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 2 

Abstract: 23 

Background 24 

Unsupervised machine learning algorithms applied to gene expression data extract 25 

latent, or hidden, signals representing technical and biological sources of variation. However, 26 

these algorithms require a user to select a biologically-appropriate latent dimensionality. 27 

Results 28 

 We compressed gene expression data from three large transcriptomic datasets 29 

consisting of adult normal tissue, adult cancer tissue, and pediatric cancer tissue. Rather than 30 

selecting a single latent dimensionality, we sequentially compressed these data into many 31 

dimensions ranging from 2 to 200. We trained principal components analysis (PCA), 32 

independent components analysis (ICA), non-negative matrix factorization (NMF), denoising 33 

autoencoder (DAE), and variational autoencoder (VAE) models. We observed various tradeoffs 34 

for each model. For example, we observed high model stability between PCA, ICA, and NMF 35 

algorithms across latent dimensionalities. We identified more unique biological signatures in 36 

DAE and VAE model ensembles in intermediate latent dimensionalities. However, we captured 37 

the most pathway-associated features using all compressed features across algorithms, 38 

ensembles, and dimensions. We also used multiple latent dimensionalities to optimize gene 39 

expression signatures representing sample sex, neuroblastoma MYCN amplification, and 40 

various blood cell types, which generalized to external datasets. In supervised machine learning 41 

tasks, compressed features predicted cancer type and gene alteration status. In this setting, the 42 

best performing supervised models used features from different dimensionalities and 43 
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 3 

compression algorithms indicating that there was no single best dimensionality or compression 44 

algorithm.  45 

Conclusions 46 

 Ensembles of features from different unsupervised algorithms discover biological 47 

signatures in large transcriptomic datasets. To enhance biological signature discovery, rather 48 

than compressing input data into a single pre-selected dimensionality, it is best to perform 49 

compression on input data over many latent dimensionalities.  50 

 51 

Introduction: 52 

Dimensionality reduction algorithms compress input data into feature representations 53 

that capture major sources of variation. Applied to gene expression data, compression 54 

algorithms identify latent biological and technical processes. These processes reveal important 55 

information about the samples and can help to generate hypotheses that are difficult or 56 

impossible to observe in the original genomic space. For example, applying PCA to a large 57 

cancer transcriptomic compendium determined the influence of copy number alterations in 58 

gene expression measurements [1]. Applying ICA to transcriptome data aggregated gene 59 

modules representing core pathways and hidden transcriptional programs [2,3]. Training NMF 60 

models using bulk gene expression data estimated cell type proportion [4,5]. DAEs have 61 

revealed latent signals characterizing oxygen exposure and transcription factor targets [6,7], 62 

and VAEs have identified biologically relevant latent features discriminating cancer subtypes 63 

and drug response [8,9]. Nevertheless, a major challenge to all compression applications is the 64 
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fundamental requirement that a researcher must determine the number of latent dimensions 65 

(k) to compress the input data into.  66 

Instead, it is possible that different biological signatures are best captured at different 67 

latent space dimensionalities. To test this, we train and evaluate various compression models 68 

across a wide range of latent space dimensionalities, from k = 2 to k = 200. We train PCA, ICA, 69 

NMF, DAE, and VAE models using RNAseq gene expression data from three different datasets: 70 

The Cancer Genome Atlas (TCGA) PanCanAtlas [10], the Genome Tissue Expression Consortium 71 

Project (GTEx) [11], and the Therapeutically Applicable Research To Generate Effective 72 

Treatments (TARGET) Project [12]. We demonstrate various model tradeoffs in reconstruction 73 

cost, stability, and gene set coverage in training and testing sets across algorithms and latent 74 

dimensionalities. We observe that several distinct gene expression signatures are optimized in 75 

various models spanning low, intermediate, and high latent dimensionalities. We determine 76 

that compressing gene expression data using various latent dimensionalities and algorithms 77 

enhances biological signature discovery. We name this sequential compression approach 78 

“BioBombe” after the large mechanical device developed by Alan Turing and other cryptologists 79 

in World War II to decode encrypted messages sent by Enigma machines. BioBombe 80 

sequentially compresses gene expression input data with increasing latent dimensions to 81 

decipher and enhance biological signatures embedded within compressed gene expression 82 

features. 83 

 84 

Results: 85 

BioBombe implementation 86 
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 We compressed RNAseq data from TCGA, GTEx, and TARGET using PCA, ICA, NMF, DAE, 87 

and VAE across 28 different latent dimensions (k) ranging from k = 2 to k = 200. We split each 88 

dataset into 90% training and 10% test sets balanced by cancer type or tissue type and trained 89 

models using only the training data. We used real and permuted data and initialized each 90 

model five times per latent dimension resulting in a total of 4,200 different compression 91 

models (Additional File 1: Figure S1). We evaluated hyperparameters for DAE and VAE models 92 

across dimensions and trained models using optimized parameter settings (Additional File 2; 93 

Additional File 1: Figure S2). See Fig. 1 for an outline of our approach. We provide full 94 

BioBombe analysis results for all compression models across datasets for both real [13–15] and 95 

permuted data [16–18] in both training and test sets as publicly available resources. 96 

 97 

 98 

Figure 1: Overview of the BioBombe approach. We implemented BioBombe on three datasets 99 
using five different algorithms. We sequentially compressed input data into various latent 100 
dimensionalities. We calculated various metrics that describe different benefits and trade-offs of 101 
the algorithms. Lastly, we implemented a network projection approach to interpret the 102 
compressed latent features. We used MSigDB collections and xCell gene sets to interpret 103 
compressed features. 104 
 105 
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Assessing compression algorithm reconstruction 106 

Reconstruction cost, a measurement of the difference between the input and output 107 

matrices, is often used to describe the ability of compression models to capture fundamental 108 

processes in latent space features that recapitulate the original input data. We tracked the 109 

reconstruction cost for the training and testing data partitions for all datasets, algorithms, 110 

latent dimensions, and random initializations. As expected, we observed lower reconstruction 111 

costs in models trained with real data and with higher latent dimensions (Additional File 1: 112 

Figure S3). Because PCA and ICA are rotations of one another, we used the identical scores as a 113 

positive control. All compression algorithms had similar reconstruction costs, with the highest 114 

variability at low latent dimensions (Additional File 1: Figure S3). 115 

 116 

Evaluating model stability and similarity within and across latent dimensions 117 

We applied singular vector canonical correlation analysis (SVCCA) to algorithm weight 118 

matrices to assess model stability within algorithm initializations, and to determine model 119 

similarity between algorithms [19]. Briefly, SVCCA calculates similarity between two 120 

compression algorithm weight matrices by learning appropriate linear transformations and 121 

iteratively matching the highest correlating features. Training with TCGA data, we observed 122 

highly stable models within algorithms and within all latent dimensionalities for PCA, ICA, NMF 123 

