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Abstract

Analysis of biological data often involves the simultaneous testing of thousands of genes. This

requires two key steps: the ranking of genes and the selection of important genes based on a sig-

nificance threshold. One such testing procedure, called the ‘optimal discovery procedure’ (ODP),

leverages information across different tests to provide an optimal ranking of genes. This approach

can lead to substantial improvements in statistical power compared to other methods. However,

current applications of the ODP have only been established for simple study designs using mi-

croarray technology. Here we extend this work to the analysis of complex study designs and RNA

sequencing studies. We then apply our extended framework to a static RNA sequencing study, a

longitudinal and an independent sampling time-series study, and an independent sampling dose-

response study. We find that our method shows improved performance compared to other testing

procedures, finding more differentially expressed genes and increasing power for enrichment anal-

ysis. Thus the extended ODP enables a superior significance analysis of genomic studies. The

algorithm is implemented in our freely available R package called edge.
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1 Introduction

In genomic studies, gene expression measurements for thousands of genes are obtained simultane-

ously using RNA-Seq or DNA microarray technology. A primary objective in these studies is to discover

biologically important genes by applying appropriate statistical tools to the data. One such approach

is to apply a hypothesis testing procedure on a gene-by-gene basis to detect differentially expressed

genes; for example, a t-test or F -test is commonly used to compare multiple biological groups. These

test statistics are then ranked and a subset of genes with values above a specified threshold are

deemed statistically significant. The significance threshold is chosen to control the false discovery

rate (FDR), i.e., the proportion of false positives in the subset of selected genes. Thus there are two

key steps when selecting important genes: the ranking of test statistics and the selection of tests based

on a significance threshold.

One commonly used testing procedure to rank genes is the likelihood ratio test (LRT). The LRT

compares the goodness-of-fit between two models, namely, the alternative and null models. The test

statistic is the ratio of the likelihood under the alternative model to the likelihood under the null model,

where large values indicate evidence against the null model. It is popular due to its optimality guar-

antees: the Neyman-Pearson (NP) lemma states that the LRT statistic is the most powerful testing

procedure for a single hypothesis, i.e., no other testing procedure can achieve more power at a fixed

significance threshold [1]. However, the LRT statistic may not provide the optimal ranking for multiple

hypotheses [2]. This is problematic in genomics where thousands of tests are typically performed.

When there are multiple hypotheses, such as in gene expression data, many testing procedures

can improve upon the statistical power by utilizing information across genes. One such method is the

‘optimal discovery procedure’ (ODP), which maximizes the number of expected true positives for a fixed

number of expected false positives—a quantity related to the FDR [2]. The ODP is a generalization of

the NP lemma: while the NP lemma is optimal for a single hypothesis test, the ODP is optimal for multi-

ple hypothesis tests. The ODP achieves the optimal ranking of test statistics by leveraging information

across all tests when calculating the test statistic for each gene. Intuitively, the improvement in ranking

stems from functionally related genes that follow similar patterns of expression. This information is

incorporated into the test statistic to strengthen or weaken the evidence for differential expression. In

Storey et al. (2006), an approximation to the ODP performs favorably on DNA microarray studies com-

pared to SAM [4], shrunken t-test or F -test [5, 6], Bayesian local FDR [7], and posterior probabilities

[8].

There are two main limitations when applying the ODP to genomic studies. First, the method was

primarily developed for simple static experiments (e.g., comparing two conditions) and it has not yet

been extended to more complex sampling designs. Second, the underlying assumption in the ODP
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is that the data are generated from a Normal distribution where the per-gene observations have the

same variance (i.e., homoscedasticity). This is problematic for RNA sequencing studies where the

data are modeled using an over-dispersed Poisson distribution or a Normal distribution where the per-

gene observations have different variances (i.e., hetereoscedasticity) [9]. Due to these constraints, the

applicability of the ODP has been limited to static DNA microarray studies.

In this work, we extend the ODP to both complex study designs and RNA sequencing studies. In

order to incorporate dynamical responses commonly found in non-static studies, we utilize the regres-

sion spline methodology from Storey et al. (2005). A benefit of this approach is that it flexibly models

gene expression responses within the ordinary least squares framework where the data are assumed

to follow a Normal distribution with constant variance: this enables for a straightforward application of

the ODP. For RNA sequencing studies, we implement the same strategy in ref. [9] to estimate the per-

gene hetereoscedasticity using the observed mean-variance relationship. We then use these estimated

weights in a weighted least squares algorithm to adjust for unequal variances among observations. This

transformation allows for the standard ODP framework to be utilized.

We apply our algorithm to three different experimental designs. The first is a ‘static sampling’ ex-

periment, where samples are obtained at a fixed time point. For this example, we analyze a smoker

study where smoking and non-smoking groups are compared to detect transcriptional differences in

airway basal cells using RNA-Seq technology. The second is an ‘independent sampling’ experiment,

where subjects are independently sampled across time or dosage-level. Here we consider two inde-

pendent sampling studies, namely, a time-series and a dose-response study. The former considers the

effect of age on gene expression in the cortex region of the kidney and latter explores breast cancer

cell sensitivity in response to multiple 17β-estradiol doses. The final design is a ‘longitudinal sampling’

experiment, where subjects are sampled at multiple time points. As an example, we examine an en-

dotoxin study which compares the leukocytes at a control group to those of an endotoxin-treated group

across multiple time points.

The paper is outlined as follows. Section 2 reviews background on the ODP and regression splines.

