
Natural global motion processing by populations of direction-
selective retinal ganglion cells  
 
Jon Cafaro1, Joel Zylberberg2, Greg Field1* 

 
1. Department of Neurobiology, Duke University, Durham NC 
2. Department of Physics and Astronomy, York University, Toronto ON 

 
* to whom correspondence should be addressed: field@neuro.duke.edu 
 
 
Abstract 
Neural population codes discovered for simple artificial stimuli may not generalize to more 
naturalistic conditions. To explore this problem, we measured how populations of direction-
selective ganglion cells (DSGCs) from mouse retina respond to a dynamic global motion stimulus 
that mimics self-motion through the environment. We then examined the encoding and decoding 
of motion direction in both individual and populations of DSGCs. Individual cells integrated global 
motion over ~200 ms, and responses were tuned to direction. However, responses were sparse, 
and broadly tuned, which severely limited decoding performance from small populations. In 
contrast, larger populations compensated for response sparsity, enabling decoding with high 
temporal precision (<100 ms).  At these timescales, correlated spiking was minimal and had little 
impact on decoding performance, unlike results obtained using simpler motion stimuli decoded 
over longer timescales. We use these data to define and explore different DSGC population 
decoding regimes that utilize or mitigate correlated spiking to achieve high spatial versus high 
temporal resolution. 
 
Introduction 

Sensory systems encode and decode information across populations of neurons.  
Understanding such population codes is fundamental to understanding the function of neural 
circuits and sensory processing1,2.  Population codes are likely optimized for natural sensory 
stimuli but they are often probed using simple and artificial stimuli3,4.  Such simplifications may 
limit the understanding of population codes and neural function in ethological contexts.  In this 
paper, we examine a canonical population code, direction coding in mammalian ON-OFF 
(oo)DSGCs, in the context of a naturalistic stimulus.    

In the mammalian retina, there are four types of ooDSGCs, each tiling space with their 
dendritic and receptive fields5-9.  These types differ primarily in their preferred direction of motion, 
which are organized along four cardinal axes10-14.  Direction is encoded across the four types by 
their relative firing rates. This produces a population code for direction that is relatively invariant 
to object speed and contrast15,16.  ooDSGCs have been largely considered responsible for 
signaling local motion, because global motion attenuates (but does not eliminate) their 
responses17-20. A separate class of DSGCs, so-called ON DSGCs (oDSGCs), are minimally 
attenuated by global motion, and have thus been assumed to play a dominant role in signaling 
global motion21.  Correspondingly, previous studies examining the fidelity and accuracy of the 
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ooDSGC population code have focused on local motion and artificial stimuli that are decoded at 
relatively long timescales16,22. These studies largely pointed toward a high-fidelity code that 
utilizes correlated activity in nearby ooDSGCs to signal the direction of local motion. However, 
recent work indicates that ooDSGCs may be organized to encode self-motion, a global motion 
signal14,23,24.  This motivates an examination of ooDSGC individual and population responses 
under conditions in which the stimulus is a natural scene moving globally and dynamically on the 
retina. It also motivates understanding how the direction of global motion can be decoded from 
populations of mammalian DSGCs and the extent to which concepts applicable to decoding local 
motion at long timescales apply to decoding global motion at shorter, and perhaps more 
behaviorally-relevant, timescales. 

To study DSGC responses, we recorded simultaneously the spiking activity from hundreds 
of retinal ganglion cells (RGCs) using a large-scale multielectrode array (MEA). We distinguished 
DSGCs from other RGCs based on their responses to drifting gratings11,25. We then projected 
dynamically moving natural images onto the retina. Individual ooDSGCs and oDSGCs exhibited 
similar encoding of dynamic global motion stimuli: they both integrated and low-pass filtered 
direction signals over a timescale of ~200 ms; they were both broadly tuned; and they both 
exhibited similar spike rates. Importantly, both ooDSGC and oDSGCs exhibited little trial-to-trial 
variability in their responses to dynamic global motion, indicating that while the responses were 
sparse, they were reliable.  

We then utilized our more complete populations of ooDSGCs to examine the limitations 
inherent in decoding dynamic global motion signals from small and large ooDSGC populations. 
For a local quartet of ooDSGCs (each with a different preferred direction), determining the 
direction of global motion was marginally better than chance at short timescales (~100 ms). 
Decoding accuracy was improved by longer temporal integration of ooDSGC signals, however 
this is only an effective decoding strategy when changes in motion direction are infrequent. When 
motion direction changes frequently, large populations of ooDSGCs are needed to accurately and 
rapidly (< 100 ms) decode the direction of global motion. Large populations of ooDSGCs are 
available for decoding at no cost to spatial resolution because the nature of the motion signal is 
global. Furthermore, the short integration times used when decoding large populations result in 
largely uncorrelated population activity, which is counter to previous results decoding local motion 
at long timescales 16,26. This limits the impact of correlated spiking on decoding accuracy in a 
dynamic global motion context.  Thus, large populations of nearly-independent ooDSGC signals 
integrated over short timescales enables rapid decoding of direction.  We generalize these 
findings to illustrate the tradeoffs inherent in decoding visual signals that vary in space versus 
time.  
 
Results  

Visually driven responses of retinal ganglion cells (RGCs) were measured ex vivo using a 
multi-electrode array (MEA)11,25.  Responses to drifting gratings distinguished ooDSGCs and 
oDSGCs from other RGCs over the MEA (see Methods). To measure the responses of DSGCs 
to dynamic and relatively natural global motion (Fig 1A), a natural scene from the Van Hatteren 
image database27 was dynamically moved over the retina. This paradigm drove the responses of 
dozens of identified and simultaneously recorded ooDSGCs and oDSGCs to a stimulus that 
approximated self-motion in a natural environment.      
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Individual ooDSGCs encode direction via integration of dynamic global motion  
 Examining responses during direction changes can reveal how DSGCs integrate over 
motion direction history - an important factor in their response to a natural stimulus regime. Thus, 
we begin by focusing on ooDSGCs, and analyzing the relationship between their spiking and 
dynamic global motion of a natural scene.  We randomly and iteratively translated a natural scene 
on the retina while recording ooDSGC spikes (see Methods).  The, X and Y positions of the image 
were shifted in each frame of the video display by ΔX(t) and ΔY(t).  Image position shifts were 
sampled independently from a Gaussian distribution, generating an approximately ‘white noise’ 
motion stimulus (Fig 1A; see Methods).  The image shift distribution had a zero mean with a 
standard deviation ~20 µm/frame (~25 deg/s).  This value was chosen to maximize responses 
from ooDSGCs and fall within the range of eye movement velocities in freely moving rats28 and 
retinal image motion in rabbits29.  We calculated the correlation between ΔX and ΔY values and 
spike rate, yielding a spike-triggered average (STA) of the displacements in X and Y for each cell 
(Fig 1B). Translating these Cartesian to polar coordinates facilitated visualizing the STA-directions 
of all ooDSGCs simultaneously (Fig 1C).  Approximately 500 ms preceding a spike, the average 
motion direction fluctuated randomly for every ooDSGC (Fig 1Ci).  However, between 300 to 100 
ms preceding a spike, the motion direction coalesced to one of four cardinal directions. These 
results indicate that each ooDSGC encodes global motion along one of four directions and that 
spiking depends on the motion direction over ~200 ms temporal window, with ~100 ms latency to 
spiking (Fig 1C).  
 There are two possible strategies by which ooDSGCs may encode this motion. First, 
ooDSGCs may simply integrate motion signals over a temporal window. Alternatively, they may 
signal a change in direction by differentiating the motion trajectory.  Differentiation is a common 
computation performed by the receptive fields of most RGCs (e.g. center-surround antagonism30-