(along the matrix diagonal in Fig 2a). VAE models were also largely stable, with some decay in 124 

higher latent dimensions. However, DAE models were unstable, particularly at low latent 125 

dimensions (Fig 2a). We also compared similarity across algorithms. Because PCA and ICA are 126 

rotations of one another, we used the high stability as a positive control for SVCCA estimates.  127 
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 128 

Figure 2: Assessing algorithm and dimension stability with singular vector canonical correlation 129 
analysis (SVCCA). (a) SVCCA applied to the weight matrices learned by each compression 130 
algorithm in gene expression data from The Cancer Genome Atlas (TCGA). The mean of all 131 
canonical correlations comparing independent iterations is shown. The distribution of mean 132 
similarity represents a comparison of all pairwise iterations within and across algorithms. The 133 
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upper triangle represents SVCCA applied to real gene expression data, while the lower triangle 134 
represents permuted expression data. Both real and permuted data are plotted along the 135 
diagonal. (b) Mean correlations of all iterations within algorithms but across k dimensions. SVCCA 136 
will identify min(i, j) canonical vectors for latent dimensions ki and kj. The mean of all pairwise 137 
correlations is shown for all combinations of k dimensions. 138 
 139 

NMF was also highly similar to PCA and ICA, particularly at low latent dimensions (Fig. 2a). VAE 140 

models were more similar to PCA, ICA, and NMF than DAE models, particularly at low latent 141 

dimensions, and the instability patterns within DAE models also lead to large differences across 142 

algorithms (Fig. 2a). We observed similar patterns in GTEx and TARGET data, despite TARGET 143 

containing only about 700 samples (Additional File 1: Figure S4). 144 

 We also used SVCCA to compare the similarity of weight matrices across latent 145 

dimensions. Both PCA and ICA found highly similar solutions across all dimensions (Fig. 2b). This 146 

is expected since the solutions are deterministic and are arranged with decreasing amounts of 147 

variance. NMF also identified highly similar solutions in low dimensions, but solutions were less 148 

similar in higher dimensions. DAE solutions were the least similar, with intermediate 149 

dimensions showing the lowest mean similarity. VAE models displayed relatively high model 150 

similarity, but there were regions of modest model stability in intermediate and high 151 

dimensions (Fig. 2b). We observed similar patterns in GTEx and TARGET data (Additional File 1: 152 

Figure S5). 153 

 154 

Sequential compression can enhance gene expression signature discovery 155 

 We tested the ability of BioBombe sequentially compressed features to isolate various 156 

biological signatures. First, we tested the ability to differentiate sample sex; which has been 157 

previously observed to be captured in latent space features [8,20,21]. We performed a two-158 
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 9 

tailed t-test comparing male and female samples in GTEx across all initializations, algorithms, 159 

and latent dimensions. We optimally identified this phenotype in higher latent dimensions, 160 

particularly in VAE and NMF models (Fig. 3a). The top feature separating GTEx males and 161 

females was VAE feature 108 in k = 200 (t = 49.0, p = 2.7 x 10-285) (Fig 3b). We performed the 162 

same approach using BioBombe features in TCGA data. Whereas the largest models appeared 163 

to capture sex optimally in GTEx data, intermediate latent dimensions best captured sex in 164 

TCGA data (Fig. 3c). The top latent dimension identified was not consistent across algorithms. 165 

The top feature distinguishing TCGA males and females was VAE feature 16 in the k = 20 model 166 

(t = -13.9, p = 1.8 x 10-40) (Fig. 3d). 167 

 We also tested the ability of BioBombe to distinguish MYCN amplification in 168 

neuroblastoma (NBL) tumors. MYCN amplification is a biomarker associated with poor 169 

prognosis in NBL patients [22]. Using latent features derived from the full TARGET data, we 170 

performed a two-tailed t-test comparing MYCN amplified vs. MYCN not amplified NBL tumors. 171 

Each algorithm discovered optimal signal at various latent dimensions, but the best feature was 172 

identified in VAE models at k = 200 (Fig. 3e). Although there were some potentially 173 

mischaracterized samples, feature 111 in VAE k = 200 robustly separated MYCN amplification 174 

status in NBL tumors (t = 17.5, p = 3.0 x 10-37) (Fig. 3f). This feature also distinguished MYCN 175 

amplification status in NBL cell lines [23] that were previously not used for training by the 176 

compression model or for feature selection (t = 2.9, p = 7.1 x 10-3) (Fig. 3g). 177 

 178 

 179 

 180 
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 181 

Figure 3: Using BioBombe as a signature discovery tool. Detecting GTEx sample sex across (a) 182 
various latent dimensions and algorithms, and (b) the latent feature with the highest enrichment. 183 
Detecting TCGA patient sex across (c) various latent dimensionalities, and (d) the latent feature 184 
with the highest enrichment. Detecting TARGET MYCN amplification in neuroblastoma (NBL) 185 
tumors (e) across various latent dimensions, and (f) the latent feature with the highest 186 
enrichment. (g) Applying the MYCN signature to an external dataset of NBL cell lines implicates 187 
MYCN amplified cell lines. 188 
 189 
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Assessing gene set coverage of compression models 190 

We used gene sets from Molecular Signatures Database (MSigDB) and xCell [24–26] to 191 

interpret biological signals activated in compressed features across all latent dimensionalities, 192 

algorithms, and initializations. We applied a network projection approach to model weight 193 

matrices to determine gene set coverage (see methods for more details). Specifically, we 194 

tracked coverage of three MSigDB gene set collections representing transcription factor (TF) 195 

targets, cancer modules, and Reactome pathways across latent dimensions in TCGA data (Fig. 196 

4). In all cases, we observed higher gene set coverage in models with larger latent 197 

dimensionalities. Considering individual models, we observed high coverage in PCA, ICA, and 198 

NMF. In particular, ICA outperformed all other algorithms (Fig. 4a). However, while these 199 

methods showed the highest coverage, the features identified had relatively low enrichment 200 

scores compared to AE models (Additional File 1: Figure S6).  201 

Aggregating all five random initializations into ensemble models, we observed 202 

substantial coverage increases, especially for AEs (Fig. 4b). VAE models had high coverage for all 203 

gene sets in intermediate dimensions, while DAE improved in higher dimensions. However, at 204 

the highest dimensions, ICA demonstrated the highest coverage. NMF consistently had the 205 

highest enrichment scores, but the lowest coverage (Fig. 4b). When considering all models 206 

combined (forming an ensemble of algorithm ensembles) within latent dimensionalities, we 207 

observed substantially increased coverage of all gene sets. However, most of the unique gene 208 

sets were contributed by the AE models (Fig. 4c). Lastly, when we aggregated all BioBombe 209 

features across all algorithms and all latent dimensions together into a single model, we 210 

observed the highest gene set coverage (Fig. 4c). These patterns were consistent across other  211 
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 212 