We also review a computationally efficient implementation of the ODP called the ‘modular optimal dis-

covery procedure’ (mODP). Section 3 introduces our proposed algorithm and Section 4 illustrates the

results from our method on the four studies. We validate these results through comprehensive simula-

tions.
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2 Background

2.1 The optimal discovery procedure

The optimal (or ‘most powerful’) hypothesis testing algorithm for a single test is provided by the Neyman-

Pearson (NP) lemma [1]. Given some observed data y = (y1, y2, ..., yn), the NP lemma states that the

ratio of the alternative likelihood g(y) over the null likelihood f(y)—known as the likelihood ratio—

has the largest power for each false positive rate compared to any other decision rule. Intuitively, this

optimality arises because the data generating process under each model is assumed to be known. For

multiple hypotheses, the likelihood ratio is applied on a case-by-case basis. However, potentially useful

information across different hypotheses are ignored. As a consequence, the likelihood ratio may no

longer be an optimal decision rule [2].

The ‘optimal discovery procedure’ (ODP) is a generalization of the NP lemma for multiple hypothe-

ses. More specifically, consider gene expression measurements (y1,y2, ...,ym) where there are m

genes and n samples. Further assume that the first m0 and the last m1 = m − m0 hypotheses are

from the alternative and null models, respectively. The ODP test statistic for gene i is

SODP(yi) =

∑m
k=m0+1 gk(yi)∑m0
k=1 fk(yi)

, (1)

where gk(yi) is alternative likelihood and fk(yi) is the null likelihood under gene k. The numerator and

denominator can be viewed as the cumulative power under the alternative and null models, respectively,

across all hypotheses: only tests related to gene i contribute to the above statistic. Storey (2007)

shows that this test statistic maximizes the number of expected true positives (ETP) for a fixed number

of expected false positives (EFP)—a quantity closely related to the false discovery rate, i.e., FDR ≈
EFP

EFP+ETP . Therefore, by leveraging information across different hypotheses, the ODP achieves the

optimal ordering (or ranking) of test statistics. Moreover, the improvements in statistical power are

generally substantial compared to the likelihood ratio test (see [2]).

Evaluating equation (1) requires making assumptions on the data generating process and the hy-

pothesis status for each test. In this work, the alternative and null densities follow a Normal distribution

with some finite mean and variance. However, it is not known a priori which tests are from the al-

ternative and null models. Instead an approximation to the true ODP statistic is estimated [3], i.e.

ŜODP(yi) =

∑m
k=1 gk(yi)∑m
k=1 fk(yi)

. Another complication is that the ODP test statistic does not have a theoreti-

cal null distribution and so p-values cannot be analytically calculated. Therefore, a bootstrap procedure

must be implemented to generate an empirical null distribution of the test statistics. This estimated ODP

has been shown to provide similar power to the true ODP [3]. However, calculating the test statistics

involves 2m2 computations and so it is computationally demanding for genomic datasets where m can
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Algorithm 1: KL clustering algorithm for the modular optimal discovery procedure (mODP)
Input: Dataset Y, the alternative and null models, and the number of modules K.

Output: The parameter estimates for the alternative and null modules.

1 Estimate (µ̂1
i , σ̂

1
i ) and (µ̂0

i , σ̂
0
i ) under the alternative and null models, respectively, for genes

i = 1, 2, ...,m.

2 Initialize the mean and variance for modules k = 1, 2, ...K by randomly selecting i(k) genes, i.e.

µ̄k = µ̂1
i(k) and σ̄k = σ̂1

i(k). Set µ̄prev = 0.

3 while |µ̄− µ̄prev| > ε do

4 µ̄prev ← µ̄

5 forall i ∈ {1, 2, ..., n} do

6 forall k ∈ {1, 2, ...,K} do

7 dik ← 1
2(µ̄1

k − µ̂1
i )

T(µ̄1
k − µ̂1

i )
(

1
(σ̄1

k)2
+ 1

(σ̂1
i )2

)
+ n

2

(
(σ̄1

k)2

(σ̂1
i )2

+
(σ̂1

i )2

(σ̄1
k)2

)
− n

8 end

9 end

10 forall k ∈ {1, 2, ...,K} do

11 Rk ←
{
i|∀i ∈ {1, 2, ..., n} : k = argmin1≤j≤Kdij

}
12 µ̄k ←

∑
j∈Rk

µ̂1j
|Rk|

13 σ̄k ←
∑

j∈Rk
σ̂1
j

|Rk|

14 end

15 end

16 For modules k = 1, 2, ...,K, the parameters under the alternative model are µ̄1
k = µ̄k and

σ̄1
k = σ̄k and the parameters under the null model are µ̄0

k =

∑
j∈Rk

µ̂0j
|Rk| and σ̄0

k =

√∑
j∈Rk

(σ̂0
j )2

|Rk| .

range anywhere from 103 to 105.

Woo et al. (2010) proposed a computationally efficient approximation to the ODP called the ‘modular

optimal discovery procedure’ (mODP). Similar to the estimated ODP, the mODP assumes that the data

are generated from a Normal density with parameters (µ1
i , σ

1
i ) and (µ0

i , σ
0
i ) for genes i = 1, 2, ..., n

under the alternative and null models, respectively. These parameters are estimated from the data

using an ordinary least squares algorithm. A clustering algorithm then assigns genes to k = 1, 2, ...,K

modules based on the Kullback-Leibler distance dik (only the alternative model is used to determine

gene-module assignments). Using the module assignments, the parameters are updated and genes

are reassigned to new modules: the above steps continue until a convergence criteria is met. The

final module parameters are denoted by (µ̄1
k, σ̄

1
k) and (µ̄0

k, σ̄
0
k) under the alternative and null models,
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respectively (see Algorithm 1).

