one 
of the longstanding benefits of mathematical models of 
biological processes is their ability to use power of abstraction 
to aid in the identification of fundamental principles governing 
these systems and provide access to the entire world of formal 
analysis to enhance understanding. Alternatively, ABMs, as well 
as other types of complex, dynamic, multi-scale models, are 
themselves highly complex objects that are, to a great degree, 
not reducible to a formally analytical form. As a result ABMs are 
generally treated as experimental objects, used in simulation 
experiments similar to their biological brethren, and their 
overall behaviour can only be evaluated by the execution of 
very large numbers of simulations, a multi-faceted process we 
refer to as model exploration (ME). ME is a near-ubiquitous 
component in the development of models and algorithms; as 
applied to ABMs and other multi-scale models, it often involves 
an iterative workflow where simulation experiments are carried 
out across a large range of parameter values for purposes such 
as model calibration, model optimization or model behaviour 
characterization. Model output after one set of simulation 
experiments are evaluated against some predetermined metric, 
which informs the next iteration of simulation experiments. 
Examples of ME algorithms include Active Learning (AL)27 and 
Genetic Algorithms (GA)28, both of which are used in ME studies 
in this paper. While advances in high-performance computing 
(HPC) can allow for the parallelization of certain aspects of this 
process, resulting in high-throughput dynamic knowledge 
representation and hypothesis evaluation to address a current 
bottleneck in the Scientific Cycle29,30, we propose that the ME 
process itself can be enhanced with a computational 
framework31. The remainder of this paper presents a ME 
workflow implemented via an integration between an existing 
toolkit for creating ABMs of cancer, PhysiCell, and an HPC ME 
workflow framework, Extreme-scale Model Exploration with 
Swift (EMEWS); the developed workflow investigates the 
characterization of the parameter space of an abstract model of 
immunotherapy on a generic tumour model to find optimal 
cancer regression regions. 

Description of Bio-ABMs and PhysiCell 
Agent-based modelling in cancer immunology 

In agent-based models, each individual cell is a software agent: 
an autonomous object with individual parameter values, state, 
and methods (functions) to govern behaviour in a virtual 
environment. In the context of simulated cancer immunology, 
the agents are cancer and immune cells, their parameters 
describe biological properties like birth and death rates and 
immunogenicity, the state can include the cell’s position and 
cell cycle status, the virtual environment is the tissue 
microenvironment, and the methods can control entry into the 
cell cycle, cell motility, and other key biological processes. 
Introducing new cell types is a matter of defining their individual 
functions and setting their parameters; thus, modellers can 
readily build simulation models that can explore the emergent 
dynamics of various immune cell types as they interact with 
each other and cancer cells in 3-D tissue microenvironments. 
This affords the possibility of identifying key biophysical 
parameter constraints in improving cancer immunotherapies.  
 To date, most mathematical modelling of cancer-immune 
interactions have used non-spatial models (i.e., systems of 
differential equations), molecular-scale models of signaling 
dynamics, or lattice-based agent-based models that could not 
readily investigate the impact of mechanical interactions 
between tumour and immune cells. See Norton et al.14 for a 
review of agent-based simulation models of tumour immune 
microenvironments, and Metzcar et al.13 for a broader overview 
of cell-based computational modelling in cancer biology. In the 
work below, we focus on previously unexplored mechanical, 
spatial, and stochastic aspects of tumour-immune contact 
interactions.  
 
PhysiCell: a platform for multicellular systems biology  

In Ghaffarizadeh et al.15, we developed PhysiCell, a general 
purpose simulation platform for multicellular systems biology. 
In this C++ modelling framework, each cell is an off-lattice agent 
with motion governed by the balance of adhesive, repulsive, 
motile, and drag-like forces. Each cell has an independent cell 
cycle state (including volume changes), can perform biased 
random migration with user-programmed functions, and can 
progress through apoptotic and necrotic death processes. 
Modellers can attach customized data and C++ functions to 
each agent, and dynamically modify these data and functions in 
individual cells throughout the duration of a simulation. This 
allows the framework to be very closely tailored to selected 
biological problems. Its modular design allows further 
customization by open source contributors. For example, Letort 
et al. recently integrated Boolean signalling networks into each 
cell agent to model molecular-scale processes32. 

In most models, cell behaviour is linked to the values and 
gradients of diffusing substrates, such as oxygen-dependent cell 
cycle entry and necrosis and chemotaxis towards signalling 
factors. To facilitate this, PhysiCell uses BioFVM33 to solve 3-D 
diffusion equations for one or many diffusible factors (typically 
1-10 factors), with automated integration with the cell agents. 
Each cell can readily secrete or uptake from the chemical 
microenvironment, or sample the value or gradient of any or all 
substrates.  
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PhysiCell is cross-platform compatible: models can be 
compiled and run on Linux, macOS, Windows, and other 
operating systems with little to no modification. The framework 
has been parallelized with OpenMP and tuned to run 3-D 
simulations of 105 or more cells on desktop workstations.  
 
PhysiCell model of cancer-immune contact dynamics  

In Ghaffarizadeh et al.15, we introduced a simple model of 3-D 
immunosurveillance against heterogeneous tumours, with a 
special focus on the spatial dynamics of stochastic tumour-
immune contact interactions. In the model, each cancer cell has 
a mutant “oncoprotein” p which drives proliferation: the 
greater the expression of p, the more likely the cell cycles and 
divides. In the absence of other selective pressures, the cells 
with the greatest p expression clonally expand and dominate 
the dynamics of the tumour. Under the simplifying assumption 
that a highly-expressed mutant protein would be reflected as a 
more immunogenic peptide signature on major 
histocompatibility complexes (MHCs)34, we modelled each cell’s 
immunogenicity as proportional to p.  