Figure 4: Assessing gene set coverage of specific gene set collections. Tracking results in TCGA 213 
data for three gene set collections representing transcription factor (TF) targets (C3TFT), 214 
Reactome pathways (C2CPREACTOME), and cancer modules (C4CM). (a) Tracking coverage in 215 
individual models, which represents the distribution of scores across five algorithm iterations. (b) 216 
Tracking coverage in ensemble models, which represents coverage after combining all five 217 
iterations into a single model. The size of the point represents relative enrichment strength. (c) 218 
Tracking coverage in all models combined within k dimensions. The number of algorithm-specific 219 
unique gene sets identified is shown as bar charts. Coverage for all models combined across all k 220 
dimensions is shown as a dotted navy blue line.  221 
 222 

gene set collections and datasets (Additional File 1: Figure S7). In general, while models 223 

compressed with larger latent space dimensions had higher gene set coverage, many individual 224 
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gene sets were captured with the highest enrichment in models with low and intermediate 225 

dimensions (Additional File 1: Figure S8). These results indicated that biological signature 226 

discovery is enhanced when using various compression algorithms with various latent space 227 

dimensionalities. 228 

 229 

Observing the latent dimensionality of specific tissue and cell type signatures 230 

We measured the Pearson correlation between all samples’ gene expression input and 231 

reconstructed output. As expected, we observed increased mean correlation and decreased 232 

variance as the latent dimensions increased in TCGA data (Fig. 5a). We also observed similar 233 

patterns in GTEx and TARGET data (Additional File 1: Figure S9). Across all datasets, in 234 

randomly permuted data, we observed correlations near zero (Additional File 1: Figure S9). The 235 

correlation with real data was not consistent across all algorithms as PCA, ICA, and NMF 236 

generally outperformed the AE models.  237 

We tracked correlation differences across latent dimensionalities to determine the 238 

dimension at which specific sample types are initially detected. Most cancer types, including 239 

breast invasive carcinoma (BRCA) and colon adenocarcinoma (COAD), displayed relatively 240 

gradual increases in sample correlation as the latent dimensionality increased (Fig. 5b). 241 

However, in other cancer types, such as low grade glioma (LGG), pheochromocytoma and 242 

paraganglioma (PCPG), and acute myeloid leukemia (LAML), we observed large correlation 243 

gains with a single increase in latent dimension (Fig. 5c). We also observed similar performance 244 

spikes in GTEx data for several tissues including liver, pancreas, and blood (Fig. 5d). This sudden 245 
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and rapid increase in correlation in specific tissues occurred at different latent dimensions for 246 

different algorithms, but was consistent across algorithm initializations. 247 

 248 

Figure 5: Different latent dimensionalities implicate different tissue types. (a) Sample Pearson 249 
correlation for all data in the testing data partition for The Cancer Genome Atlas (TCGA). The 250 
different algorithms follow the legend provided in panel d. (b) Mean Pearson correlation for 251 
select cancer types in the testing data partition. Pearson correlation gain between sequential 252 
latent dimensions for (c) select cancer types in TCGA and (d) select tissue-types in GTEx.  253 
 254 

We more closely examined the sharp increase in GTEx blood tissue correlation between 255 

latent space dimensions 2 and 3 in VAE models (See Fig. 5d). We hypothesized that a difference 256 
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in reconstruction for a specific tissue at such a low dimensionality could be driven by a change 257 

in the cell types captured by the model. We applied network projection of xCell gene sets to all 258 

compressed features in both VAE models. xCell gene sets represent computationally derived 259 

cell type signatures [25]. The top features identified for the VAE k = 2 model included skeletal 260 

muscle, keratinocyte, and neuronal gene sets (Fig. 6a). Skeletal muscle was the most significant 261 

gene set identified likely because it the tissue with the most samples in GTEx. Similar gene sets 262 

were enriched in the k = 3 model, but we also observed enrichment for a specific neutrophil 263 

gene set (“Neutrophils_HPCA_2”) (Fig. 6a). Neutrophils represent 50% of all blood cell types, 264 

which may explain the increased correlation in blood tissue observed in VAE k = 3 models. The 265 

features implicated using the network projection approach were similar to an 266 

overrepresentation analysis using high weight genes in both tails of the VAE k = 3 feature 267 

(Additional File 1: Figure S10). 268 

We also calculated the mean absolute value z scores for xCell gene sets in all 269 

compression features for both VAE models with k = 2 and k = 3 dimensions (Fig. 6b). Again, we 270 

observed skeletal muscle, keratinocytes, and neuronal gene sets to be enriched in both models. 271 

However, we also observed a cluster of monocyte gene sets (including 272 

“Monocytes_FANTOM_2”) with enrichment in k = 3, but low enrichment in k = 2 (Fig. 6b). 273 

Monocytes are also important cell types found in blood, and it is probable these signatures also 274 

contributed to the increased correlation for the reconstructed blood samples in VAE k = 3 275 

models. We provide the full list of xCell gene set genes for the neutrophil and monocyte gene 276 

sets that intersected with the GTEx data in Additional File 3.  277 

 278 
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 279 

Figure 6: Interpreting blood cell types in GTEx using xCell gene sets. (a) Comparing BioBombe 280 
scores of all compressed latent features for variational autoencoder (VAE) models when 281 
bottleneck dimensions are set to k = 2 and k = 3. (b) Comparing mean BioBombe Z scores of 282 
aggregated latent features across two VAE models with k dimensions 2 and 3. Tracking the 283 
BioBombe Z scores of (c) “Neutrophils_HPCA_2” and (d) “Monocytes_FANTOM_2” gene sets 284 
across dimensions and algorithms. Only the top scoring feature per algorithm and dimension is 285 
shown. (e) Projecting the VAE feature k = 3 feature and the highest scoring feature (VAE k = 14) 286 
that best captures a neutrophil signature to an external dataset measuring neutrophil 287 
differentiation treatments (GSE103706). (f) Projecting the VAE k = 3 feature that best captures 288 
monocytes and the feature of the top scoring model (NMF k = 200) to an external dataset of 289 
isolated hematopoietic cell types (GSE24759). 290 
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We scanned all other algorithms and latent dimensions to identify other compression 291 

features with high enrichment scores in the “Neutrophils_HPCA_2” (Fig. 6c) and 292 