Given the module parameters, the mODP test statistic can be expressed as

ŜmODP(yi) =

∑K
k=1 gk(yi; µ̄

1
k, σ̄

1
k)|Rk|∑K

k=1 fk(yi; µ̄
0
k, σ̄

0
k)|Rk|

, (2)

where gk(yi; µ̄1
k, σ̄

1
k) is the alternative likelihood and fk(yi; µ̄0

k, σ̄
0
k) is the null likelihood under module

k, and |Rk| is the number of genes belonging to module k. A bootstrap algorithm is implemented to

generate the empirical null distribution of the test statistics (described in Appendix 6.2). The mODP

reduces the number of calculations from 2m2 to 2Km where K � m. Thus the time complexity of

the mODP is linear with the number of genes. In Woo et al. (2010), the authors demonstrate that the

mODP has similar power to the estimated ODP and is robust to the number of modules when K ≥ 50.

2.2 Regression splines

The general framework for modeling non-linear responses in complex study designs follows from Storey

(2005): Consider an experiment with gene expression measurements yij and explanatory variable xj
for i = 1, 2, ...,M genes and j = 1, 2, ..., N samples. In non-static studies, there can be multiple

measurements of xj for sample j, i.e., xjk where k = 1, 2, ..., Tj ; for example, xjk can be multiple time

points or different dosage levels for a particular sample. The expression for gene i is modeled as

yij = µi(xjk) + γij + εijk, (3)

where µi(x) is the population average curve, γij is the individual-specific random deviation from the

population average curve, and εijk is a random error that follows a Normal distribution with mean 0 and

variance σ2
i . Here we assume that the individual-specific random effects follow a Normal distribution

with mean 0 and constant variance τ2
i .

The population average curve can be flexibly modeled using a regression spline. A regression

spline is a piecewise polynomial function continuous at d specified points (or ‘knots’). We only consider

natural cubic splines, which are third order polynomial functions that are linear beyond the boundary

knots. In this case, the population average curve can be parameterized by a d-dimensional basis, i.e.

µi(x) = αi + β>i s(x) where s(x) = (s1(x), s2(x), ..., sd(x)) is a prespecified d-dimensional natural

cubic spline basis and the parameters αi and βi = (βi1, βi2, ..., βid) are estimated by ordinary least

squares. The parametric model for µi(x) enables testing of parameters αi and βi, which do not depend

on specific x: this simplification allows for inferences of general sampling designs [10]. We apply this

framework to a static sampling study, two independent sampling studies, and a longitudinal sampling

study.
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Figure 1: Fitting regression splines to general study designs: (a) static, (b-c) independent sampling, and (d)

longitudinal studies. The null (dashed) and alternative (solid) models are shown for a significant gene. In (d),

the endotoxin-treated and control groups are denoted by a triangle and cross, respectively.

In a static sampling study, subjects are independently sampled across one or more biological groups

at a fixed time point. As an example, in the smoker study xj is a categorical variable indicating the

smoking status of individual j and yij is the RNA-Seq count for gene i (Figure 1a). Equation (3)

can be simplified by modeling the population average curve as µi(xj) = αi + βixj . In this study,

we are interested in determining whether gene expression is differentially expressed between groups

(the alternative hypothesis) or remains unchanged (the null hypothesis). Therefore, the null hypothesis

model (dashed line) is fit under the constraint of βi = 0 and the alternative hypothesis model (solid line)

allows this parameter to be unconstrained.

In an independent sampling study, subjects are independently sampled across a continuous variable

(similar to cross-sectional sampling). The population average curve is modeled using a d-dimensional

natural cubic spline basis. There are two studies analyzed with independent sampling designs. The

first is a kidney aging study where human subjects are independently sampled at various ages (Figure

1b). The second is a dose-response study where 17β-estradiol is introduced to breast cancer cells

at various dosage levels (Figure 1c). In both of these studies, the objective is to determine whether

gene expression is differentially expressed across time or dosage level (the alternative hypothesis) or

remains unchanged (the null hypothesis). Therefore, the null hypothesis model (dashed line) is fit under
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Algorithm 2: Algorithm for modeling non-linear responses
Input: Dataset Y, the maximum basis D, the total eigen-genes L, the explanatory variable x,

and the alternative and null models.

Output: Estimated population average curve and standard deviation for each gene.

1 Apply singular value decomposition to Y and extract V = (v1, v2, ..., vL) eigen-genes.

2 forall i ∈ {1, 2, ..., L} do

3 forall j ∈ {1, 2, ..., D} do

4 Determine j-dimensional basis to model population average curve

µ(x) = β0 +
∑j

l=1 βlsl(x).

5 Regress vi onto µ(x) to estimate parameters and calculate the cross validation error.

6 end

7 end

8 For eigen-genes i = 1, 2, ..., L, determine d̂i that minimizes the cross validation error.

9 Select d̂ = max{d̂i} for i = 1, 2, ..., L.

10 Calculate the d̂-dimensional natural cubic spline basis: s(x) = [s1(x), s2(x), ..., sd̂(x)]T.

11 Apply ordinary least squares algorithm to estimate the population average curve µ̂0
i (x) and

µ̂1
i (x) and the standard deviation σ̂0

i and σ̂1
i for i = 1, 2, ...,m genes under the null and

alternative models, respectively.

the constraint of βil = 0 for l = 1, 2, ..., d and the alternative hypothesis model (solid line) allows these

parameters to be unconstrained.