To model immunosurveillance, after simulating 14 days of 
growth we introduced generic immune cell agents that move 
towards tumour cells by chemotaxis (a random biased 
migration towards a cell-released chemical factor), test for 
contact with cells, stochastically form spring-like adhesions to 
any cell in close contact, and then test for immunogenicity. 
While adhered to a target cell, the immune cell agent attempts 
to induce apoptosis (e.g., by the FAS receptor pathway35) with a 
probability that scales linearly with immunogenicity. If 
successful, the tumour cell undergoes apoptosis, while the 
immune agent detaches and resumes its chemotactic search for 
additional tumour cell targets. If the immune cell does not kill 
the tumour cell, it remains attached while making further 
attempts to induce apoptosis until either succeeding or 
reaching a maximum attachment lifetime, after which it 
detaches without inducing apoptosis. See Ghaffarizadeh et al.15 
(2018) for further technical and mathematical model details.  

The model presented in this paper was implemented using 
PhysiCell Version 1.4.1, and modified the model from 
Ghaffarizadeh et al.15 and Ozik et al.16 to allow selection of 2-D 
or 3-D simulations. The full source code is available at GitHub; 
see the link in the Electronic Supplementary Information.  

A 4K-resolution video of the 3-D model was published as 
part of Ghaffarizadeh et al. (2018), and can be viewed at 
https://www.youtube.com/watch?v=nJ2urSm4ilU. Readers can 
interactively run and explore the 2-D model at 
http://nanohub.org/tools/pc4cancerimmune, built using 
xml2jupyter36†.  

In Ghaffarizadeh et al.15, we performed one large 3-D 
simulation of this model, finding that stochastic immune cell 
migration had a major impact on this system by increasing 
spatial mixing between tumour and immune cells, potentially 
contributing to more successful immune responses. However, 
to further understand this system would require hundreds or 
thousands of additional simulations.  
 

Preliminary model exploration 

In Ozik et al.16, we explored a three-dimensional parameter 
space to further investigate the role of stochasticity in this 
model. The parameters investigated consisted of:  

• immune cell attachment rate: the rate at which an 
immune cell can form an adhesive bond with another 
cell in close contact;  

• immune cell attachment lifetime: the mean time the 
immune cell spends attached to a target cell before 
detaching and resuming its search for targets; and  

• migration bias (with 0 ≤ bias ≤ 1). If the bias is 0, 
migration is purely Brownian, while a bias of 1 indicates 
deterministic chemotaxis. Intermediate values give a 
biased chemotactic random walk. 

We discretized the parameter space into 27 parameter sets 
(low, medium, and high values for each parameter), with 
multiple simulation replicates (with different random seeds) per 
parameter set. We found that both the attachment rate and 
attachment lifetimes had threshold effects: once the 
parameters were sufficiently high, further increases did not 
significantly improve the immune response. However, the bias 
parameter was markedly non-monotonic: either decreasing 
bias (leading to more exploration by immune cells by more 
random tumour-immune mixing) or increasing the bias 
parameter (leading to more exploitation by immune cells by 
directly moving to the closest tumour cells) led to an improved 
immune response compared to our original simulation15.  

However, this work was only a first step: it did not further 
explore the parameter space to find phase transitions in model 
behaviour or to find optimal parameter sets to maximize and 
minimize the success of the immune response. Moreover, it 
neglected many other important parameters.  
 
Control and optimization problem 

Building upon this work, we now seek to explore a fuller set of 
design parameters, over a 6-dimensional design space:   

• immune cell apoptosis rate rapoptosis: This is the rate at 
which immune agents undergo apoptosis. Decreasing 
this could model immunoengineering to decrease 
immune exhaustion. (d1 in the EMEWS investigations 
and in Table 2) 

• oncoprotein threshold pthreshold: immune agents ignore 
cells with p < pthreshold. Modulating this parameter is 
analogous to engineering immune cell sensitivity. (d2 in 
Table 2) 

• immune cell kill rate rkill: The rate at which an adhered 
immune cell can trigger apoptosis in the attached 
tumour cell, with probability (in any time interval 
[t,t+∆t]) given by rkill ·p·∆t. (d3 in Table 2) 

• immune cell attachment rate rattach: As described 
above, the rate at which an immune cell can adhere to 
a cell in close contact. (d4 in Table 2) 

• immune cell attachment lifetime Tattach: As described 
above, the mean time an immune cell maintains an 
attachment before searching for another target. (d5 in 
Table 2) 
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• immune cell migration bias b: As described above, this 
governs the randomness of immune cell chemotactic 
migration. This could potentially be tuned by altering 
chemoreceptor expression. (d6 in Table 2) 

 

We now consider two related sets of problems:  
 

• Cancer control: Can we divide the 6-dimensional design 
space into "viable" and "non-viable" regions, where the 
viable region is defined to be all parameter sets 
(designs) for which the final cancer cell population Nfinal 
(after 21 days) did not exceed the initial population 
Ninitial, computed over multiple stochastic replicates.  
(stable scenario: Nfinal ≤ Ninitial) 

• Cancer regression: Can we find regions of the design 
space where the cancer population is reduced to 10% 
of its initial size? (10% scenario: Nfinal ≤ 0.1 Ninitial) Can 
we find regions of the design space where the cancer 
population is reduced to 1% of its initial size? (1% 
scenario: Nfinal ≤ 0.01 Ninitial) Can we minimize Nfinal? 
(minimized scenario) 

To reduce the computational cost of our investigation, we 
explored the model in 2D; future investigations will explore 
optimal designs in the full 3-D model. To simulate in 2D, we only 
require one change: the number of immune cell agents 
introduced at the start of therapy (t = 14 days). We set the 
number of immune agents at 125: approximately the number of 
immune cells initially in the z = 0 plane in the full 3D model in 
Ghaffarizadeh et al.15.  
 We note that the edges of the hypercube represent 
biological and clinical constraints: biological processes (e.g., cell 
attachment rates) may be impossible to accelerate beyond a 
physical limit, while side effects may impose other clinical 
constraints on parameter values (e.g., if immune cells are too 
sensitive, they may kill healthy cells as well).  