“Monocytes_FANTOM_2” gene sets (Fig. 6d). We observed stronger enrichment of the 293 

“Neutrophil_HPCA_2” gene set in AE models compared to PCA, ICA, and NMF, especially at 294 

lower latent dimensions. We observed the highest score for the “Neutrophil_HPCA_2” gene set 295 

at k = 14 in VAE models (Fig. 6c). The top VAE feature at k = 14 correlated strongly with the VAE 296 

feature learned at k = 3 (Additional File 1: Figure S10). Conversely, PCA, ICA, and NMF 297 

identified the “Monocytes_FANTOM_2” signature with higher enrichment than the AE models 298 

(Fig. 6d). We observed a performance spike at k = 7 for both PCA and NMF models, but the 299 

highest enrichment for “Monocytes_FANTOM_2” occurred at k = 200 in NMF models. 300 

 301 

Validating GTEx neutrophil and monocyte signatures in external datasets 302 

We downloaded a processed gene expression dataset (GSE103706) that applied two 303 

treatments to induce neutrophil differentiation in two leukemia cell lines [27]. We hypothesized 304 

that projecting the dataset on the “Neutrophil_HPCA_2” signature would reveal differential 305 

scores in the treated cell lines. We observed large differences in sample activations of treated 306 

vs untreated cell lines in the top Neutrophil signature (VAE k = 14) (Fig. 6e). We also tested the 307 

“Monocytes_FANTOM_2” signature on a different publicly available dataset (GSE24759) 308 

measuring gene expression of isolated cell types undergoing hematopoiesis [28]. We observed 309 

increased scores for isolated monocyte cell population (MONO2) and relatively low scores for 310 

several other cell types for top VAE features (Fig. 6f).  311 
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We applied the top signatures for the neutrophil and monocyte gene sets to each 312 

external dataset (see Fig. 6c, d). We observed variable enrichment patterns across different 313 

algorithms and latent dimensionalities (Additional File 1: Figure S11a). These separation 314 

patterns were associated with network projection scores in NMF models, but were not 315 

consistent with other algorithms (Additional File 1: Figure S11b). Taken together, in this 316 

analysis we determined that 1) adding a single latent dimension that captured Neutrophil and 317 

Monocyte signatures improved signal detection in GTEx blood, 2) these gene expression 318 

signatures are enhanced at different latent dimensionalities and by different algorithms, and 3) 319 

these signatures generalized to external datasets that were not encountered during model 320 

training. 321 

 322 

Using BioBombe features in supervised learning applications 323 

 We used BioBombe compressed features in two supervised machine learning tasks. 324 

First, we trained logistic regression models using compressed BioBombe features from 325 

individual model iterations as input to predict each of the 33 different TCGA cancer types. 326 

Nearly all cancer types could be predicted with high precision and recall (Additional File 1: 327 

Figure S12). We observed multiple performance spikes at varying latent dimensionalities for 328 

different cancer types and algorithms, which typically occurred in small latent dimensions (Fig. 329 

7a). Next, we input BioBombe features into the supervised classifier to predict samples with 330 

alterations in the top 50 most mutated genes in TCGA (Additional File 1: Figure S13). We 331 

focused on predicting four cancer genes and one negative control; TP53, PTEN, PIK3CA, KRAS, 332 

and TTN (Fig. 7b). TTN is a particularly large gene and is associated with a high passenger 333 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/573782doi: bioRxiv preprint 

https://doi.org/10.1101/573782
http://creativecommons.org/licenses/by/4.0/


 19 

mutation burden and should provide no predictive signal [29]. As expected, we did not observe 334 

any signal in predicting TTN (Fig. 7b). Again, we observed performance increases at varying 335 

latent dimensionalities across algorithms. However, predictive signal for mutations occurred at 336 

higher latent dimensions compared to cancer types (Fig. 7c). Compared to features trained 337 

within algorithm and within iteration, an ensemble of five VAE models and an ensemble of five 338 

models representing one iteration of each algorithm (PCA, ICA, NMF, DAE, and VAE), identified 339 

cancer type and mutation status in earlier dimensions compared to single model iterations (Fig 340 

7c). We also tracked the logistic regression coefficients assigned to each compression feature. 341 

DAE models consistently displayed sparse models, and the VAE ensemble and model ensemble 342 

also induced high sparsity (Fig. 7d).  343 

Lastly, we trained logistic regression classifiers using all 30,850 BioBombe features 344 

generated across iterations, algorithms, and latent dimensions. These models were sparse and 345 

high performing; comparable to logistic regression models trained using raw features (Fig. 7e). 346 

Of all 30,850 compressed features in this model, only 317 were assigned non-zero weights 347 

(1.03%). We applied the network projection approach using Hallmark gene sets to interpret the 348 

biological signatures of the top supervised model coefficients. The top positive feature was 349 

derived from a VAE trained with k = 200. The top hallmarks of this feature included 350 

“ESTROGEN_RESPONSE_EARLY”, “ESTROGEN_RESPONSE_LATE”, and “P53_PATHWAY”. The top 351 

negative feature was derived from a VAE trained with k = 150 and was associated with hallmark 352 

genesets including “BILE_ACID_METABOLISM”, “EPITHELIAL_MESENCHYMAL_TRANSITION”, 353 

and “FATTY_ACID_METABOLISM”.  Additional File 4 includes a full list of logistic regression 354 

coefficients and hallmark network projection scores. Overall, the features selected by the 355 
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supervised classifier were distributed across algorithms and latent dimensions suggesting that 356 

combining signatures across dimensionalities and algorithms provided the best representation 357 

of the signal (Fig. 7f). 358 

Discussion: 359 

 Our primary observation is that compressing complex gene expression data using 360 

multiple latent dimensionalities and algorithms enhances biological signature discovery. Across 361 

multiple latent dimensionalities, we identified optimal features to stratify sample sex, MYCN 362 

amplification, blood cell types, cancer types, and mutation status. Furthermore, the complexity 363 

of biological features was associated with the number of latent dimensions used. We predicted 364 

gene mutation using models with high dimensionality, but we detected cancer type with high 365 

accuracy using models with low dimensionality. In general, unsupervised learning algorithms 366 

applied to gene expression data extract biological and technical signals present in input 367 

samples. When applying these algorithms, researchers must determine how many latent 368 

dimensions to compress their input data into and different studies can have a variety of goals. 369 

For example, compression algorithms used for visualization can stratify sample groups based on 370 

the largest sources of variation [30–35]. In visualization settings, selecting a small number of 371 

latent dimensions is often best, and there is no need for sequential compression. However, if 372 

the analysis goal includes learning biological signatures to identify more subtle patterns in input 373 

samples, then there is not a single optimal latent dimensionality nor optimal algorithm. While 374 

compressing data into a single latent dimension will capture many biological signals, the 375 