In a longitudinal sampling study, subjects are sampled multiple times across a continuous variable.

The response variable can be modeled using equation (3) where the population average curve is a

d-dimensional natural cubic spline basis. As an example, the endotoxin study compares two different

classes across time, namely, endotoxin-treated versus control-treated. For this case, yij is the gene

expression measurement for gene i in individual j and xjk indicates the time point individuals were

sampled (Figure 1d). The alternative hypothesis is that there is differential expression between classes

while the null hypothesis is that there is no difference in gene expression. Thus the null hypothesis

model fits one curve to both classes combined (dashed line) and the alternative hypothesis model fits

two separate curves to each class (solid line).

Algorithm 2 summarizes the model fitting procedure to estimate the population average curve in a

study. While natural cubic splines provide flexible parametric models, they require the placement of d

knots. We utilize the cross validation algorithm in ref. [10] to automatically choose the optimal d̂. First,

we apply a singular value decomposition to extract the top i = 1, 2, ..., L eigen-genes. We then regress
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these eigen-genes onto s(x) = (s1(x), s2(x), ..., sj(x)), where we use a j = 1, 2, ..., D dimensional

natural cubic spline basis: the knots are placed at evenly spaced quantiles, i.e. the 0, 1
j−1 ,

2
j−1 , ..., 1

quantiles. Finally, the basis dimension used for model fitting is chosen by applying a cross validation

procedure to select the optimal d̂ across all eigen-genes. Using the selected d̂, an ordinary least

squares algorithm is applied to estimate the population average curve and variance for all genes under

the alternative and null models.

3 Methods

Our algorithm introduces regression splines into the ODP framework to extend it to complex study

designs. To do so, the ODP test statistic must be extended to incorporate non-linear responses. Sup-

pose the data are yi and the explanatory variable is xj where there are i = 1, 2, ...,m genes and

j = 1, 2, ..., n samples. In either case, there are two different models, namely, the null model with pa-

rameters (µ0
i (x), σ0

i ) and the alternative model with parameters (µ1
i (x), σ1

i ). The objective is to test the

null hypothesis H0 : µ1
i (x) = µ0

i (x) versus the alternative hypothesis H1 : µ1
i (x) 6= µ0

i (x). In this work,

the population average curves are flexibly modeled using a d-dimensional natural cubic spline basis.

The parameters under both models can then be estimated by ordinary least squares, i.e., (µ̂1
i (x), σ̂1

i )

and (µ̂0
i (x), σ̂0

i ).

For non-linear responses, the estimated optimal discovery procedure is

ŜODP(yi) =

∑m
k=1 gk(yi; µ̂

1
k(x), σ̂1

k)∑m
k=1 fk(yi; µ̂

0
k(x), σ̂0

k)
, (4)

where the likelihoods are assumed to follow a Normal distribution. It is evident that µ̂0(x) is not of

interest in the testing procedure (so-called ‘nuisance parameter’): this ancillary information can be

removed by transforming the data to y∗i = yi − µ̂0
i (x). Under this transformation, the hypotheses are

H0 : µ1∗
i (x) = 0 versus H1 : µ1∗

i (x) 6= 0. This modified version of ODP is

ŜODP(y∗i ) =

∑m
k=1 gk(y

∗
i ; µ̂

1∗
k (x), σ̂1

k)∑m
k=1 fk(y

∗
i ;0, σ̂

0
k)

. (5)

Similar to the original implementation of the ODP, the above test statistic requires 2m2 calculations

which makes it computationally slow for genomic data sets. Instead, we can incorporate the population

average curve into the mODP as

ŜmODP(y∗i ) =

∑K
k=1 gk(y

∗
i ; µ̄

1
k(x), σ̄1

k)|Rk|∑K
k=1 fk(y

∗
i ;0, σ̄

0
k)|Rk|

, (6)

where there are k = 1, 2, ...,K modules, the membership size of module k is |Rk|, and the module

parameters are estimated by applying the mODP clustering algorithm (described in Algorithm 1).
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Algorithm 3: Algorithm for analyzing complex study designs
Input: Dataset Y, the alternative and null model, the number of bootstrap iterations b, and the

number of modules K.

Output: Empirical p-values for each gene.

1 Apply Algorithm 2 to estimate the population average curves and standard deviations.

2 Subtract the null model from the observed data, y∗i = yi − µ̂0
i (x), and estimate µ̂1∗

i (x) and

σ̂1∗
i (x) for i = 1, 2, ...,m genes

3 Estimate the module parameters under the null and alternative models using Algorithm 1 and

calculate ŜmODP(y∗i ) for i = 1, 2, ...,m genes.

4 Generate k = 1, 2, ..., b datasets from the null model by resampling the scaled residuals e∗i,j from

the alternative model fit and add it to y∗i,j,k = µ̂0
i (x) + e∗i,j (described in Appendix 6.2).

5 Apply (2-3) to generate the null test statistics Ŝ∗mODP(y∗i,k) for k = 1, 2, ...b bootstrap iterations

and i = 1, 2, ...,m genes.