32). Pure integration requires a monophasic dependence on motion trajectories preceding spikes, 
while differentiation (in the case of direction changes >90 degrees) requires a biphasic 
dependence on motion trajectories.  Every ooDSGC exhibited a monophasic direction STA 
(peak/trough ratios at 14.2 ± 2.7; Fig 1B), with a mean half width of 111 ± 2 ms (Fig 1Cii).  Thus, 
ooDSGCs encoding appears more related to the integration of direction for global motion stimuli 
within relatively short time windows preceding their spikes; they do not appear to explicitly signal 
changes (differentiation) in the motion direction.  Below we explore the implications of needing to 
decode a signal that is updated continuously over short time widows.   
 
Individual ooDSGCs generate sparse and broadly tuned responses to naturalistic global 
motion. 
 The analyses above reveal the average motion kinetics and directions that precede 
ooDSGC spiking for global motion in a natural scene.  However, the fidelity of encoding, and the 
accuracy of decoding, will depend strongly on the spiking dynamics elicited by these stimuli. 
Spiking was infrequent in ooDSGCs to natural scene global motion (Fig 1D,E), consistent with 
other measures of RGC activity during natural movie presentations33.  For the global motion 
stimulus, firing rates ranged from 0.8 to 8.5 Hz, with one or more spikes occurring in a single 
neuron on less than 8% of the video frames (40 Hz frame rate).  This result was replicated with 
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several different images and natural movies from cameras that were head mounted to animals 
(Fig 1Eii; See Methods), demonstrating that global motion in natural scenes typically evokes 
sparse responses across ooDSGCs.   

One question that arises is whether or not these stimuli were reliably driving spikes in 
ooDSGCs, given the low spike rates. Repeated presentations of the same stimulus produced 
stereotyped ooDSSGC responses (Fig 1Fi), indicating that the response sparsity is not simply a 
result of presenting a stimulus that is incapable of evoking a response.  Instead, these stimuli 
generated sparse responses that were reliable from trial to trial – within each response frame the 
spike count mean was approximately equal to the variance (mean fano factor ± SEM = 1.1 ± 
0.05). However, the motion direction preceding individual spikes was highly variable (Fig 1G).  To 
quantify the variability in motion direction preceding spikes, we calculated the difference between 

Figure 1: DSGCs integrate the direction of global motion over time and respond sparsely with broad 
tuning to natural images. A. Natural image presented (top) and displaced according to ΔX and ΔY 
(bottom). B. Spike triggered average of ΔX and ΔY for single example ooDSGC and an oDSGC (inset). C. 
Direction (Ci) and magnitude (Cii) of motion calculated from spike triggered average (STA) for all ooDSGCs 
in a single retinal recording. Color coded according to preferred direction in grating stimulus. D. Spike times 
during five seconds of dynamic global motion stimulus in (e.g. A) for all ooDSGCs in a single retinal 
recording; color indicates preferred direction determined form a drifting grating. E. Probability distributions 
for DSGCs in a single retinal recording using a jittered image (Ei) and for ooDSGC and oDSGCs in 2 
different retinal recordings using 2 different jittered images and 2 different natural movies (Eii).  Movies 
included video from a camera mounted on a mouse (Movie 1) and a cat (Movie 2). F. Spike raster of a 
single ooDSGC (Fi) or oDSGC (Fii) simultaneously recorded over several repeated presentations of the 
same jittered image. G. Difference between preferred direction from STA (panel Ci) at time of peak 
magnitude (panel Cii) and direction preceding each spike. Histogram includes data from all ooDSGC cells 
and all spikes from a single retina (n = 49); similar results were observed in a second retinal recording. The 
inset shows the same analysis for all oDSGCs in the same recording.   
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the direction of motion preceding each spike and the STA direction (evaluated at the peak of the 
STA magnitude).  This distribution is broad and on average the direction preceding a spike differs 
from the mean (preferred) direction by ~70 degrees (Fig 1G, dashed line).  This variability will limit 
decoding performance, because the presence of a spike poorly constrains the preceding motion 
direction.    

Variability in the prespike direction likely reflects several sources including: the tuning 
width of the ooDSGC, different direction trajectories across video frames filling the ooDSGC 
integration time, and aperture effects that allow local orientation to influence apparent direction 
within a receptive field34-36.  Irrespective of the source, the stimulus variability preceding ooDSGC 
spiking combined with infrequent spiking, will limit the accuracy with which direction of global 
motion can be decoded from ooDSGC populations.  Below we assess if the response properties 
described above are unique to ooDSGCs, or whether those observations also apply to oDSGCs.  
 
oDSGCs respond similarly to ooDSGCs 
 Previous work has suggested that signaling self-motion is performed by oDSGCs while 
ooDSGCs signal local object motion17.  Thus, we compared the responses of oDSGCs to 
ooDSGCs to see if they exhibited distinct response properties to global motion in natural scenes.  
First, oDSGCs showed similar monophasic temporal integration to ooDSGCs (Fig 1B inset).  
Second, oDSGCs showed similar response sparsity to the same global motion stimuli (Fig 1Ei).  
Indeed, all recorded RGCs had similar response sparsity (Fig 1Ei). oDSGCs also exhibit similarly 
reliable responses to repeated presentation of the same global motion sequence for a natural 
scene (Fig Fii) and similar direction variability preceding a spike (Fig 1G, inset). Thus, we do not 
observe clear differences in the response statistics or encoding properties between oDSGCs and 
ooDSGCs to global motion of a natural image.  
 The analyses below leverage the larger populations of recorded ooDSGCs to test the 
ability to decode the direction of global motion from those populations and explores the factors 
limiting the accuracy of that decoding.      