“correct” dimension is not always clear, and several biological signatures may be better 376 

revealed in alternative latent dimensions.  377 
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 378 

Figure 7: Using BioBombe sequential compression in The Cancer Genome Atlas (TCGA) as features 379 
in supervised machine learning tasks. Predicting (a) cancer-type status and (b) gene mutation 380 
status for select cancer-types and important cancer genes using five compression algorithms and 381 
two ensemble models. The area under the precision recall (AUPR) curve for cross validation (CV) 382 
data partitions is shown. The blue lines represent predictions made with permuted data input 383 
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into each compression algorithm. The dotted lines represent AUPR on untransformed RNAseq 384 
data. The dotted gray line represents a hypothetical random guess. (c) Tracking the average 385 
change in AUPR between real and permuted data across latent dimensions and compression 386 
models in predicting (top) cancer types and (bottom) mutation status. The average includes the 387 
five cancer types and mutations tracked in panels a and b. (d) Tracking the sparsity and 388 
performance of supervised models using BioBombe compressed features in real and permuted 389 
data. (e) Performance metrics for the all-compression feature ensemble model predicting TP53 390 
alterations. (left) Receiver operating characteristic (ROC) and (right) precision recall curves are 391 
shown. (f) The average absolute value weight per algorithm for the all-compression-feature 392 
ensemble model predicting TP53 alterations. The adjusted scores are acquired by dividing by the 393 
number of latent dimensions in the given model.  394 
 395 

If optimizing a single model, a researcher can use one or many criteria to select an 396 

appropriate latent dimension. Measurements such as Akaike information criterion (AIC), 397 

Bayesian information criterion (BIC), stability, and cross validation (CV) can be applied to a 398 

series of latent dimensionalities [36,37]. Other algorithms, like Dirichlet processes, can naturally 399 

arrive at an appropriate dimension through several algorithm iterations [38]. Hidden layer 400 

dimensions of unsupervised neural networks are tunable hyperparameters defined by expected 401 

input data complexity and performance. However, applied to gene expression data these 402 

metrics often provide conflicting results and unclear suggestions. In genomics applications, the 403 

method Thresher uses a combination of outlier detection and PCA to identify the optimal 404 

number of clusters [39]. Compression model stability can also be used to determine an optimal 405 

latent dimensionality in gene expression data [40]. By considering only reproducible features, 406 

ICA revealed 139 modules from nearly 100,000 publicly available gene expression profiles [41]. 407 

However, rather than using heuristics to select a biologically-appropriate latent dimension, a 408 

researcher may instead elect to compress gene expression data into many different latent 409 

space dimensionalities to generate many different feature representations. 410 
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There are many limitations to our approach and analysis. First, our approach takes a 411 

long time to run. We are training many different algorithms across many different latent 412 

dimensions and iterations, which requires a lot of compute time. However, because we are 413 

training many models independently, this task can be parallelized. Additionally, we did not 414 

evaluate dimensions above k = 200. It is likely that many more signatures can be learned, and 415 

possibly with even higher association strengths in higher dimensions for certain biology. We 416 

also do not have a mechanism to detect compressed features that represent technical artifacts. 417 

Moreover, we did not explore adding hidden layers in AE models. Many models trained on gene 418 

expression data have benefited from using multiple hidden layers in neural network 419 

architectures [7,42]. Additional methods, like DeepLift, can be used to reveal gene importance 420 

values in internal representations of deep networks [43,44].  421 

An additional challenge is interpreting the biological content of the compressed gene 422 

expression features. Overrepresentation analysis (ORA) and gene set enrichment analysis 423 

(GSEA) are commonly applied but have significant limitations [24,45]. ORA requires a user to 424 

select a cutoff, typically based on standard deviation, to build representative gene sets from 425 

each feature. ORA tests also do not consider the weights, or gene importance scores, in each 426 

compression feature. Conversely, GSEA operates on ranked features, but often requires many 427 

permutations to establish significance. Furthermore, ORA requires each tail of the compressed 428 

feature distribution to be interpreted separately in algorithms that also learn negative weights. 429 

The weight distribution is dependent on the specific compression algorithm, and the same 430 

cutoff may not be appropriate for all algorithms and all compressed features. Instead, we 431 

implemented a network projection based approach to interpret compressed latent gene 432 
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expression features [46,47]. The approach is applied to the full and continuous distribution of 433 

gene weights, operates independently of the algorithm feature distribution, does not require 434 

arbitrary thresholds, and obviates the need to consider both tails of the distribution separately. 435 

Nevertheless, additional downstream experimental validation is required to determine if the 436 

constructed feature actually represents the biology it has been assigned.  437 

    438 

Conclusions: 439 

 To enhance biological signature discovery, it is best to compress gene expression data 440 

using several algorithms and many different latent space dimensionalities. These signatures 441 

represent important biological signals including various cell types, phenotypes, biomarkers, and 442 

other sample characteristics. We showed, through several experiments tracking gene 443 

expression signatures, gene set coverage, and supervised learning performance, that optimal 444 

biological features are learned using a variety of latent space dimensionalities and different 445 

compression algorithms. As unsupervised machine learning continues to be applied to derive 446 

insight from biomedical datasets, researchers should shift focus away from optimizing a single 447 

model based on certain mathematical heuristics, and instead towards learning good and 448 

reproducible biological representations that generalize to alternative datasets regardless of 449 

compression algorithm and latent dimensionality. 450 

 451 

 452 

 453 

 454 
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Methods: 455 

Transcriptomic compendia acquisition and processing 456 

We downloaded transcriptomic datasets from publicly available resources. We 457 

downloaded the batch-corrected TCGA PanCanAtlas RNAseq data from the National Cancer 458 

Institute Genomic Data Commons (https://gdc.cancer.gov/about-459 

data/publications/pancanatlas). These data consisted of 11,069 samples with 20,531 measured 460 

genes quantified with RSEM and normalized with log transformation. We converted Hugo 461 

Symbol gene identifiers into Entrez gene identifiers and discarded non-protein coding genes 462 

and genes that failed to map. We also removed tumors that were measured from multiple sites. 463 

This resulted in a final TCGA PanCanAtlas gene expression matrix with 11,060 samples, which 464 

included 33 different cancer-types, and 16,148 genes. The breakdown of TCGA samples by 465 

cancer-type is provided in Additional File 5.  466 

We downloaded the TPM normalized GTEx RNAseq data (version 7) from the GTEx data 467 

portal (https://gtexportal.org/home/datasets). There were 11,688 samples and 56,202 genes in 468 

this dataset.  After selecting only protein-coding genes and converting Hugo Symbols to Entrez 469 

gene identifiers, we considered 18,356 genes. There are 53 different detailed tissue-types in 470 

this GTEx version. The tissues types included in these data are provided in Additional File 5.  471 