Model exploration workflow solution: EMEWS 
As previously noted, the parameter spaces of complex ABMs, 
coupled with the highly non-linear relationship between ABM 
input parameters and model outputs, require heuristic ME 
approaches that adaptively evaluate large numbers of 
simulations. Here we give a brief overview of how the Extreme-
scale Model Exploration with Swift (EMEWS) framework31 
enables the creation of HPC workflows for implementing large-
scale ME studies (see37 for further details).  

EMEWS is built on the general-purpose parallel scripting 
language Swift/T38, which provides the capability of running 
multi-language tasks on anywhere from desktops to peta-scale 
plus computing resources with a data-flow paradigm for inter-
task dependencies. Central to data-flow is the run-to-
completion pattern, where the outputs from completed tasks 
are used as inputs to subsequent tasks. While this approach for 
inter-task dependencies is sufficient for many applications, 
EMEWS introduced the ability to define resident, or stateful, 
tasks to encapsulate the logic within iterating, state-preserving 
algorithms, such as those used for ME39. These resident tasks 
can communicate with the rest of the workflow and, in fact, 

allow for an Inversion of Control (IoC) scheme, where the 
resident task can control the logical flow of the workflow, rather 
than needing to implement the logic in the workflow language 
itself. As such, an ME algorithm can be expressed in Python or 
R with the only required modification being that it uses the high-
level queue-like interfaces, currently with two implementations 
EQ/Py and EQ/R (EMEWS Queues for Python and R). The queue 
interfaces are used for iteratively communicating parameter 
combinations generated by the ME algorithm to the underlying 
workflow for concurrent model instance execution, and for 
retrieving the results from those model runs. The rest of the ME 
algorithm remains unmodified. This allows the direct use of the 
many libraries relevant to ME that are being actively developed 
and implemented as free and open source Python and R 
software. We exploit this capability in the current work by 
implementing a Python-based GA workflow and an R-based AL 
workflow to explore our PhysiCell model. 

The multi-language capabilities of Swift/T provide the ability 
to run external applications (with run to completion semantics) 
through the shell, in-memory libraries accessed directly by 
Swift/T, or Python, R, Julia, C, C++, Fortran, Tcl and JVM 
language applications. In this work we use the shell-based 
approach for launching the individual PhysiCell model runs. 

Methods: Description of computational 
experiments 
Description of PhysiCell and EMEWS integration  

Our focus here is on delineating the shape of the parameter 
space with respect to the final tumour cell count. To this end, 
we have created two workflows: one in which the parameters 
to evaluate are produced by an AL algorithm27 and one, as a 
consistency check on the AL results, in which the parameters 
are produced by a GA28. In the AL case, we employ a binary 
classification of regions within our space, where we define an 
objective and find parameter subspaces that are capable of 
meeting the objective (viable), versus those that cannot (non-
viable). More specifically, a viable subspace contains 
parameters that produce final mean tumour cell counts at or 
below a specified threshold, and a non-viable subspace contains 
parameters that produce final mean tumour cell counts above 
that threshold. The AL algorithm trains a surrogate model (in 
the present case a random forest40 classifier) such that the 
viability of unevaluated regions of the parameter space can be 
determined without the need for additional model runs and the 
overall structure of the parameter space can be estimated. In 
contrast, the GA’s focus is on finding optimal parameters, that 
is, those that produce the lowest final mean tumour cell counts. 
While the GA is good at finding optima in complex spaces and 
therefore provides a useful consistency check of the AL results, 
unlike the surrogate model produced by the AL algorithm, it 
does not provide an estimate for the neighbourhood, and hence 
the robustness, of the solutions that it finds. Table 1 provides a 
summary of the two model exploration approaches we use and 
the types of outcomes they produce. The modularity of EMEWS 
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allows us to easily replace one model exploration approach with 
the other while not affecting the rest of the workflow.  
 
Table 1: Model exploration methods used with the PhysiCell/EMEWS workflows and 
their outcomes. 

Model 
Exploration 
Method 

Outcomes in PhysiCell/EMEWS workflows 

Active Learning 
(AL) 

Surrogate models for characterizing the 
parameter space structure based on 
different viability thresholds 

Genetic 
Algorithm (GA) 

Optimal points producing the lowest final 
mean tumour cell counts 

 
In both AL and GA cases, we run 20 stochastic variations of 

each parameter set, varying the random seed across the runs, 
and take the mean final tumour cell count over those 20 as the 
value to evaluate with respect to the objective threshold. 
Through earlier investigations we found that 20 stochastic 
variations provided a balance between computational effort 
and the stability of the evaluated outcomes‡.  

In the AL algorithm, implemented in R, our goal is to 
iteratively pick points (i.e., parameter sets) to sample, such that 
we can exploit the results of previous evaluations, but balance 
that with an exploratory component in order to investigate 
undersampled regions. For the former, we use an uncertainty 
sampling strategy where we fit a random forest40 classifier on 
previously evaluated points, and then choose subsequent 
samples close to the classification boundary, i.e., where the 
uncertainty between classes is maximal. We cluster these 
candidate points of maximal uncertainty, and then select from 
within the clusters, in order to ensure a level of diversity in the 
sampled points and, therefore, a greater expected reduction of 
uncertainty41. The exploratory component randomly samples 
points in the parameter space. At each iteration of the AL 
algorithm, all of the chosen points, i.e., exploit and explore 
points, are collected and evaluated in parallel. The results of 
those evaluations are gathered and the random forest model is 
refit with the additional data, allowing for a new set of points to 
be chosen for sampling. This process is continued until a 
convergence or, in the present case, a maximum number of 
iterations is achieved. 