 
Quartets of ooDSGCs exhibit limited accuracy signaling the direction of global motion  
 To begin to understand how the response properties of ooDSGC impact the decoding of 
motion, we applied an optimal linear estimator (OLE) to the responses from quartets of 
simultaneously recorded ooDSGCs.  In brief, an OLE assigns a set of weights to each cell which, 
when scaled by the response of that cell and summed across cells, will minimize the mean 
squared error of the prediction (Fig 2A; see Methods).  Each quartet consisted of ooDSGCs with 
different preferred directions and cells within 200 µm of each other (Fig 2B). We begin with 
quartets of ooDSGCs because they form an elementary unit of a population code. Specifically, 
spikes from one ooDSGC poorly constrain motion direction, because of the broad direction range 
that can precede a spike.  However, spikes distributed across a quartet of ooDSGCs can, in 
principle, be used to more accurately decode motion direction37. We begin with an OLE because 
it is a simple decoder that performs nearly optimally on ooDSGC population responses and can 
be simply implemented by downstream neurons22,38.  
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 The first question we address with this approach is, how accurately can global motion in 
a natural scene be decoded from the responses produced by a local quartet of ooDSGCs? The 
answer is likely to depend on the duration over which the decoder integrates signals from the 
ooDSGCs, and the dynamics of stimulus motion. First, we examined the dependence on 
integration time. When integration time is short, the decoder is forced to estimate direction from 
responses produced within single video frames (~25 ms). This yielded low accuracy estimates of 
motion direction; the median expected error was ~80 degrees (Fig 2C-D). Note this analysis 
allows for a latency between the stimulus direction and ooDSGC responses (see Methods).  The 
median error is reported throughout and provides the minimum error in decoding 50% of the time 
bins, an appropriate quantity when decoding continuously.  For comparison, chance performance 
in direction estimation would be 90 degrees, and perfect performance would be 0 degrees. A 
major contributor to this high uncertainty in motion direction is that within ~25 ms, the most 

Figure 2: ooDSGC quartets are limited in their decoding accuracy by response sparsity and dynamic 
motion. A. Schematic of the decoder, the optimal linear estimator (OLE). B. Examples of four ooDSGC 
quartets. Relative location of each cell is marked from position on array and circles drawn, 300 µm diameter, 
provide a scale bar near the size of ooDSGC dendritic fields. C. Top: Spike response from an example 
quartet during a dynamic global motion stimulus (spike times are uniformly shifted for optimal decoding). 
Middle: Decoder provides estimate of direction for each frame change using two different spike integration 
times. Bottom: Acute difference between OLE and actual direction for each integration time. D. Median 
error over all decoded time points as a function of integration time from one retina (N=15 quartets). E. 
Fraction of bins with non-zero spikes in 0-4 cells in each quartet (same retina as in D). F. Median error as 
a function of number of cells in quartet with non-zero spikes (same retina as in D). G. Median error for all 
decoded time points as a function of integration time when decoding drifting image with direction and speed 
held constant (see Methods). Separately recorded retina from panels B-F (7 quartets).  Error bars (D-G) 
show standard deviation across quartets. 
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frequent output from the quartet of ooDSGCs is zero spikes (Fig 2E).  When there are no spikes, 
the decoder assigns a default constant, effectively guessing at the direction of motion.  It is worth 
noting, that in a stimulus regime with constantly changing direction, this default is no worse than 
assuming the direction last decoded in the presence of spikes.     

To test that the high error at short integration times results from the sparsity of the 
population response, we analyzed the frequency with which a given number of ooDSGCs 
responded within a quartet.  For short integration times there is a high probability of zero spikes 
from any ooDSGC in the quartet (Fig 2E).  Furthermore, decoding error depended on the number 
of cells responding within a given integration window - the error decreased sub-linearly for 
increasing cell numbers (Fig 2F). Errors were very high when four cells were responding in the 
same bin, which results from cancelation of oppositely tuned neurons.  
 One path toward improving decoding performance is for the decoder to integrate over 
longer time windows. This would allow for a larger fraction of decoded epochs to contain at least 
one spike from the quartet of ooDSGCs. However, increasing the integration time to 125 ms (5 
stimulus frames) only modestly decreased the error of direction estimates to ~74 degrees. 
Furthermore, for longer integration times, average direction error increased (Fig 2D). Thus, 
decoding global motion from local quartets of ooDSGCs exhibits limited accuracy. 

The increase in decoding error at longer integration times is likely a result of the dynamic 
stimulus, which frequently changes directions. Thus, integrating for longer periods of time incurs 
a cost: the inability to decode rapid changes in direction. To test this hypothesis, we switched 
from decoding an image that changed direction and speed dynamically to a drifting natural image 
that moved in a constant direction and speed (see Methods). As hypothesized, images moved in 
a static direction show only increases in accuracy with increasing integration time (Fig 2G), as the 
decoder was afforded the opportunity of accumulating spikes over long periods of time without a 
change in direction. With a 2s integration window, the decoder could achieve average errors down 
to ~20 degrees.  

The analyses above show that quartets of local ooDSGC provide little information about 
global motion direction in a natural scene at short time scales.  Their limited decoding accuracy 
is largely due to the sparse (infrequent) spiking generated by the stimulus.  Furthermore, decoding 
is limited to short integration times when motion is dynamic because integrating over longer time 
windows fails to track changes in motion direction.  This is at least partly a consequence of 
ooDSGCs integrating, instead of differentiating, motion (Fig 1B).  If decoding accuracy is limited 
by the sparsity of the population response, do larger populations of ooDSGCs allow for more 
accurate decoding of dynamic motion at short integration times?  
 