Lastly, we retrieved the TARGET RNAseq gene expression data from the UCSC Xena data 472 

portal [48]. The TARGET data was processed through the FPKM UCSC Toil RNA-seq pipeline and 473 

was normalized with RSEM and log transformed [49]. The original matrix consists of 734 474 

samples and 60,498 Ensembl gene identifiers. We converted the Ensembl gene identifiers to 475 

Entrez gene names and retained only protein-coding genes. This procedure resulted in a total of 476 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/573782doi: bioRxiv preprint 

https://doi.org/10.1101/573782
http://creativecommons.org/licenses/by/4.0/


 26 

18,753 genes measured in TARGET. There are 7 cancer-types profiled in TARGET and the 477 

specific breakdown is available in Additional File 5. All specific downloading and processing 478 

steps can be viewed and reproduced at 479 

https://github.com/greenelab/BioBombe/tree/master/0.expression-download.  480 

 481 

Training unsupervised neural networks 482 

 Autoencoders (AE) are unsupervised neural networks that learn through minimizing the 483 

reconstruction of input data after passing the data through one or several intermediate layers 484 

[50]. Typically, these layers are of a lower dimension than the input, so the algorithms must 485 

compress the input data. Denoising autoencoders (DAE) add noise to input layers during 486 

training to regularize solutions and improve generalizability [51]. Variational autoencoders 487 

(VAE) add regularization through an additional penalty term imposed on the objective function 488 

[52,53]. In a VAE, the latent space dimensions (k) are penalized with a Kullback-Leibler (KL) 489 

divergence penalty restricting the distribution of samples in the latent space to Gaussian 490 

distributions. We independently optimized each AE model across a grid of hyperparameter 491 

combinations including 6 representative latent dimensionalities (described in Additional File 1 492 

and Additional File 2: Figure S2). 493 

 494 

Training compression algorithms with sequential latent dimensions 495 

 Independently for each dataset (TCGA, GTEx, and TARGET), we performed the following 496 

procedure to train the compression algorithms. First, we randomly split data into 90% training 497 

and 10% testing partitions. We balanced each partition by cancer type or tissue type, which 498 
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meant that each split contained relatively equal representation of tissues. Before input into the 499 

compression algorithm, we transformed the gene expression values by gene to a range 500 

between 0 and 1 independently for the testing and training partitions. We used the training set 501 

to train each compression algorithm. We used the scikit-learn implementations of PCA, ICA, and 502 

NMF, and the Tybalt implementations of VAE and DAE [8,54]. 503 

After learning optimized compression models with the training data, we transformed 504 

the testing data using these models. We assessed performance metrics using both training and 505 

testing data to reduce bias. In addition to training with real data, we also trained all models 506 

with randomly permuted data. To permute the training data, we randomly shuffled the gene 507 

expression values for all genes independently. We also transformed testing partition data with 508 

models trained using randomly permuted data. Training with permuted data removes the 509 

correlational structure in the data and can help set performance metric baselines.  510 

One of our goals was to assess differences in performance and biological signal 511 

detection across a range of latent dimensionalities (k). To this end, we trained all algorithms 512 

with various k dimensionalities including k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 513 

35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, and 200 for a total of 28 different dimensions. All of 514 

these models were trained independently. Lastly, for each k dimension we trained five different 515 

models initialized with five different random seeds. In total, considering the three datasets, five 516 

algorithms, randomly permuted training data, all 28 k dimensions, and five initializations, we 517 

trained 4,200 different compression models (Additional File 2: Figure S1). Therefore, in total, 518 

we generated 185,100 different compression features. 519 

 520 
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Evaluating compression algorithm performance 521 

 We evaluated all compression algorithms on three main tasks: Reconstruction, sample 522 

correlation, and weight matrix stability. First, we evaluated how well the input data is 523 

reconstructed after passing through the bottleneck layer. Because the input data was 524 

transformed to a distribution between 0 and 1, we used binary cross entropy to measure the 525 

difference between algorithm input and output as a measure of reconstruction cost. The lower 526 

the reconstruction cost, the higher fidelity reconstruction, and therefore the higher proportion 527 

of signals captured in the latent space features. We also assessed the Pearson correlation of all 528 

samples comparing input to reconstructed output. This value is similar to reconstruction and 529 

can be quickly tracked at an individual sample level. Lastly, we used singular vector canonical 530 

correlation analysis (SVCCA) to determine model stability within and model similarity between 531 

algorithms and across latent dimensions [19]. The SVCCA method consisted of two distinct 532 

steps. First, singular value decomposition (SVD) was performed on two input weight matrices. 533 

The singular values that combined to reconstruct 98% of the signal in the data were retained. 534 

Next, the SVD transformed weight matrix was input into a canonical correlation analysis (CCA). 535 

CCA aligned different features in the weight matrix based on maximal correlation after learning 536 

a series of linear transformations. Taken together, SVCCA outputs a single metric comparing 537 

two input weight matrices that represents stability across model initializations and average 538 

similarity of two different models. Because we used the weight matrices, the similarity 539 

describes signature discovery. We use the distribution of SVCCA similarity measures across all 540 

pairwise algorithm initializations and latent dimensionalities to indicate model stability [19]. 541 

 542 
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Using BioBombe as a signature discovery tool 543 

 We tested the ability of BioBombe sequentially compressed features to distinguish 544 

sample sex in GTEx and TCGA data, and MYCN amplification in TARGET NBL data. We 545 

performed a two-tailed independent t-test assuming equal variance comparing male and 546 

female samples, and NBL samples with and without MYCN amplification. We applied the t-test 547 

to all compression features identified across algorithms, initializations, and dimensions. Shown 548 

in the figures are the top scoring feature per latent space dimension and algorithm. 549 

 We applied the optimal MYCN signature learned in TARGET to an alternative dataset 550 

consisting of a series of publicly available NBL cell lines [23]. The data were processed using 551 

STAR, and we accessed the processed FPKM matrix from figshare [55].  We transformed the 552 

dataset with the identified signatures using the following operation: 553 

𝑆"#$ ∗ 𝐷"#	x	) = 𝐷+	,	)# 	 554 

Where D represents the respective RNAseq data to transform, S represents the specific 555 

signature, g’ represents the overlapping genes measured in both datasets, n represents 556 

samples, and D’s represents the signature scores in the transformed dataset. Of the 8,000 genes 557 

measured in TARGET data, 7,653 were also measured in external NBL cell line dataset (95.6%).  558 