Random forest classifiers can also produce measures of 
relative importance of a space’s dimensions. A random forest 
classifier is an ensemble of decision trees, where each tree is 
trained on a subset of the data and votes on the classification of 
each observation variable. Importance can be calculated from 
the characteristics of decision trees. A commonly used measure 
for importance is the mean decrease in Gini, a measure of the 
weighted average of a variable’s total decrease in node impurity 
(which translates into a particular predictor variable’s role in 
partitioning the data into the defined classes). Gini decrease is 
an effective measure of the relative importance of a variable in 
classifying the target observation, across all of the decision 
trees in the forest. A higher Gini decrease value indicates higher 
variable importance and vice versa and we have ordered the 
dimensions in our output plots accordingly (see Results, Figures 

2-4). Details of the AL algorithm are further described in37 and 
the R code can be found in GitHub; see the link in the Electronic 
Supplementary Material. 

In our GA algorithm, our goal is to iteratively evolve a 
population of points to produce points that when evaluated 
yield the lowest mean final tumour cell counts. We have 
implemented this using the DEAP [REF] evolutionary 
computation Python framework, using the evolutionary 
algorithm presented in chapter 7 of42. During each iteration, the 
best points from the currently evaluated population are 
selected using a tournament selection method to create a new 
population. Each of these points is then mated with another 
according to a crossover probability and, finally, each of the 
resulting points is mutated according to a mutation probability. 
At each GA algorithm iteration, the new population is evaluated 
and the evaluation results are gathered. Here, as with the AL 
case, we make use of the ability to concurrently evaluate as 
many design points as the HPC resource allocation provides. 
Also similarly to the AL case, the workflow continues until the 
desired number of iterations are achieved. 

Both the AL and the GA ME algorithms are integrated into 
EMEWS workflows using EMEWS queues, EQ/R and EQ/Py, 
respectively. The points to evaluate for each iteration are 
passed from the ME algorithms to the Swift/T workflow for 
evaluation via the queues. As mentioned earlier, each of these 
parameter points is expanded into 20 stochastic variations and 
those variations are all run in parallel.  When each individual run 
completes, the workflow executes a small script (written in 
Python) to parse the final tumour cell count from the PhysiCell 
simulation output file. The tumour cell counts for each of the 20 
variations are collected and the mean is calculated using 
another small script (written in R)§. This mean tumour cell count 
is then passed back to the ME algorithm as the result of the 
evaluation, again via the queues. 

The PhysiCell simulation itself is a stand-alone command line 
application that takes the path to an XML format file, containing 
all the parameter input for a simulation run, as an argument. 
The workflow launches the PhysiCell application using a shell 
script, passing the path to a specially constructed XML 
parameter file. This XML file is created for each run by reading 
a base XML file that contains a default set of parameters, 
replacing only the parameters of interest with those produced 
by the ME, and writing the new XML to a location where it can 
be read by the PhysiCell application. This transformation is 
implemented in a small amount of Python code, executed by 
the workflow prior to launching a simulation run.  

Using the two EMEWS workflows, we performed the 
following experiments. For the AL case, we ran 3 scenarios using 
3 classification thresholds. In the first scenario, viable subspaces 
were those that produced a stable tumour cell count, i.e., non-
progression of the tumour (stable scenario). Since the initialized 
tumour size consists of 900 tumour cells, the AL classified all 
runs where the final mean tumour cell count was less than our 
simulation starting value of 900. The second scenario examined 
a case where the immunotherapy resulted in a reduction of the 
initial tumour to 10% of its size; this is the 10% scenario which 
classified those runs with < 90 live tumour cells. The third 
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scenario examined situations where immunotherapy reduced 
the tumour to 1% of its original size; this is the 1% scenario 
which captured runs with < 9 live tumour cells at their 
conclusion. For each scenario, the AL algorithm was run for 20 
iterations, sampling 25 points using the maximal uncertainty 
strategy and 25 using the random strategy, as described above. 
We performed 20 simulations for each point, varying the 
random seed. The full parameter space from which we sampled 
consisted of all the combinations of our 6 parameters, with each 
parameter discretized across 9 different values (Table 2). Each 
AL algorithm was seeded with an initial design, a pre-evaluated 
set of points. The stable scenario was seeded with 707 
evaluations whose points were sampled using a Latin 
Hypercube Sampling (LHS) strategy. The 10% and 1% scenarios 
were seeded with the 1000 evaluations (i.e., 50x20 iterations) 
performed by the first scenario. 
 
Table 2. Workflow parameter space dimensions 

Parameter (id) [dimensions] Min Max Increment 
immune cell apoptosis rate (d1) 
[1/min] 

6.94e-6 6.94e-4 8.5882e-05 

oncoprotein threshold (d2) 
[dimensionless] 

0.1 1.0 0.1125 

immune cell kill rate (d3) [1/min] 0.1 1.0 0.1125 
immune cell attachment rate (d4) 
[1/min] 

0.01 1.0 0.12375 

immune cell lifetime (d5) [min] 10.0 90.0 10.0 
immune cell migration bias (d6) 
[dimensionless] 

0.1 0.9 0.1 

 
 For the GA case, we ran two scenarios differentiated by the 

composition of the initial population. In the “seeded” scenario, 
the initial population consisted of 12 unique points found by the 
first AL scenario (i.e., stable scenario) to be the best (i.e., lowest 
mean tumour cell count) and 38 randomly selected points. The 
second “unseeded” scenario consisted of only randomly 
selected initial points.  The space from which points are selected 
is defined by the minimum and maximum values of our 6 
parameters (see Table 2). Both scenarios had population sizes 
of 50 and were run for 30 iterations. The mutation probability 
was set to 0.2 and the crossover probability to 0.5 for both 
scenarios.  