Large ooDSGC populations can encode direction continuously over short time scales    

To begin to test the effect of ooDSGC population size on decoding global motion, we 
decoded the direction of dynamic global motion using the responses of all ooDSGCs measured 
in an experiment (Fig 3A). While these populations are not complete, due to imperfect sampling 
of RGCs over the MEA, this analysis permitted data-based decoding on 43-50 ooDSGCs in 
individual experiments. Furthermore, the population spanned lengths of ~750 um (25o of visual 
arc) on the retina. 
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Larger populations of ooDSGCs increase the frequency with which one or more cells 
spikes for a given integration time, relative to quartets. This effectively decreases the sparsity of 
the population response to which the decoder has access.  As a result, the median error from 
decoding these larger population responses was significantly smaller than decoding quartets, 
particularly for short integration times (Fig 3B-C). For example, at ~25 ms (a single video frame), 
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Figure 3: Larger populations of ooDSGCs improve decoding accuracy with shorter integration 
times. A. Location on array of all ooDSGCs recorded in single retina. Circle provides estimate of the size 
of receptive field and colors indicate preferred direction. B. Top: Spike response from recorded ooDSGC 
population during dynamic global motion stimulus. Middle: Decoder provides estimate of direction for each 
frame change using two different spike integration times. Bottom: Acute difference between OLE and actual 
direction for each integration time.  C.  Median error for all decoded time points as a function of integration 
time. For both the quartets (as in Figure 2D) recorded in 2 different retinas and the entire population for 2 
different retinas.  No error bars are provided for the estimate across the entire population. D. As in panel C 
using an image with a constant direction (see Methods). E. Cross correlation between stimulus image 
displacement estimate and actual stimulus (ΔX=solid or ΔY=dashed line). F. Schematic showing “single 
cell” manipulation of input to OLE. G. Median error using control and “single cell” input to OLE. Results from 
two retinas are shown at 3 different spike integration times. H. Same as panel F using image with direction 
held constant. 
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decoding error was reduced to 55-60 degrees for a population of 48 ooDSGCs, down from 80 
degrees for a quartet.  It is notable that decoding direction from a population on a single frame 
was so accurate, given that a single frame is much briefer than the integration time of the STA.   

Similar to the results from ooDSGC quartets, increasing the integration time also caused 
an increase in median errors for larger ooDSGC populations (Fig 3B-C).  This increase is because 
the global motion is dynamic, causing the decoder to estimate a single direction of motion from 
responses that are produced by multiple directions. When the direction of the stimulus was 
constant, longer integration times resulted in a monotonic decrease in error for large populations 
of ooDSGcs (Fig 3D). For long integration times (2 s), decoding error fell to ~20 degrees with a 
population of 48 ooDSGCs.  Thus, larger ooDSGC populations allow for more accurate decoding 
of global motion in natural scenes within briefer integration times. However, long integration times 
limit decoding performance when global motion changes dynamically.     

Thus far we have shown that long stimulus integration impairs the ability of ooDSGC 
populations to accurately estimate dynamic motion. Long stimulus integration has an additional 
cost, which is to delay the time at which direction estimates are most accurate relative to the 
stimulus. To measure this delay we computed the cross correlation between the actual and 
estimated image displacements (in ΔX and ΔY).  The cross-correlation between these values was 
significantly delayed and broader at longer integration times (Fig 3E).  Thus, integration over short 
timescales allows downstream circuits to decode more rapidly, thereby following more frequent 
changes in direction.  This is only achievable with large populations of ooDSGCs because 
quartets perform marginally better than chance within the same integration times.  

Increasing the population size could improve decoding in two different ways: 1) by 
increasing the number of time points with single responsive cells; and/or 2) increasing the number 
of time bins with multiple responsive cells.  To measure the extent to which the error depended 
on a simultaneous multi-cell response, the OLE was trained on the full response set and tested 
on either the full response set, or on a modified response set in which only a single cell response 
(the largest response) at each time bin was provided to the decoder (Fig 3F).  If direction decoding 
is entirely mediated by single cells, then there should be no difference between using the full and 
modified response sets.  There was a significant increase in the error when decoding on the 
modified response set in both the dynamic (Fig 3G) and static (Fig 3H) direction stimuli.  Thus, 
the decoding accuracy in larger populations relies on simultaneous activity from multiple 
ooDSGCs.    

The simultaneous activity between ooDSGCs that underlies a population response could 
arise purely through independent responses across ooDSGCs or through correlated subsets of 
ooDSGCs.  In the next section we examine the extent to which the accuracy of rapid decoding in 
large ooDSGCs populations relies on response correlations within the population. 
 
Rapid-global direction of motion is encoded by large populations of independent 
ooDSGCs  
 Natural scenes have local intensity correlations that result in correlated activity between 
nearby RGCs39,40.  Recent work has indicated that such response correlations promote robust 
decoding by maintaining the relative activity between ooDSGCs with different preferred 
directions16,26.  To what extent are response correlations important to maintaining the accuracy of 
rapid decoding of global motion from large ooDSGC populations?  
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To understand how the correlation structure contributes to decoding accuracy, we 
measured and manipulated response correlations across the ooDSGC populations.  In this 
section we focused entirely on the static direction stimulus, which permitted manipulations that 
would be impossible across a dynamic direction stimulus.       

First, we examined the correlation structure in the population by mapping the pairwise 
correlation coefficients as a function of (1) distance between pairs, (2) relative preferred direction, 
and (3) integration time (Fig 4Ai-iii).  The correlation coefficients were calculated within a trial and 
averaged across all trials and directions.  Thus, the response correlations reported here include 
signal and noise correlations and measure the tendency of cells to respond to the same image 
structure.  The correlation coefficient between pairs of ooDSGCs increases with the integration 
time used to calculate the responses, as previously noted41, - short integration times diminish 
correlations (Fig 4A-note axes scale).  Thus, over short integration times, correlations are small, 
suggesting they may not influence decoding accuracy to the extent observed in previous studies 
that considered longer integration times16,26. 

However, for a given integration time, the correlation is higher for cells that are spatially 
closer and modulated less prominently by their relative preferred directions (eg. Fig 4Ai)40.  This 
reflects the increased tendency of nearby cells to respond to the same part of the image as the 
dominant determinant of correlation structure.  This led us to ask if the higher correlations in 
nearby cells are important in maintaining the accuracy of decoding from large ooDSGC 
populations over short time scales.  In other words, are responses to global motion encoded by 
many small-local populations of correlated cells?    

To test how decoding error depends on the correlations between ooDSGCs, the OLE was 
tested on either the unmodified (control) response set or a decorrelated (shifted) response set, in 
which the response bins were shifted in time during a drifting image (Fig 4B).  Shifting responses 
in time independently across ooDSGCs eliminates correlations due to local contrast fluctuations 
in the stimulus and noise correlations introduced by retinal circuits.  However, this manipulation 
maintains correlations due to the direction of motion.  Thus, shifting responses in time undermines 
the population response structure caused by the particular spatial locations of the cells, and is 
similar to selecting populations of ooDSGCs randomly in space. Across a range of integration 
times, the ‘shifted’ response sets showed little change in continuous decoding error (Fig 4C).  This 
result suggests that decoding of direction from large ooDSGC populations does not depend on 
correlations, even when those correlations are relatively large.   