 559 

Gene network construction and processing 560 

 We constructed networks using gene set collections compiled by version 6.2 of the 561 

Molecular Signatures Database (MSigDB) and cell types derived from xCell [24–26]. These gene 562 

sets represent a series of genes that are involved in specific biological processes and functions. 563 

We integrated all openly licensed MSigDB collections which included hallmark gene sets (H), 564 
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positional gene sets (C1), curated gene sets (C2), motif gene sets (C3), computational gene sets 565 

(C4), Gene Ontology (GO) terms (C5), oncogenic gene sets (C6) and immunologic gene sets (C7). 566 

We omitted MSigDB gene sets that were not available under an open license (KEGG, BioCarta, 567 

and AAAS/STKE). The C2 gene set database was split into chemical and genetic perturbations 568 

(C2.CPG) and Reactome (C2.CP.Reactome). The C3 gene set was split into microRNA targets 569 

(C3.MIR) and transcription factor targets (C3.TFT). The C4 gene set was split into cancer gene 570 

neighborhoods (C4.CGN) and cancer modules (C4.CM). Lastly, the C5 gene set was split into GO 571 

Biological Processes (C5.BP), GO Cellular Components (C5.CC), and GO molecular functions 572 

(C5.MF). xCell represents a gene set compendia of 489 computationally derived gene signatures 573 

from 64 different human cell types. The number of gene sets in each curation is provided in 574 

Additional File 6. In BioBombe network projection, only a single collection is projected at a 575 

time. 576 

 To build the gene set network, we used hetio software [56]. Briefly, hetio builds 577 

networks that include multiple node types and edge relationships. We used hetio to build a 578 

single network containing all MSigDB collections and xCell gene sets listed above. The network 579 

consisted of 17,451 unique gene sets and 2,159,021 edges representing gene set membership 580 

among 20,703 unique gene nodes (Additional File 6). In addition to generating a single network 581 

using curated gene sets, we also used hetio to generate 10 permuted networks. The networks 582 

are permuted using the XSwap algorithm, which randomizes connections while preserving node 583 

degree (i.e. the number of gene set relationships per gene) [57]. Therefore, the permuted 584 

networks are used to control for biases induced by uneven gene degree. We compared the 585 
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observed score against the distribution of permuted network scores to interpret the biological 586 

signatures in each compression feature. 587 

 588 

Rapid interpretation of compressed gene expression data 589 

 Our goal was to quickly interpret the automatically generated compressed latent 590 

features learned by each unsupervised algorithm. To this end, we constructed gene set 591 

adjacency matrices with specific MSigDB or xCell gene set collections using hetio software. We 592 

then performed the following matrix multiplication against a given compressed weight matrix 593 

to obtain a raw score for all gene sets for each latent feature. 594 

𝐻.	x	) ∗ 𝑊)	x	0 = 𝐺.	x	0	 595 

Where H represents the gene set adjacency matrix, c is the specific gene set collection, and n 596 

represents genes. W represents the specific compression algorithm weight matrix, which 597 

includes n genes and k latent space features. The output of this matrix multiplication, G, is 598 

represented by c gene sets and k latent dimensions. Through a single matrix multiplication, the 599 

matrix G tracks raw BioBombe scores. 600 

 Because certain hub genes are more likely to be implicated in gene sets and longer gene 601 

sets will receive higher raw scores, we compared G to the distribution of permuted scores 602 

against all 10 permuted networks. 603 

𝐻2.	x	)
3435 ∗ 𝑊)	x	0 = 𝐺2	 604 

𝐺64+.789 = 	
𝐺.	x	0 −	𝐺2	;;;;
𝜎(𝐺2)

 605 
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Where HP
1-10 represents the adjacency matrices for all 10 permuted networks and Gp represents 606 

the distribution of scores for the same k features for all permutations. We calculated the z 607 

score for all gene sets by latent features (Gz-score). This score represents the BioBombe Score. 608 

Other network-based gene set methods consider gene set influence based on network 609 

connectivity of gene set genes [46,47]. Instead, we used the latent feature weights derived 610 

from unsupervised compression algorithms as input, and the compiled gene set networks to 611 

assign biological function. 612 

We also compared the BioBombe network projection approach to overrepresentation 613 

analyses (ORA). We did not compare the approach to gene set enrichment analysis (GSEA) 614 

because evaluating single latent features required many permutations and did not scale to the 615 

many thousands of compressed features we examined. We implemented ORA analysis using a 616 

Fisher’s Exact test. The background genes used in the test included only the genes represented 617 

in the specific gene set collection. 618 

 619 

Calculating gene set coverage of sequentially compressed gene expression data 620 

 We were interested in determining the proportion of gene sets within gene set 621 

collections that were captured by the features derived from various compression algorithms. 622 

We considered a gene set “captured” by a compression feature if it had the highest positive or 623 

highest negative BioBombe z score compared to all other gene sets in that collection. We 624 

converted BioBombe z scores into p values using the pnorm() R function using a two-tailed test. 625 

We removed gene sets from consideration if their p values were not lower than a Bonferroni 626 

adjusted value determined by the total number of latent dimensionalities in the model. We 627 
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calculated coverage (C) by considering all unique top gene sets (U) identified by all features in 628 

the compression model (w) and dividing by the total number of gene sets in the collection (TC). 629 

C	=	
𝑈A
𝑇.
	 630 

We calculated the coverage metric for all models independently (Ci), for ensembles, or 631 

individual algorithms across all five iterations (Ce), and for all models across k dimensions (Ck). 632 

We also calculated the total coverage of all BioBombe features combined in a single model 633 

(Call). A larger coverage value indicated a model that captured a larger proportion of the 634 

signatures present in the given gene set collection.  635 

 636 

Downloading and processing publicly available expression data for neutrophil GTEx analysis 637 

 We used an external dataset to validate the neutrophil feature that we identified to 638 

contribute to detecting blood signatures in GTEx. To assess the performance of this neutrophil 639 

signature, we downloaded data from the Gene Expression Omnibus (GEO) with accession 640 

number GSE103706 [27]. RNA was captured in this dataset using Illumina NextSeq 500. The 641 

dataset measured the gene expression of several replicates of two neutrophil-like cell lines, HL-642 

60 and PLB-985, which were originally derived from acute myeloid leukemia (AML) patients. 643 

The PLB-985 cell line was previously identified as a subclone of HL-60, so we expect similar 644 

signature activity between the two lines [58]. Gene expression of the two cell lines was 645 

measured with and without neutrophil differentiation treatments. Though DMSO is frequently 646 

used to solubilize compounds and act as an experimental control, it has been used to create 647 

neutrophil-like cells [59], and the dataset we used was generated to compare this activity with 648 

untreated and DMSO with Nutridoma [27]. We tested the hypothesis that our neutrophil 649 
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signature would distinguish the samples with and without neutrophil differentiation treatment. 650 