Results 
All experiment scenarios presented in the previous section were 
performed on the Cray XE6 Beagle at the University of Chicago, 
hosted at the Argonne National Laboratory. Beagle has 728 
nodes, each with two AMD Opteron 6300 processors, each 
having 16 cores, for a total of 32 cores per node; the system 
thus has 23,296 cores in all. Each node has 64 GB of RAM. The 
workflows were run over 126 nodes, using 8 processes per 
node. 8 PhysiCell simulations were concurrently run on each 
node with 4 threads allocated to each simulation, thus utilizing 
all 32 cores on a node. With a total of 126 nodes, we were able 
to run a maximum of 1005 (126 nodes * 8 simulations per node 

– 3 processes for workflow and ME overhead) simulations in 
parallel.   

In the AL stable scenario, 1707 points in total were 
evaluated (including the 707 seeded points), with 394 points 
(23.1%) as viable and 1313 as non-viable. Out of the 531,441 

total points that made up the discretized parameter space, the 
final random forest model classified 102,369 points (19.3%) as 
viable. In the 10% scenario, 2000 points in total were evaluated 
(including 1000 seeded points), 297 (14.9%) as viable, and 1703 
as non-viable. Out of the 531,441 total points, the random 
forest model classified 32,728 points (6.16%) as viable. We note 
that 15 of the points classified as viable in the 10% scenario 
were classified as non-viable in the stable scenario, which points 
to the imperfection of the random forest models. Indeed, one 
should not expect that a surrogate model would replicate with 
full fidelity the more complex stochastic simulation that is being 
approximated. Nevertheless, this represents a very small 
misalignment when considering the size of the full discretized 
space. In the 1% scenario, 2000 points in total were evaluated 
(including 1000 seeded points), 204 as viable (10.2%), and 1793 
as non-viable. Out of the 531,441 total points, the random 
forest model classified 9,609 points (1.81%) as viable. Here all 
of the viable points were also classified as viable by the stable 
scenario, although 3 of the points were classified as non-viable 
by the 10% scenario. A Venn diagram illustrating the 
relationships between the space classifications made by the 
three AL scenarios, including their overlaps and disagreements 
is shown in Error! Reference source not found.. The three AL 
scenarios each took between 10-12 hours to run, accounting for 
40k-48k core-hours each, clarifying our need for employing an 
HPC workflow approach. 

A “slice” of the 6-dimensional parameter space after 20 
iterations of all three AL scenarios is shown in Figure 2 as a grid 
of 2D plots. This visualizes regions of the parameter space 
meeting the classification criteria in a fashion that incorporates 
the relative importance of each parameter based on the 

 
Figure 1: Venn diagram illustrating the total points, proportions, overlaps and 
disagreements between the classifications of the PhysiCell model parameter 
space made by the random forest models trained via the three AL scenarios 
(stable, 10%, 1%). 
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dimension’s Gini decrease value. The two most important 
dimensions, immune apoptosis rate (d1) and oncoprotein 
threshold (d2) are plotted against each other in each of the 
individual subplots, which are laid out in a grid. The next two 
important parameters, immune kill rate (d3) and immune 
attachment rate (d4), are the axes along which the grid of 
subplots are plotted; the immune kill rate for the subplot grid 

rows and the immune attachment rate for the subplot grid 
columns. The final two, least important dimensions, immune 
attachment lifetime (d5), and immune migration bias (d6) are 
kept constant at d5 = 80 minutes and d6 = 0.8.  

The space is partitioned into different regions based on the 
evaluation results of the 3 different random forest models 
trained on the 3 different AL scenario data sets. The blue 

 
Figure 2: A 4-dimensional slice of the 6-dimensional parameter space after 20 iterations of all three AL scenarios. Immune apoptosis rate (d1) and oncoprotein threshold (d2) 
are plotted against each other in each of the individual subplots. The immune kill rate (d3) is varied along the subplot grid rows and the immune attachment rate (d4) along the 
subplot grid columns. The immune attachment lifetime (d5) and immune migration bias (d6) parameters are set at d5 = 80 minutes and d6 = 0.8. The space is coloured based on 
the classifications of the three AL scenario random forest models, where the blue regions were classified as non-viable by the stable scenario model (the tumour population 
grew), the light orange regions were classified as viable by the stable scenario model (the tumour population did not increase), the darker orange regions were classified as 
viable by the 10% scenario model (the final tumour population was under 10% of the initial value) and the dark red regions were classified as viable by the 1% scenario model 
(final tumour population under 1% of the starting value). The green and black dots indicate points where simulations were run, resulting in viable and non-viable outcomes for 
the 1% scenario, respectively. The yellow dots correspond to final GA population points from the seeded GA scenario. 
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regions were classified as non-viable by the stable scenario 
model. The light orange colour marks all the points (both 
evaluated and not) classified as viable by the stable scenario 
model. The darker orange marks points classified as viable by 
the 10% scenario model and the dark red are those classified as 
viable by the 1% scenario model. One can observe the steeper 
changes of the parameter space characterizations within each 
subplot in the d1 direction when compared to d2, and slow 
changes along the d3 and d4 dimensions, providing support to 
the dimensional importance ordering we are using. Individual 
parameter sets evaluated in the 1% scenario can be seen as 
green (viable) and black (non-viable) dots.  