These result differ substantially from previous findings where trial-to-trial noise correlations 
alone were shown to have significant impact by decreasing decoding error16,26.  However, 
measured populations of incomplete mosaics undersample overlapping groups of cells, which 
may undermine the impact of large correlations measured during long integration times.  To better 
understand how integration time impacts the decoder’s sensitivity to correlations, we focused on 
decoding in quadruplets, which are selected based on their overlap, during times periods when 
they were strongly responding.  We used the OLE magnitude to select the time bins in which the 
ooDSGCs population was responding most strongly (Fig 2A).  The OLE magnitude will be highest 
when multiple cells, with similar tuning are responding most strongly.  We assess the median 
error during the top 10% magnitude responses and term this the “conditional error” (because it is 
conditioned on the OLE magnitude being high).  The conditional error in quadruplets was sensitive 
to correlation structure at long integration times, increasing the error when correlations were 
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disrupted (Fig 4D), but not at short integration times.  Thus, the impact of correlations on decoding 
depends critically on the integration time – correlations being important when decoding large 
responses integrated over long time windows.  We later extend these results to large modeled 
DS populations with complete mosaics (Fig 5).    
 
Non-DS cells do not improve direction decoding over short integration times 
 The analyses above indicate that correlations between ooDSGCs are not useful to 
account for local image intensity when decoding the direction of motion in short integration times.  
However, local image intensity influences the spike rates of non-DS, as well as DSGCs.  
Potentially, non-DS RGCs that share substantial receptive field overlap with ooDSGCs could be 
used to help decode the direction of motion by discounting local image intensity.  Indeed, 
correlations between tuned and untuned neurons have been shown to improve decoding from 
other neural populations42,43. 
 To assay if non-DS RGCs can help decode the direction of motion we decoded the 
direction of motion using both identified ooDSGCs and non-DS cells.  Using local groups with 
substantial receptive field overlap (~30 neurons), the direction of motion was first decoded using 
an OLE.  There was not a significant difference between decoding performance with or without 
non-DS cells (data not shown).  This result is expected, because an OLE, while sensitive to 
correlation structure, does not explicitly use correlated activity to decode44,45.  Alternatively, an 
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Optimal Quadratic Estimator (OQE) explicitly uses correlations between neurons to decode by 
weighting the synchronous activity between neurons to estimate the direction of motion45 (Fig 4E; 
see Methods).  The OQE accuracy was similar when decoding from DS only versus DS and Non-
DS populations over short integration times (Fig 4F). There is a small decrease in error when 
including Non-DS cells when decoding with longer integration times (Fig 4F).  Indeed, the OQE 
and OLE using DS cells alone provided similar accuracy (Fig 4G), indicating little benefit from this 
form of non-linear decoding in these conditions.  Thus, decoding of the direction of motion 
continuously with short integration bins is effectively performed by a linear decoder that integrates 
signals from a large tuned population with little benefit from correlated activity between tuned or 
untuned neurons. Note, we are not saying the other classes of decoders, more explicitly 
constructed to decode motion from untuned neurons (e.g. Reichardt detectors) would not be 
useful for bolstering signals from DSGCs.                
 
Noise and temporal integration dictate spatial decoding constraints in model 

The analyses above indicate that large populations of nearly independent ooDSGCs can 
be leveraged to rapidly decode the direction of motion, while temporal integration increases the 
importance of spatial correlation structure for accurate decoding.  Ostensibly, the relationship 
between temporal integration and sensitivity to local correlations could be explained by the 
presence of high temporal frequency noise in ooDSGC responses.  To better understand how 
noise and temporal integration influence population decoding we created a model that simulated 
responses from complete ooDSGC mosaics of various size and organization (see Methods).  In 
brief, each modeled DS-unit response was generated from a distinct linear-nonlinear model (Fig 
5A) with its position and direction orientation determined by one of four modeled mosaics (Fig 
5B).  The linear filter provides direction tuning and the non-linearity was adjusted to generate on-
off responses with sparsity similar to that in the data.  The DS-units were stimulated with a moving 
image used on the retina and the direction of motion was decoded at each time point from the 
population responses (Fig 5C).  To test the spatial sensitivity of the decoder, populations were 
decoded either from local subsets (Fig 5Bii) or from DS-units with randomly chosen spatial 
locations (Fig 5Biii). 

To begin, the response of the DS-units was noiseless.  In this case, correlations between 
nearby DS-units was much higher than that observed in the measured data (Fig 5D, black curve).  
These correlations are caused by local image statistics and while they are diminished by the non-
linearity that produces the sparse responses, they remain very high between cells with high 
receptive field overlap.  In the absence of noise, decoding error was substantially increased when 
decoding from DS-units with random spatial locations (Fig 5Ei) or shuffled responses (data not 
shown) – supporting previous work illustrating the importance of maintaining correlations in 
decoding direction16,26.  Adding independent noise to each DS-unit reduced local correlations 
substantially (Fig 5D red curve) and greatly reduced the sensitivity of decoder performance on 
the spatial arrangement of the DS-units (Fig 5Eii).  Finally, temporally integrating the noisy 
responses partially rescued the correlation structure established by the natural image (Fig 5D 
blue curve) and increased the sensitivity of the decoder to spatial structure (Fig 5Eiii).  This model 
illustrates that temporal integration influences correlation structure (at least in this example) and 
that it also dictates the decoder’s reliance on those correlations. This helps to resolve the 
discrepancy between this study and previous studies which have highlighted the importance of 
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correlations for decoding DSGC population responses: Here, brief temporal integration was 
required to decode dynamic global motion, while previous work focused long temporal integration 
because motion stimuli were local and had a static velocity. 