We transformed external datasets with the following operation: 651 

𝑊0	x	"#
$ ∗ 𝐷"#	x	) = 𝐷0	x	)# 	 652 

Where D represents the processed RNAseq data from GSE103706. Of 8,000 genes measured in 653 

W, 7,664 were also measured in D (95.8%). These 7,664 genes are represented by g’. All of the 654 

“Neutrophils_HPCA_2” signature genes were measured in W. D’ represents the GSE103706 655 

data transformed along the specific compression feature. Each sample in D’ is then considered 656 

transformed by the specific signature captured in k. The specific genes representing 657 

“Neutrophils_HPCA_2” is provided in Additional File 3. 658 

 659 

Downloading and processing publicly available expression data for monocyte GTEx analysis 660 

 We used an additional external dataset to validate the identified monocyte signature. 661 

We accessed processed data for the publicly available GEO dataset with accession number 662 

GSE24759 [28]. The dataset was measured by Affymetrix HG-U133A (early access array) and 663 

consisted of 211 samples representing 38 distinct and purified populations of cells, including 664 

monocytes, undergoing various stages of hematopoiesis. The samples were purified from 4 to 7 665 

independent donors each. Many xCell gene sets were computationally derived from this 666 

dataset as well [25]. Not all genes in the weight matrices were measured in the GSE24759 667 

dataset. For this application, 4,645 genes (58.06%) corresponded with the genes used in the 668 

compression algorithms. Additionally, 168 out of 178 genes (94.38%) in the 669 

“Monocyte_FANTOM_2” gene set were measured (Additional File 3). We investigated the 670 
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“Monocytes_FANTOM_2” signature because of its high enrichment in VAE k = 3 and low 671 

enrichment in VAE k = 2. 672 

 673 

Machine learning classification of cancer types and gene alterations in TCGA 674 

 We trained supervised machine learning models to predict cancer type from RNAseq 675 

features in TCGA PanCanAtlas RNAseq data. We implemented a logistic regression classifier 676 

with an elastic net penalty. The classifiers are controlled for mutation burden. More details 677 

about the specific implementation are described in Way et al. 2018 [60]. Here, we predicted all 678 

33 cancer types using all 11,060 samples. These predictions were independent per cancer type, 679 

which meant that we trained models with the same input gene expression data, but used 33 680 

different status matrices.  681 

We also trained models to predict gene alteration status in the top 50 most mutated 682 

genes in the PanCanAtlas. These models are controlled for cancer type and mutation burden. 683 

We defined the status in this task using all non-silent mutations identified with a consensus 684 

mutation caller [61]. We also considered large copy number amplifications for oncogenes and 685 

deep copy number deletions for tumor suppressor genes as previously defined [62]. We used 686 

the threshold GISTIC2.0 calls for large copy amplifications (score = 2) and deep copy deletions 687 

(score = -2) in defining the status matrix [63]. For each gene alteration prediction, we removed 688 

samples with a hypermutator phenotype, defined by having log10 mutation counts greater than 689 

five standard deviations above the mean. For the mutation prediction task, we also did not 690 

include certain cancer types in training. We omitted cancer types if they had less than 5% or 691 

more than 95% representation of samples with the given gene alteration. The positive and 692 
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negative sets must have also included at least 15 samples. We filtered out cancer types in this 693 

manner to avoid the classifiers from artificially detecting differences induced by unbalanced 694 

training sets. 695 

  We trained models with raw RNAseq data subset by the top 8,000 most variably 696 

expressed genes by median absolute deviation. The training data used was the same training 697 

set used for the sequential compression procedure. We also trained models using all 698 

compression matrices for each latent dimension, and using real and permuted data. We 699 

combined compressed features together to form three different types of ensemble models. The 700 

first type grouped all five iterations of VAE models per latent dimension to make predictions. 701 

The second type grouped features of five different algorithms (PCA, ICA, NMF, DAE, VAE) of a 702 

single iteration together to make predictions. The third ensemble aggregated all features 703 

learned by all algorithms, all initializations, and across all latent dimensions, which included a 704 

total of 30,850 features. In total, considering the 33 cancer types, 50 mutations, 28 latent 705 

dimensions, ensemble models, raw RNAseq features, real and permuted data, and 5 706 

initializations per compression, we trained and evaluated 32,868 different supervised models.  707 

We optimized all of the models independently using 5-fold cross validation (CV). We 708 

searched over a grid of elastic net mixing and alpha hyperparameters. The elastic net mixing 709 

parameter represents the tradeoff between l1 and l2 penalties (where mixing = 0 represents an 710 

l2 penalty) and controls the sparsity of solutions [64]. Alpha is a penalty tuning the impact of 711 

regularization, with higher values inducing higher penalties on gene coefficients. We searched 712 

over a grid for both hyperparameters (alpha = 0.1, 0.13, 0.15, 0.2, 0.25, 0.3 and mixing = 0.15, 713 

0.16, 0.2, 0.25, 0.3, 0.4) and selected the combination with the highest CV AUROC. For each 714 
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model, we tested performance using the original held out testing set that was also used to 715 

assess compression model performance.  716 

 717 

Reproducible software 718 

All code to perform all analyses and generate all results and figures is provided with an 719 

open source license at https://github.com/greenelab/biobombe [65]. 720 

 721 

List of abbreviations: 722 

RNAseq = RNA sequencing; PCA = principal components analysis; ICA = independent 723 

components analysis; NMF = non-negative matrix factorization; AE = autoencoder; DAE = 724 

denoising autoencoder; VAE = variational autoencoder; TCGA = the cancer genome atlas; GTEx 725 

= genome tissue expression project; TARGET = therapeutically applicable research to generate 726 

effective treatments project; BRCA = breast invasive carcinoma;  COAD = colon 727 

adenocarcinoma; LGG = low grade glioma; PCPG = pheochromocytoma and paraganglioma; 728 

LAML = acute myeloid leukemia; LUAD = lung adenocarcinoma; GEO = gene expression 729 

omnibus; ROC = receiver operating characteristic; PR = precision recall; AUROC = area under the 730 

receiver operating characteristic curve; AUPR = area under the precision recall curve; CV = cross 731 

validation; ORA = overrepresentation analysis; GSEA = gene set enrichment analysis; SVD = 732 

singular value decomposition; CCA = canonical correlation analysis; SVCCA = singular vector 733 

canonical correlation analysis; TF = transcription factor; DMSO = dimethyl sulfoxide 734 
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