In the subplot labelled “A” (Figure 2) we can see how the AL 
algorithm is attempting to characterize the boundary of the 1% 
scenario space. The green and black dots along the boundary 
are points produced by the AL algorithm as it tries to resolve 
regions of maximum uncertainty and, in doing so, delineate the 
boundary. The remaining black dot in the blue region of the 
subplot is an example of the AL’s random selection explore 
strategy. To provide a better sense of boundary finding in all 6 
dimensions, in Figure 3 we expand our perspective to include 
the 4x4 subplots demarcated with a dashed bounding box in the 
bottom right of Figure 2, along with their 8 neighbours in the d5 
and d6 dimensions. Here, d5 is varied along the overall rows, 
with values of 70, 80 and 90 minutes, and d6 is varied along the 
overall columns, with values of 0.7, 0.8 and 0.9. The original 
demarcated area from Figure 2 is placed at the centre. Figure 3 
shows neighbours of our original plot A (from Figure 2), where 
we have identified subplots with sampled points that are 
distance 1 neighbours (in Manhattan distance) with B-F and 
those that are distance 2 neighbours with G-K. While not visible 
in Figure 2, we observe that points are evaluated along the 
classification boundary across the d5 and d6 dimensions as well. 

Lastly, Figure 4 provides a zoomed-out view over the entire 
space (full 6-dimensional space) characterized by the random 
forest classifiers where, instead of fixing the d5 and d6 
parameter values, we vary them across the overall rows (d5) 
and columns (d6). Each subplot in Figure 4 displays a sub-grid of 
2D plots with the same axes as in Figure 2: d1 and d2 plotted 
against each other with d3 and d4 varying along each overall 
sub-grid row and column. The sub-grid corresponding to Figure 
2 is highlighted by a dashed bounding box.  

We note that the characterization of the parameter space in 
Figures 2-4 is based on the use of the 0.5 probability threshold 
between viable and non-viable classifications, as generated by 
the random forest models. The sample F-score values obtained 
with the 0.5 probability threshold through 10-fold cross 
validation at the end of the stable, 10%, and 1% scenarios were 
0.87±0.04, 0.80±0.05 and 0.64±0.08, respectively. Adjusting the 
classification threshold value, such that a higher threshold 
would be required for classifying a point as viable, could yield 
higher positive predictive values at the expense of increased 
false negatives, but may be worth considering from the point of 
view of the increased confidence within the viable regions. 

Our GA workflow was run as a consistency check against the 
AL workflow results. Moreover, GA represents a more 
traditional approach to this type of optimization problem, when 

lacking the AL approach and resources to characterize the full 
parameter space. In the first scenario where the initial 
population was seeded with the 12 best results from the stable 
AL scenario, the final GA population, after 50 iterations, 
consisted of 16 unique points with an average mean tumour 
count of 0.764, a standard deviation of 1.112, a minimum value 
of 0 (the optimal solution) and a maximum value of 4.75. The 
unseeded scenario consisted of 41 unique points with an 
average mean tumour count of 1.411, a standard deviation of 
2.352, a minimum of 0 and a maximum of 14.05. The final 
seeded population while better than the unseeded has less 
breadth likely due to the initial constraints on the population. In 
Figure 2, the yellow dots correspond to 4 points from the final 
seeded scenario population, and are all located within the AL 
1% boundary, as would be expected. In contrast to the AL 
workflow, the GA, while good at finding optimal points, does 
not help in delineating the parameter space nor provide an 
estimate of the robustness of the produced solutions. 
Furthermore, it does not generate a model, such as the AL’s 
random forest classifier, that can be used to classify points 
without running any additional simulations. 

Discussion and Future Directions 
This work extended our prior proof-of-concept 
implementation16 to demonstrate the utility of integrating the 
PhysiCell and EMEWS frameworks to iteratively explore a high-
dimensional therapeutic design space and optimize a complex 
cancer immunotherapy model. In particular, we were able to 
investigate highly relevant clinical problems in cancer 
immunotherapy: given a therapeutic design space with 
biological and clinical constraints, can we identify optimal 
designs to minimize the remaining number of tumour cells, can 
we characterize the robustness of those optimal designs, and 
can we determine the most important design parameters? 

As in more traditional approaches, we applied GAs to find 
the treatment optima within the space. Interestingly, there 
were multiple parameter sets (therapeutic designs) that were 
able to completely eliminate the live cancer cells by the end of 
the simulated treatment, which matches clinical observations 
that immunotherapies can lead to complete responses in some 
patients2,43,44.  

We found that these optimal designs were on and near the 
boundary of the design space hypercube. When optima are 
found within the interior of a design space, it indicates that 
finding the ideal balance between design parameters is most 
important to improving the design. When optima are found on 
the boundary of a constrained design space rather than the 
interior, it indicates that the optima could be improved by 
relaxing the constraints on one or more design parameters. In 
the case of the immunotherapy design problem, these 
constraints are primarily biological (e.g., biological limits on 
immune cell lifetimes and killing rates) and clinical (e.g., limits 
imposed by toxicity). This suggests that improving these 
constraints—e.g., reducing toxicity by improving the specificity 
of immune-cell targeting—may be key to improving therapeutic 
response in more patients.  
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While finding optima on the constraint boundaries may 
have been expected due to the lack of explicit negative model 
feedbacks (e.g., de novo cancer cell mutations), the result was 
by no means certain for the highly nonlinear model. For 
instance, Ozik et al.16 found that the migration bias (d6) had a 
nonmonotonic influence on the treatment success in the full 3-
D model: large and small values of d6 (corresponding to highly 
exploitative or highly exploratory immune cell migration) gave 
improved responses over more mixed exploitation-exploration 
migration strategies.  