6 Using the observed and null test statistics, calculate empirical p-values.

Our proposed method is summarized in Algorithm 3: The inputs are the observed dataset Y, the

alternative and null models, the number of modules K and the number of bootstrap iterations b. First,

we apply Algorithm 2 to explanatory variable x to model the non-linear gene expression responses. The

data are then transformed by subtracting the null model fit from the observed dataset. This adjusted

dataset y∗i is regressed onto the alternative model to get updated parameter estimates, (µ̂1∗
i (x), σ̂1

i ).

Finally, we apply the mODP clustering algorithm to determine the parameters for the k = 1, 2, ...,K

modules under the alternative and null models, (µ̄1
k(x), σ̄1

k) and (0, σ̄0
k), respectively (see Algorithm

1). Using the parameter estimates from the clustering algorithm, the mODP statistic is calculated for

all genes. A bootstrap algorithm is implemented to calculate the empirical null distribution of the test

statistics (described in Appendix 6.2). For the datasets in this paper, there are b = 500 bootstrap

iterations (b = 5000 for the smoker study) and K = 800 modules.

Prior applications of ODP are focused on microarray studies where it is common to assume that the

data generating process is approximately Normal and homoscedastic. However in sequencing studies,

this assumption is no longer valid because the observations are heteroscedastic. In order to apply the

ODP to sequencing studies, we implemented a similar strategy in ref. [9] where RNA-Seq data are log-

transformed to model the observed mean-variance relationship. Using this model, weights capturing

the heteroscedasticity across observations are estimated. These weights are then incorporated in a

weighted least squares regression and are easily integrated into the mODP framework: Given a set of

variance stabilizing weights wij and a d-dimensional natural cubic spline basis s(xij) for j = 1, 2, ..., n

samples and i = 1, 2, 3...,m genes, the data are transformed as s∗(xij) = wijs(xij) and y∗ij = wijyij .
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An ordinary least squares algorithm can then be applied to this transformed data. Thus Algorithm 3 can

be appropriately adjusted to accommodate these weights.

4 Results

The modular optimal discovery procedure (mODP) is applied to four different genomic experiments.

The performance of mODP is compared to an F -test and a moderated F -test [6] using the number of

discoveries and enriched gene sets. Finally, we validate our findings through comprehensive simula-

tions.

4.1 Datasets

Kidney study. To elucidate the transcriptional response from aging in the kidney, the kidney study

collected cortex samples from 72 patients with ages ranging from 27 to 92 years [11]. The samples

were hybridized onto U133a and U133b GeneChips with 44,928 probes. Following similar filtering steps

in Storey (2005) to control for potential confounding, only 38,833 probes were used for analysis and the

expression values were log-transformed for variance stabilization.

Endotoxin study. The endotoxin study analyzed transcriptional regulation in human blood leukocytes

from two experimental groups: a treatment group receiving a bacterial endotoxin (an inflammatory

stimulus) and a control group [12]. There were four samples in each biological group and blood samples

were collected at 2, 4, 6, 9, and 24 h intervals. One control sample had missing information at the 4

and 6 hr time points. The samples were hybridized onto U133 GeneChips with 44,924 probes. The

expression values were log-normalized for variance stabilization.

Smoker study. The smoker study is a two group comparison between smoking and non-smoking

humans [13]. There are a total of 17 samples (10 non-smokers and 7 smokers) from human airway

basal cells in the epithelium: there is one female smoker and the rest of the samples are males. The

samples are sequenced (paired-end) using Illumina HiSeq 2000 and the reads are assembled using

Bowtie: there are total of 65,217 genes with mapped reads. After filtering genes with fewer than 10

reads across all samples, only 26,268 genes remained for analysis. The R package limma is used to

estimate the inverse-variance weights for the weighted least squares implementation. The expression

values were transformed to log2-counts per million (logCPM).

Dose study. The dose study is a dose-response experiment where sensitivity to 17β-estradiol (E2)

in breast cancer cells (BUS cells) was examined [14]. There are five biological replicates for each
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Figure 2: Cross validation error versus degrees of freedom for the first four eigen-genes. The dotted line

indicates the chosen degrees of the freedom in the study.

E2 concentration, where the E2 concentrations considered were 0, 10, 30, 60, and 100 pM (25 total

samples). After 48 hours exposed to E2, RNA samples were hybridized onto U133a GeneChips with

22,283 probes. The expression values were log-normalized to stabilize the variance.

4.2 Determining the degrees of freedom

We implemented the cross validation procedure detailed in Algorithm 2 to determine the appropriate de-

grees of freedom d for the natural cubic spline basis. (The smoker study is a two group comparison and

so regression splines are not necessary.) For each study, the first four eigen-genes were determined

by applying a singular value decomposition to the dataset. In the endotoxin study, the control-treated

and endotoxin-treated groups were separated into two distinct datasets. Multiple regressions were fit

to the eigen-genes using d = 1, 2, 3, 4 for the endotoxin and dose studies and d = 1, 2, ..., 10 for the

kidney study (an intercept term was included in the model). For each eigen-gene, the d that minimized

the leave-one-out cross validation error was selected. Finally, the maximum d across all eigen-genes

was chosen as the estimated degrees of freedom. Applying the above procedure, we find d̂ = 4 for the

endotoxin and kidney studies and d̂ = 2 for the dose study (Figure 2).