  
Discussion 
 We assayed the potential of ooDSGCs to signal the direction of self-motion.  We found 
that individual ooDSGCs respond sparsely to a broad range of motion directions.  This sparsity 
necessitates long integration times to decode accurately from small populations. It also prohibits 
the temporal resolution necessary for a nearly continuous and rapid decoding of dynamic changes 
in motion direction.  On the other hand, rapid changes in the direction of global motion in natural 
scenes can be accurately decoded from large populations of ooDSGCs.  The accuracy and speed 
of the population code for dynamic global motion relies on a large population of relatively 
independent ooDSGCs.  Previous studies have shown that decoding local and static velocity 
motion relies on small correlated populations with long integration times.  Thus, these population 
codes trade temporal and spatial limitations:  Integrating over larger populations allows decoding 
more rapid stimulus changes at the cost to spatial resolution.  Importantly, this tradeoff 
fundamentally changes the sensitivity of the population code to its correlation structure because 
this structure is relevant for decoding local motion, but not for decoding global motion.  Below we 
discuss these findings in the context of previous research. 
 
 
 

Figure 5. Model of ooDSGC populations demonstrates how natural images, integration time and 
noise influence correlations and decoding. A. Schematic of a single modeled DS-unit.  B.  Example of 
receptive field positions subsampled from complete DS-unit mosaics (Bi- showing 1 of 4 complete mosaics) 
when decoding three spatially local (Bii) or random (Biii) quadruplets. Circles illustrate one standard 
deviation of receptive field size. C. Example of image direction and decoded direction estimate at each 
point in time. D. Average pairwise correlation coefficient within a large population of modeled DS-units as 
a function of distance between pairs. E. Decoding error versus size of DS-unit population in either a 
noiseless model (Ei), a noisy model (Eii), or a noisy model with temporal integration (Eiii).  
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Functional role of ooDSGCs 
Several lines of evidence have supported an exclusive role of ooDSGCs in coding local 

motion, but this and other studies should diminish the certainty of that assumption14,23,24.  First, 
we show here that despite attenuation from the surround17,19,20, or perhaps in part aided by it46, 
ooDSGCs maintain direction selectivity and can effectively encode the direction of motion during 
global motion in dynamic natural scenes.  Second, it has been pointed out that the density and 
size of the ooDSGC population seems unnecessary to detect global motion17.  While this 
supposition seems reasonable, we show in this study that large dense populations are necessary 
to accurately and rapidly signal the dynamic global motion in natural scenes that would 
accompany self-motion because of the sparsity of ooDSGC responses.  Third, oDSGCs exhibit 
similar response structure to ooDSGCs to dynamic global motion (Fig 1). While the 
incompleteness of our oDSGC populations prevented an unambigious analysis of decoding their 
responses, the similarity in their encoding properties to ooDSGCs suggests similar decoding 
performance.  Thus, this study supports the possibility that ooDSGCs function as encoders of 
self-motion23.  

This study does not rule out the possibility that ooDSGCs also encode local motion.  
Previous studies have clearly shown that ooDSGCs can encode the direction of spots and bars, 
which may be reasonable proxies for local motion in nature.  Indeed, using the same recordings 
we are able to decode the direction of local objects that follow the identical trajectory as the natural 
scene (data not shown) and qualitatively track local motion in movies of moving animals.  
Additionally, it is important to note that different downstream neural circuits could extract both 
local and global motion from the same ooDSGC population.  This study reveals some of the neural 
constraints imposed by decoding the ooDSGCs populations for either local or global motion.                
 
Challenges and constraints to the ooDSGC population code for naturalistic global dynamic 
motion 
 ooDSGCs employ many different mechanisms to maintain robust encoding of direction in 
the face of stimulus variability47-49.  In this paper, we show the responses of ooDSGCs to dynamic 
global motion were sparse and broadly tuned -- presenting challenges to downstream decoders.  
What are the sources of this sparsity and tuning breadth and what is their significance for the 
population code?   

Previous work has shown ooDSGCs have attenuated responses to surround activation 
during simple artificial stimuli17-20 suggesting an optimization for local over global motion.  
However, recent work shows this surround activation maintains direction selectivity19 and 
preferentially attenuates luminance responses46, suggesting that the attenuation to global motion 
emphasizes direction information rather than obscuring it.  Consistent with attenuation of local 
luminance responses, we observe that simultaneous activity across the four different ooDSGCs 
types is infrequent (Fig 2E).  This sparsity is similar to measurements from other RGCs during 
naturalistic stimuli33 - a feature of both the spatial frequencies in natural stimuli and nonlinearities 
that generate RGC responses40.  The challenges imposed by sparsely responding DS populations 
have rarely been considered because previous studies have focused on stimulus conditions when 
population responses exhibit high firing rates22,50-52.  Here, we take the perspective that a rapid 
behavioral response to self-motion requires a continuous readout from the ooDSGC population - 
making response sparsity from ooDSGCs a challenge that must be met by downstream circuits.  
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A second challenge to decoding direction during dynamic global motion is that a wide 
range of stimuli can precede a spike from a single cell.  While ooDSGCs maintain their cruciform 
direction preferences on average (Fig 1C), the direction distribution preceding a spike is broad 
(Fig 1G).  The variability in the direction preceding a spike is likely due to several factors - many 
of which are inherent to dynamic naturalistic stimuli.  First, unlike moving bars, objects in the 
natural scene do not often encounter the receptive field exactly perpendicular to their axis of 
motion.  Viewed through the spatially limited ooDSGC receptive field, the local orientation can 
obscure the true global motion direction -- the so called “aperture problem”34-36.  Second, we 
demonstrate that ooDSGCs integrate direction over time, thus their response during a dynamic 
direction stimulus cannot be assigned to a single stimulus point but better reflects the average 
direction in the ~200 ms preceding the spike (Fig 1B).  Finally, this variability in the direction of 
motion preceding a spike also reflects neural variability (Fig 1F), though our experiments with 
repeated stimuli suggest this is a minor contribution to the wide range of motion directions that 
preceded spikes in DSGCs. 

Both the response sparsity and stimulus variability preceding a spike challenges a 
downstream decoder that must continuously estimate a dynamic stimulus.  Previous studies 
decoding dynamic motion stimuli from retina have utilized the optimal linear filter approach 
described by Warland and colleagues51-53.  This approach temporally integrates spike rates with 
a fixed filter to provide a continuous optimal linear estimate.  Our approach differs from the optimal 
linear filter approach because we explore a range of integration times.  Integrating over or under 
the optimal temporal range will increase the total mean squared error of the estimate but can 
decrease the error at specific temporal frequencies; this highlights spatial-temporal tradeoffs 
inherent in decoding visual information.  While previous studies have used long temporal 
integration windows to improve decoding22 we show that such strategies come at a significant 
cost to temporal resolution for decoding dynamic stimuli (Fig 2D).  The cost of temporal integration 
necessitates larger populations to enable accurate decoding of rapid stimulus changes (Fig 3C).  
This spatial-temporal tradeoff in decoding has intriguing parallels with RGC and V1 receptive 
fields in which RGC types with larger spatial receptive field also integrate over shorter time 
durations54, and V1 neurons that prefer lower spatial frequencies also prefer faster gratings55.  
Indeed, receptive fields optimized to natural scenes display anticorrelations in their preferred 
spatial and temporal frequencies56 suggesting a fundamental spatial-temporal tradeoff to 
decoding visual stimuli. 