Even with knowledge of the individual design constraints, it 
is the interaction between the parameters that drives the 
success or failure of any given design. While the optima were 

near the boundaries of most of the dimensions in the design 
subspace, they were in the interior of d4. Hence, the balance 
between d4 and the other parameters was important in 
achieving these optima. It would have been difficult to 
anticipate the specific interactions between the parameters and 
constraints based upon single-parameter data a priori. 

Moreover, the integrated PhysiCell-EMEWS framework—
combined with HPC resources—enabled previously infeasible 
investigations. By using AL to guide our sampling of the design 
space, we were able to move beyond finding optima to 
understand the topology of the design space by characterizing 
increasingly aggressive treatment goals. The stable design 
space—where the cancer was kept in control—included just 

 
Figure 3: An expansion of the 4x4 subplots demarcated with a dashed bounding box in the bottom right of Figure 2, here also shown with a dashed bounding box, to include 
variations along the d5 (overall rows) and d6 (overall columns) dimensions. The space and dot colours are defined as in Figure 2. Subplots B-F are those that contain sampled 
points and are Manhattan distance 1 neighbours of subplot A, and subplots G-K are the same but at Manhattan distance 2. 
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20% of our initial constrained design space. Increasing the goal 
to eliminating 90% of cancer cells drastically shrank the viable 
therapeutic designs to 6% of the space. The decreasing marginal 
utility can be seen when moving to the goal of eliminating 99% 
of cancer cells: the viable design space is now under 2% of the 
original tested design space. This characterization of the 
therapeutic design space would not have been possible without 
using active learning to guide the sampling of parameter space, 
even on HPC resources. Our model findings are qualitatively 
consistent with the performance of clinical trials, where far 
fewer patients experience a complete response than those 
whose cancers are controlled by immunotherapies. For 
example, Carretero-González et al. reported that in a meta-
analysis of twelve Anti-PD1/PD-L1 trials, only 2.19% patients 
achieved a complete response, while an additional 44.56% of 
patients achieved partial response or stable disease.44 

We note that this approach supports a bootstrapping 
investigation: identifying the viable control designs can seed the 
search for the 90% cell kill regime, which in turn can seed the 
search for more aggressive treatment goals. The distance 
between the edges of these identified treatment subspaces 
helps to characterize the robustness of the designs.  

The optima (identified by the GA) lie within the extremely 
small 99% cell kill regime, showing that they may not be 
particularly robust to engineering variability and evolution of 
the cancer cells. Missing this narrow design regime could have 
negative long-term clinical consequences: eliminating 99% or 
90% of cancer cells would place a strong selective pressure on 
the cancer cells, encouraging the development of therapeutic 
resistance. It may well be wiser to target the control case, to 
improve the patient survival times6. Such results have similarly 
been suggested by evolutionary game theory45,46. 

 
Figure 4: A full 6-dimensional view of the design space, where the space colours are defined as in Figure 2 and the location of the slice of the space shown by Figure 2 is 
illustrated by a dashed bounding box. d5 and d6 vary along overall rows and columns, and d3 and d4 vary along the sub-grid rows and columns, and d1 and d2 vary along x  
and y axes within the individual sub-grids. 
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As an additional benefit of the AL-based model exploration 
over GA workflows, the random forest classifier can rank the 
importance of the parameters in determining the success or 
failure of treatment designs. The most important parameter 
was d1: the immune cell death rate. Minimizing d1 is equivalent 
to maximizing the immune cell life time, and thus its maximum 
number of cell kills. Minimizing d1 is analogous to reducing T 
cell exhaustion and increasing T cell killing capacity, one of the 
most active areas of research in cancer immunology47–49. The 
second most important parameter was the immune cell 
detection floor (d2): decreasing d2 corresponds to increasing 
immune cell sensitivity. Increasing immune cell recognition is 
also an extremely active area of work in cancer therapy. 
Interestingly, the optimal therapy parameters occurred along 
the minimum allowed values of d1 and d2, and hence the 
simulated treatments were limited by biological constraints (d1) 
and clinical constraints (d2). The minimum value of d2 could 
only be reduced further by increasing the specificity of immune 
cell response5,50. It is also interesting that varying d5 (tumour-
immune attachment time) was identified as having little impact 
on the treatment success. Interestingly, discussion with cancer 
immunologists has suggested that tumour-T cell contact times 
are relatively brief. However, detailed experiments have found 
both fast (< 200 min) and slow (> 200 min) contact times for cell 
kills51, while other work suggests that extended contact times 
can improve cytotoxic responses52. It is likely that if we refined 
our constraints on rkill (d3) to reflect such detailed 
measurements, longer contact times (d6) would be required to 
achieve effective responses.  

It is striking that the model identified rankings of the 
important and unimportant design parameters based solely on 
a model of physical interactions, without explicitly modelling 
the molecular biology of the system. This validates the approach 
of using iterative, high-throughput simulation investigations of 
physics-inspired models to understand and optimize the 
behavioural rules. Once optimal rules are identified, the focus 
can turn to identifying molecular mechanisms that can be linked 
to the cell behaviours. 

For instance, the immune cell lifetime (corresponding to 
1/d1), immune cell sensitivity to detecting an adhered cell as 
immunogenic (d2), and the immune cell killing rate (d3) were 
the three most important design parameters. Future agent-
based models could include more detailed models of immune 
cell signalling, including stimulatory pathways (e.g., receptors 
that prime immune cells) and inhibitory pathways (e.g., 
receptors that suppress cytotoxicity, suppress cycling, increase 
apoptosis, or otherwise contribute to exhaustion). 
Mathematical models of receptor pathways have found that the 
sensitivity, rate of activation, and duration of response depend 
upon key rate parameters for receptor-ligand binding, 
dimerization, internalization, turnover, synthesis, and decay 
(e.g., see references53–55). With detailed models of immune 
receptor dynamics, we could tune and balance these 
parameters as determined by the earlier ABM investigations, 
and hence “implement” the rules for d1, d2, and d3. Future 
models could incorporate such models in each individual 
immune cell agent to engineer their activation across space of 

the tumour, and perhaps even to maximize their activation near 
tumours, rather than in adjacent tissues where immune cell 
activation could contribute to immunotherapy toxicity.  