4.3 Method comparisons

We compared the mODP to two other popular test statistics, namely, the F -statistic and the moderated

F -statistic (described in Appendix 6.1). Compared to the F -statistic, the moderated F -statistic shrinks
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Figure 3: Observed number of discoveries at various q-value cutoffs from the modular optimal discovery pro-

cedure (black), F-test (green), bootstrap F-test (orange), moderated F-test (blue) and bootstrap moderated

F-test (light blue). These methods were applied to four different studies: endotoxin (longitudinal sampling),

kidney (independent sampling), dose (independent sampling), and smoker (static sampling).

the sample variance towards a pooled variance. This shrinkage allows for more stable inferences with

low sample size studies [6]. Unlike the mODP which requires an empirical null distribution, the F -

statistic and moderated F -statistic have theoretical null distributions. Therefore, we also estimate an

empirical null distribution for the F -test and moderated F -test using a bootstrap algorithm (described

in Appendix 6.2). In summary, the mODP is compared to an F -test, a moderated F -test, a bootstrap

F -test and a bootstrap moderated F -test.

We applied the above testing procedures to our four chosen studies and calculated the number

of differentially expressed genes at various false discovery rates (Figure 3). At each false discovery

rate threshold, the mODP finds substantially more differentially expressed genes compared to the other

methods. For example, when applying a false discovery rate of 0.1, mODP detects 1481, 273, 6637,

and 887 more differentially expressed genes in the kidney, smoker, endotoxin and dose studies, re-

spectively. Additionally, the mODP finds nearly all of the differentially expressed genes detected by the

other methods (Figure 4). Finally, we find that the mODP has the lowest estimated proportion of true

nulls across all studies (Table 1). This suggests that the mODP estimates a higher expected number of
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Figure 4: Venn diagram of the total discoveries at a false discovery rate of 0.1 for the studies in Figure 3.

Only the modular optimal discovery procedure (black), F-test (green) and moderated F-test (blue) are shown.

alternative genes.

To compare the testing procedures, we also performed an enrichment analysis using the hallmark

gene sets from the MSigDB database. These gene sets contain highly curated genes with clear ex-

pression for well-defined biological states or processes [15, 16]. We developed a simple procedure to

detect important gene sets by assigning the proportion of true positives to each. These values range

from 0 to 1, with important gene sets having largest values (see Appendix 6.4 for additional details). We

find that the mODP has the largest proportion of true positives across all gene sets compared to other

methods (Figure 5). Thus the mODP has more power to detect gene sets with enriched true positives.

4.4 Simulations

Comprehensive simulations were performed to verify the observed differences between mODP and

other methods. We generated 500 representative datasets of the observed studies as follows. For each

study, the F -testing procedure was used to separate genes into two distinct classes (i.e., alternative

and null) based on a false discovery rate threshold of 0.1. We then sampled from the population of

alternative genes to get unique gene expression profiles. In total, we considered 5, 10, 50, 100, and

200 unique gene expression curves in our simulation studies. These curves defined the signal for

the alternative genes. (Note the smoker study is a static experiment and so ‘unique gene expression

profile’ refers to the mean differences between the two conditions.) The signals for the null genes were
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Figure 5: Proportion of true positives for the Hallmark gene sets from MSigDB. Enrichment results for each

method are shown for the dose, endotoxin, kidney, and smoker studies.

sampled from the null population. Random noise was added to maintain the signal-to-noise ratio and to

match the observed power. Finally, the total number of alternative and null genes were chosen to keep

the observed proportion of true nulls fixed. For more details see Appendix 6.3.

To compare the testing procedures in the simulated datasets, we calculated the estimated false

discovery rate (FDR) and the total number of discoveries. We find that the mODP controls the FDR

in all simulated studies (Figure 6b). Furthermore, substantially more differentially expressed genes

were detected relative to the other testing procedures (Figure 6a). We also find that the moderated

F -test identifies a similar number of differentially expressed genes compared to the F -test. This is

unsurprising as the moderated F -test only outperforms the F -test when there are very small sample

sizes. When the number of unique gene expression patterns is increased, the power of the mODP

decreases. This is because the number of unique gene expression curves does not change the power

of the F -test and moderated F -test.
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Figure 6: Simulation results for the dose, endotoxin, kidney, and smoker studies using 5, 10, 50, 100, and

200 unique gene expression profiles (linetype). The modular optimal discovery procedure (black), F-test

(green), moderated F-test (blue), bootstrap F-test (orange) and bootstrap moderated F-test (light blue) are

applied to the simulated studies. (a) Estimated power at multiple q-value cutoffs between 0.0001 and 0.1.

(b) Estimated false discovery rate. Curves represent the average value from 500 replications.

5 Discussion

The ODP is a test statistic that provides substantial improvements in statistical power compared to other

testing procedures. While previous work on the ODP is limited to static microarray studies [3, 2, 17],

here we extend its application to complex experimental designs and sequencing studies. Our proposed

algorithm is applied to two time series studies, a dose-response study and an RNA-Seq study. For

each study, our method detects more differentially expressed genes and improves the statistical power

for gene set enrichment analysis. These improvements in power are validated through comprehensive

simulations, where data are simulated to closely resemble the observed datasets. Therefore, the ODP

allows for a more thorough investigation of underlying biological mechanisms in downstream analysis.