To better illustrate the spatial-temporal tradeoff in decoding we constructed a simple 
model of signal and noise separation (Fig 6).  In this model, noise is separated from signal using 
a simple linear filter that integrates over space and time (Fig 6A).  As we observed for decoding 
ooDSGC population responses, temporal integration can improve signal detection by 
preferentially attenuating high frequency noise.  This noise reduction strategy is limited though by 
the presence of a high (temporal) frequency signal, as further integration begins to degrade both 
signal and noise (Fig 6Bi).  The same problem occurs when integrating spatially (Fig 6Bii).  
However, the greater the spatial integration, the less temporal integration is needed to improve 
signal detection, sparing the high frequency temporal signal.  A similar trade-off can be made in 
the opposite direction, by sacrificing temporal resolution for greater spatial resolution. Thus, in 
extracting information, a decoder can choose to focus on spatial or temporal resolution, at a cost 
to the temporal or spatial resolution, respectively (Fig 6C).  Dynamic global motion requires high 
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temporal resolution but minimal spatial resolution: We show that the population response of 
ooDSGCs permits a regime for accurately decoding this stimulus at short timescales with a simple 
linear decoder.   

                                              
The importance of correlation on neural decoding  
 The role of correlated activity in neural coding is a subject of intense focus in neuroscience 
with the goal of understanding how neural populations code for sensory variables44,57,58.  
ooDSGCs have provided a useful model system to understand the sources and impacts of 
correlated activity16,26,59.  Those studies largely pointed to correlations exerting a benefit upon 
DSGC population codes. Here we show that ooDSGCs correlations with nearby cells are small 
when integrated over short time periods (Fig 4A) and have little impact on decoding accuracy (Fig 
4C-D).  This finding reduces the likelihood of ooDSGCs encoding direction information via precise 
synchronous responses60,61.  We also show DSGC with non-DS RGC correlations weakly 
impacted decoding error over short integration times (Fig 4G).  The lack of reliance on noise 
correlations during these short integration times is supported by other recent work in 
salamander52.   

However, consistent with previous work, we show that the correlations increase with 
longer integration times and begin to have some impact on decoding at longer timescales (Fig 
4D).  The relationship between spike correlations and decoder integration means that shared 
noise exists at lower temporal frequencies than independent noise.  Thus, as demonstrated in a 
model (Fig 5), temporal integration diminishes independent noise and strengthens correlations in 
local populations, shifting the decoder’s input from independent to locally correlated populations. 
 This study indicates that the importance of local decoding and correlation in the ooDSGCs 
will be heavily influenced by the integration time of the decoder.  Thus, neurons downstream of 
the retina which decode local stimuli can leverage temporal integration to diminish independent 
noise without sacrificing spatial resolution.  This temporal integration also favors local correlations 
which help maintain a robust population response during the transient appearance of the stimuli.  
In contrast, downstream neurons that decode global stimuli, which could benefit from rapid 
decoding, compensate for lack of local correlations with larger populations of independent cells.  
Thus, the structure of the independent and correlated noise suggests distinct decoding regimes - 
decoders for large, fast visual stimuli relying on independent inputs and decoders for small and 
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slow stimuli using correlated inputs. This may help explain why ooDSGC axons diverge to multiple 
downstream brain circuits including the lateral geniculate and superior colliculus14.  Future work 
may reveal that these distinct circuits instantiate these distinct decoding regimes.  It is also 
possible that neuromodulators alter the integration times62 within a single circuit, switching 
between the two decoding regimes dynamically depending on current task demands. 
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Methods 
Mice and retina dissection procedures 

Retinas were removed and recorded from C57BL/6J and CBA/CaJ x C57BL/6J mice 
between the ages of 1 month and 1 year.  The strains showed no differences to the results 
reported in this study, thus data were pooled.  Mice were used in accordance with the Duke 
University Institutional Animal Care and Use Committee. 

Retina dissection was optimized to maintain response sensitivity.  Mice were dark-adapted 
overnight, euthanized via decapitation, eyes were enucleated, and a piece of retina (~1-2mm2) 
was isolated from the pigmented epithelium11.  Retina isolation was performed in Ames solution 
(room temperature) bubbled with 95% O2 and 5% CO2.  All procedures were performed in the 
dark under IR light.  The retina was isolated from the dorsal half of the eye (identified from 
vasculature) to increase the fraction of M-opsin expressed in the cones for better overlap with the 
spectrum of the visual display.          

       
Multi-electrode array recording, spike sorting, cell position determination  
 Electrical activity was measured from RGCs on a multielectrode array (MEA). Spikes were 
identified, sorted into individual cell clusters, and soma positions on the MEA were estimated as 
previously described11,63.  Electrical activity was measured from RGCs using a hexagonal large-
scale MEA, which was ~490 µm along an edge with 30 µm spacing between 519 electrodes63,64.  
Retinas were held against the MEA with a permeable membrane and were perfused with Ames 
solution (34 oC) bubbled with 95% O2 and 5% CO2. 
 Electrical activity was analyzed offline to identify and sort spikes into individual cell 
clusters63,64.  Briefly, on each electrode, spikes were identified by a voltage threshold and voltage 
waveforms were concatenated across the six surrounding electrodes.  These concatenated 
waveforms were parameterized with principal components analysis (PCA) and clustered with a 
mixture of gaussians model, providing putative cell assignments.  Putative cells were analyzed if 
their spike time autocorrelation showed less than 10% refractory period violations and 25% spike 
time correlation with a cell identified on a nearby electrode, indicating spikes were from a single 
and uniquely identified neuron.     
            Soma position on the array was used to identify quadruplets (Fig 2) and pairwise distances 
between cells (Fig 3A).  Soma position was estimated from the Electrical Image (EI) on the 
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array11,65.  The EI consisted of the average voltage on each electrode preceding a spike66.  The 
position of the soma was taken as the center of mass of the EI.    
         