There are limitations in the current work. First, while the 
abstract “immune cell” PhysiCell agents allowed us to focus on 
the physical limits of tumour-immune contact interactions, we 
must improve the biofidelity by explicitly modelling key immune 
cell types, particularly T cells and dendritic cells. This would 
facilitate more direct comparisons with known cancer 
immunology. Molecular-scale biology, such as immune receptor 
binding dynamics, should be incorporated into the individual 
cell agents to better incorporate current molecular-scale 
hypotheses on immune cell function and tumour cell 
recognition. Moreover, this investigation did not include 
interactions with the stroma, particularly fibroblasts and matrix 
remodelling, the vasculature and angiogenesis, and 
inflammatory processes56–58. These should be included to better 
understand the dynamics of cancer-immune interactions in 3-D 
environments that more closely resemble primary and 
metastatic tumours in patients. These higher-fidelity models 
could be tailored to specific clinical trials and experiments, 
allowing more direct, quantitative comparison between 
simulation predictions and clinically observed tumour-immune 
interactions.  

Rather than starting with an initial distribution of cancer 
phenotypes, models should account for continuous genetic and 
epigenetic variability in cancer cells that can drive treatment 
failure and unexpected tumour-stroma interactions. Relatedly, 
future models should include normal tissue components to 
better model adverse effects of highly cytotoxic immune 
therapies; these would shift the optimization landscape.  

Lastly, we know that there are artefacts associated using 2-
D simulations to investigate 3-D problems; these artefacts could 
produce misleading rankings of the influence of various 
parameters. For example, the randomness of migration (d6) 
may have more benefit in exploring space to find tumour cells 
in 3-D than in 2-D. However, high-throughput 2-D simulation 
investigations as in this paper could be used to help focus 
subsequent 3-D investigations.  

The current study was limited to 2D rather than 3D in part 
because PhysiCell—as most current ABM platforms for complex 
multicellular problems—is optimized for fast computation on 
shared memory architectures such as desktop workstations or 
single HPC nodes (via OpenMP59), whereas most HPC platforms 
are optimized for distributed memory applications. Thus, 
individual model instances cannot currently be accelerated by 
extending them onto multiple HPC nodes (e.g., via MPI60). 
Moreover, most biological ABMs integrate molecular-scale 
models using standards such as the systems biology markup 
language (SBML), and by coupling with SBML solvers such as 
libRoadrunner61. However, these ABM+SBML models have 
generally not been tested on large-scale HPC platforms.  

Future ABMs will need to be redesigned for HPC 
architectures, such as combining HPC-tailored ABM engines 
(e.g., RepastHPC62) with the APIs and syntax of existing biology-
focused ABMs. This is especially needed for future ABMs that 
will model not just multiple immune cell types, but also 
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additional dynamics in the microenvironment and (receptor) 
signalling dynamics in each cell agent, which will require 
simulating tens of nonlinear ordinary differential equations at 
small time steps.  

Ideally, ABMs will be co-designed with upcoming exascale 
platforms, to not just incorporate hybrid OpenMP-MPI 
architectures (to efficiently parallelize single simulations over 
multiple HPC nodes), but to also leverage the unique memory 
architectures and onboard GPU and other accelerators that 
could facilitate the molecular-scale detail in these models63–65. 
Co-design focused on challenging cancer immunology problems 
could drive cutting-edge technological advances in multi-scale, 
multi-physics, and discrete-continuum modelling software and 
benchmark exascale computing platforms.  

Now that we have fully demonstrated the learning-
accelerated PhysiCell-EMEWS platform, we will turn our 
attention to improving the model. In particular, we will work 
closely with cancer immunologists to refine the immune cell 
models and more explicitly model T cells, dendritic cells, and 
other immune players in cancer immunotherapy, as discussed 
above. We will also investigate the role of continuing tumour 
variability in driving T cell exhaustion and related immune 
escape processes.  

We plan further refinements to the model exploration 
pipeline as well. The increased model detail will come at the 
cost of even higher-dimensional parameter and design spaces. 
We will explore the possibility of using the simulation runs to 
build surrogate models that map from the model parameters to 
the simulation metrics (thus far total live cell population, but 
potentially including entropy measures of tumour 
heterogeneity66,67, emerging measures of the tumour ecology68, 
and measures of impact on nearby non-tumour cells). We could 
use apply dimensionality reduction techniques69 to the 
surrogate model to eliminate redundant parameters and refine 
our investigation of the original model. These surrogate models 
could also incorporate heteroskedastic stochastic variance70. 
We will also explore extensions of PhysiCell to HPC to enable 
higher-fidelity simulations that more closely mirror real 
biological systems. Such higher-fidelity models could be 
explored in high throughput (and potentially in 3D) on current 
and emerging Top500 HPC systems.  

Conclusions 
The use of simulation is an integral component of the modern 
engineering workflow. While the ability to determine the 
sufficient level of fidelity for simulations of biological processes 
is still an open area of investigation, we believe that developing 
simulation-based methods for potentially engineering 
mechanism-based biomedical interventions should not wait 
until the former situation is “solved.” In fact, we contend that 
investigating the of modes and methods of simulation-aided 
biomechanistic engineering can aid in the determining of how 
detailed biosimulations “need” to be. Even at the current level 
of abstraction, the ME and optimization examination presented 
herein identifies non-intuitive insights that may help guide 

concurrent work on improving one of the most currently 
promising emerging cancer therapies.  
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