The gained improvements in power from the ODP have important biological implications. In a ge-

nomic study, genes share similar patterns of gene expression based on their functional roles. The ODP

leverages this information across genes to strengthen the evidence for or against differential expres-
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sion. To explore how the ODP depends on the ‘degree’ of functionally related genes, we varied the

number of unique gene expression profiles with simulated data. We find that the ODP loses power as

the number of unique gene expression profiles increases: there are fewer functionally related genes

and so there is less information that can be leveraged in the test statistic. As an extreme case, suppose

all genes in a study are functionally unrelated. In this scenario, the ODP has been shown to perform

similar to the F -test (see [3]). While this example is unlikely in biological studies, it provides intuition for

the observed power improvements compared to other testing procedures.

There are a few considerations to note when applying our extended framework to genomic datasets.

First, the computationally efficient implementation of the ODP, called the modular ODP (mODP), in-

volves specifying the number of modules. While previous work has recommended 50 modules for static

microarray studies, we found choosing at least 200 modules to capture the complex functional rela-

tionships among genes provides the best results. Second, there needs to be an adequate number of

samples in the study. This is due to the constraints of the mODP: it requires accurate estimates of

the mean and variance. Furthermore, the bootstrap algorithm implemented in the procedure requires

a minimum number of samples per biological condition to generate a valid empirical null. In the stud-

ies considered here, there are at least four biological replicates per condition. Lastly, the appropriate

degrees of freedom needs to be carefully chosen to avoid overfitting the spline. To this end, we imple-

mented a procedure from ref. [10] that chooses the degrees of freedom based on the leave-one-out

cross validation algorithm.

An interesting aspect of the mODP implementation is that a clustering algorithm assigns genes to

modules, where the modules are representative of shared functional gene expression patterns. These

modules provide valuable information that can be utilized in an exploratory data analysis. For example,

we can calculate the proportion of true positives for each module and rank modules based on true

positive enrichment. Modules enriched with true positives can then be further analyzed to understand

functional relationships among genes. Thus the clustering algorithm provides information of potential

use in other biological analyses.

There are a number of ways the ODP can be further extended for genomic studies. One enhance-

ment is incorporating prior weights on each hypothesis test. For example in sequencing data, higher

per-gene read counts are more reliable than lower per-gene read counts. This information can be

included into a weighted ODP, where weights are generated by estimating the functional proportion

of true nulls based on some informative variable [18]. Another improvement is to extend the ODP to

generalized linear models where the response variable follows an exponential family distribution. This

would enable its extension to genome-wide association studies where complex traits are commonly

non-Normal. These avenues will be explored in future work.

As the cost of generating biological samples decreases, the prevalence of complex study designs
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will increase. The key motivation behind these studies is to capture inherently non-linear transcriptional

responses. Therefore, there is demand for statistically rigorous methodologies that can be applied to

such settings. In this work, we develop a framework to model non-linear gene expression responses

while optimally utilizing biological correlations among genes to improve statistical power. Our method

can thus uncover important biological insights across a wide range of applications in functional, trans-

lational, and clinical genomics.

6 Appendix

6.1 The F -statistic and moderated F -statistic

Suppose gene expression data yij and explanatory variable xlj are observed for i = 1, 2, ...,M genes,

j = 1, 2, ..., n samples, and l = 1, 2, ..., d explanatory variables; the design matrix X = (x1,x2, ...,xd)

is assumed to be full rank. In this case, the null model yij =
∑d0

l=1 βilxjl + εij is tested versus the

alternative model yij =
∑d

l=1 βilxjl + εij where 1 ≤ d0 < d and εij are uncorrelated random errors

that follow a Normal distribution with mean zero and variance σ2
i . We are interested in comparing both

models to infer whether βil 6= 0 for at least one of the l = d0 + 1, ..., d explanatory variables.

The F -test is a classical testing procedure that can be used to compare nested regression models.

The general procedure works as follows. The alternative model is fit using ordinary least squares to the

observed data to estimate the parameters β̂il and the residual vector ei = yi −
∑d

l=1 β̂ilxl. Similarly,

the null model is fit to estimate the parameters β̂null
il and the residual vector enull

i = yi −
∑d0

l=1 β̂
null
il xl.

The test statistic is defined as

F (yi) =

(∥∥enull
i

∥∥2 − ‖ei‖2
)
/(d− d0)

‖ei‖2 /(n− d)
, (7)

where the theoretical distribution under the null hypothesis follows Fisher’s F -distribution with d − d0

degrees of freedom in the numerator and n− d degrees of freedom denominator (denoted Fd−d0,n−d).

Intuitively, if there is no difference between both models then F (yi) should be concentrated around

1. Otherwise, large deviations from 1 provide evidence against the null model. The assumption that

the F-statistic follows an Fd−d0,n−d-distribution under the null hypothesis is only true asymptotically: in

practice, there needs to be a large number of samples for reliable inferences.

For small sample sizes, the moderated F -statistic can be used to compare two models. The main

issue with small sample sizes is that the sample variance can often be inflated and unreliable to use in

the traditional F -test. The moderated F -test is an empirical Bayes procedure that borrows information

across genes to provide stable estimates of the sample variance [6]. A rough outline of the hierarchical
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model is as follows. The inverse variance across genes are assumed to vary as a scaled chi-squared

distribution, i.e.,

1

σ2
i

∼ 1

ρ0σ2
0

χ2
ρ0 , (8)

where ρ0 is the degrees of freedom and σ2
0 is a scaling factor. Furthermore, the non-zero effect sizes

are assumed to follow a Normal distribution with mean 0 and variance proportional to σ2
i . The posterior

mean of σ2
i given the sample variance can be determined from the above hierarchical model, see [6]

for more details. This mean value is used as an improved estimate of the sample variances, where

the sample variances are shrunken towards the prior estimator σ2
0 for more stable estimates. More

specifically, the moderated F -statistic is defined as

F (yi) =

(∥∥enull
i

∥∥2 − ‖ei‖2
)
/(d− d0)