Visual stimulus 
 The retina was stimulated at photopic light levels (8000 Rh*/s) with a gamma-corrected 
OLED display (SVGA+XL Rev3 from eMagin).  Three types of visual stimuli were presented to 
the retina and controlled via custom software written in Matlab utilizing the MGL library 
(gru.stanford.edu).  First, drifting gratings, at two different temporal frequencies, were used to 
identify ooDSGCs (see RGC classification).  Second, natural images, taken from the van Hateren 
image database27, were presented to probe RGCs responses to global motion in natural images.  
Natural images were presented in two different stimulus protocols; using either dynamic or static 
velocity.  Finally, natural movies from a head cam mounted mouse (from lab of Thomas Mrsic-
Flogel) and cat67 were used to further test response sparsity.       

In the dynamic velocity protocol, the same image was presented in the same orientation 
on every frame at image locations, X and Y.  The average frame rate was 40 Hz (~25 ms/frame). 
X and Y were drawn randomly from a gaussian distribution and smoothed in time with a sliding 
window ~7.5 seconds.  This generated an image that jittered around on the screen with a slow 
drift, presenting jitter across different image locations.  X and Y were rectified to prevent displaying 
the image edge.  The change in position between frames, ΔX(t) and ΔY(t), was sampled from an 
independent gaussian distributions with no temporal correlations (white).  The standard deviation 
of the displacement distributions was ~20 um - corresponding to ~800 um/s along a single axis.  
A single dynamically moving image was presented for 60 minutes.       
 In the static direction protocol, the image was drifted in a single direction at ~1080 um/s 
for ~4 seconds before a new direction or image was presented.  The image was reoriented for 
each direction with its longer edge parallel to the direction of motion.  Six different images were 
presented at 8 different directions, spread equally across 360o.     
 
RGC classification 
 oDSGCs and ooDSGCs were identified based on their responses to square wave gratings 
(960 µm/cycle) drifted in 8 different directions and two different speeds (1 and ¼ Hz).  Responses 
to each grating were quantified by total spike number generated during the 8 seconds each grating 
was presented.  Cells were first clustered as DSGCs, then separated as ON-OFF and ON cells, 
and then grouped by their preferred direction11.  “Direction-selective” cells were clustered by their 
direction-selective indices (DSI) 54 at each grating speed using a 2 dimensional gaussian mixture 
model.  This method avoided setting an arbitrary threshold on DSI.  Cells were then clustered by 
hand using the ratio of their response vector magnitudes for fast and slow gratings.  Cells that 
maintained or increased their vector magnitudes for faster gratings were identified as ON-OFF.  
This process is based on the speed tuning curve differences between ON and ON-OFF DSGCs 
in mouse retina11.  Finally, ooDSGCs were clustered by hand based on the direction of their vector 
sum.  Clustering by their preferred direction was only used to color code Figure 1C and did not 
contribute to decoding (see Optimal linear estimator).     
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Optimal linear and optimal quadratic estimators 
An optimal linear estimator (OLE) and optimal quadratic estimator (OQE) were used to 

estimate the direction of stimulus motion from a set of RGCs responses38,45.  To do this, the OLE 
and OQE weight and sum the responses for each RGC:   

 
𝐸𝑠𝑡 = 𝑟(𝑡 + 𝑑𝑡) ∗ 𝑊 

 
For the OLE RGC responses, r, were quantified by the number of spikes within a set 

number of sequential frames (bins) as indicated by the temporal integration time.  r includes an 
added constant that allows for a default (offset) direction weight.  For the OQE, r includes not only 
responses of individual cells but also the cross products of all possible cell pairs45.  dt allows a 
time delay between response and the stimulus and was optimized to minimize the mean squared 
error between the direction estimate and true direction.  The weights, W, were determined during 
a separate training set using Matlab’s backslash operation: 

 
𝑊 = 𝑟(𝑡 + 𝑑𝑡)\𝑆 

 
S is the cartesian coordinates of the stimulus direction.  Matlab’s backslash operation 

returns a least-squares solution to a system of linear equations.  Training sets for the dynamic 
motion stimulus consisted of the first ¾ time points and it was tested on the last ¼ time points.  
Training and testing on fully separated data blocks prevents the decoder from leveraging the 
PSTH autocorrelation to improve its test error.  For the static motion stimulus, the OLE and OQE 
were trained on 5 images and tested on a hold-out image.  Training and testing were redone for 
each image and errors averaged across all images.   

To break correlation structures between cells, binned responses within the test data for 
the static direction stimulus were circularly shifted by a random amount independently for each 
cell.  This manipulation maintained the direction selectivity of the response averages but broke 
correlations between cells.        

 
ooDSGC simulation 

A simulation of ooDSGC receptive fields was used to test the observed results in larger 
and more complete mosaics than available from the measured data.  The model consisted of four 
independent mosaics of modeled receptive fields responding to a moving image.  As in the 
analysis of the measured data, the responses of the modeled neurons were combined to estimate 
the direction of image motion.   

The response, R, of an individual model neuron was:  
𝑅 = 𝑁0𝐹23 ∗ 𝑆4           
 
Where Fɸp, is the linear filter with preferred direction, ɸ, and position p; S is the stimulus; * indicates 
convolution; and N is a nonlinear function.  The position, p, of each filter, F, was determined by 
an exclusion zone algorithm for generating 2 dimensional spatial mosaics68.  N was chosen as 
rectified linear function symmetric about zero – allowing responses to be ON-OFF with some 
control of the response sparsity.  The threshold of the nonlinearity was adjusted to provide a 
similar fraction of spikes as that measured in the ooDSGCs population (90-95% of the bins had 
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no activity).  The density of the simulated mosaics was 30 cells/mm2 based on reported values in 
ooDSGCs in rabbit13.  The population response, 𝑅, was decoded based on a linear model Est =  
𝛴(𝑅*ɸ). 
 To understand how high frequency noise constrained decoding error we added gaussian 
white noise with a variance equal to the signal variance.  Decoding was performed on the noisy 
signals without manipulation or after averaging from 10-frame bins.     
 
Spatial-temporal tradeoff simulation 
 A simulation of signal estimation was used to understand the tradeoffs inherent in 
separating signal from noise through spatial and temporal integration.  The signal, S, was 
constructed by convolving spatial and temporal gaussian filters with white noise, creating a signal 
dominated by low spatial and temporal frequencies.  Unfiltered white noise was then added to S.  
Then the noisy signal was filtered by convolving spatial and temporal Gaussian filters defined by 
their standard deviations, sigma.  The mean squared error was calculated between the filtered 
output and S.    
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