‖e∗i ‖
2 /((n− d) + ρ0)

, (9)

where ‖e∗i ‖
2 = ‖ei‖2+ρ0σ

2
0 and the parameters (ρ0, σ

2
0) are estimated from the data [6]. The theoretical

distribution under the null hypothesis for the moderated F -statistic follows an F -distribution with d −
d0 degrees of freedom in the numerator and (n − d) + ρ0 degrees of freedom in the denominator,

Fd−d0,(n−d)+ρ0 . When there are a sufficient number of samples, ‖e∗i ‖
2 ≈ ‖ei‖2 and (n−d)+ρ0 ≈ n−d.

Thus the statistical power of the moderated F -test and F -test will be similar for large sample sizes.

6.2 Generating an empirical null

A standard bootstrap procedure was implemented to generate an empirical null distribution for the

testing procedures. For i = 1, 2, ...,M genes,

1. Assume the model fit for the null model is yi = f0(xi) + εi and for the alternative model is

yi = f1(xi) + εi where εi are the random errors.

2. Fit both models to the observed data using ordinary least squares: Estimate f̂1(xi) and ei for the

alternative model and f̂0(xi) and enull
i for the null model. Calculate the test statistic of interest

(i.e., the ODP statistic, F -statistic, or moderated F -statistic), denoted by Ti(f̂0(xi), f̂1(xi)).

3. Adjust the residuals by calculating studentized residuals: esi = ei(1 − Tr(P)), where P =

X(XTX)−1XT is the projection matrix under the alternative model.

4. For b = 1, 2, ..., B bootstrap samples, sample n observations from the studentized residuals (with

replacement) to obtain e
s∗(b)
i . Add these residuals to the null model fit y∗(b)i = f̂0(xi) + e

∗(b)
i .
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5. Fit both models to y
∗(b)
i and obtain f̂∗(b)0 (xi) and f̂∗(b)1 (xi) estimates under the null and alternative

models, respectively. Calculate T ∗(b)i (f̂
∗(b)
0 (xi), f̂

∗(b)
1 (xi)) for b = 1, 2, ..., B bootstrap samples.

Note that the hyperparameters of the moderated F -statistic (d0, σ0) are fixed and so ‖e∗i ‖
2 =∥∥∥e∗(b)i

∥∥∥2
+ d0σ

2
0 .

6. Calculate the empirical p-values as

pi =

∑B
b=1 1

(
T
∗(b)
i (f̂

∗(b)
0 (xi), f̂

∗(b)
1 (xi)) ≥ Ti(f̂0(xi), f̂1(xi))

)
B

.

For the ODP, the studentized residuals need to be rescaled by the observed sample variance.

This enforces that the sample variance remains the same for all bootstrap iterations. Thus step (4)

is e
s′∗(b)
i = e

s∗(b)
i

σ̂i

σ̂
s∗(b)
i

where σ̂i = ‖ei‖√
n−d is the sample standard deviation of the residuals from the

original alternative model (d explanatory variables) and σ̂s∗(b)i =

∥∥∥e∗(b)i

∥∥∥
√
n−1

is the standard deviation from

the resampled residuals.

It is important to note that additional steps in the above algorithm may need to be taken when

handling longitudinal data. See ref. [10] for more details.

6.3 Simulation details

The primary objective in the simulation study is to generate replicate datasets of the observed stud-

ies. We use the biological signal from each study as a baseline: both models are fit to estimate the

gene expression curves under the alternative and null models. The genes assigned to the alternative

model had q-values < .1 while genes assigned to the null model had q-values > .1. The number

of unique curves from the alternative model was varied by randomly selecting from the population of

genes assigned to the alternative model. For each study and number of unique gene expression curves

g = 5, 10, 50, 100, 200, the procedure is outlined below:

1. Use the estimated proportion of true nulls π̂0 to randomly assign the m genes to either the al-

ternative (m(1 − π̂0)) or null (mπ̂0) models. Genes assigned to the alternative model followed

a unique gene expression curve g, fg1 (xi). Alternatively, the null genes were randomly sampled

from the population of null model fits f∗0 (xi).

2. Using the observed signal-to-noise ratio (SNR) distribution from the alternative model, calculate

an appropriate SNRM such that the estimated number of differential expressed genes at a false

discovery rate of 0.1 is close to the observed study. This was done by trial and error: yig =

fg1 (xi) +σ∗i , where σ∗i is randomly sampled from the population of standard deviations σg√
SNRM

for

all g.
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ODP F -test Mod. F -test boot. F -test boot. mod. F -test

Dose 0.672 0.803 0.813 0.804 0.793

Endotoxin 0.349 0.605 0.615 0.388 0.397

Kidney 0.585 0.687 0.685 0.684 0.676

Smoker 0.600 0.681 0.681 0.680 0.669

Table 1: Estimated proportion of true nulls.

3. Randomly sample from the population of standard deviations in the previous step to add noise to

the alternative model yig = fg1 (xi) + σ∗i and the null model yi = f∗0 (xi) + σ∗i for all genes; call

this simulated dataset Y∗.

4. Apply the testing procedures to Y∗ and calculate p-values.

5. Repeat steps (3-4) 500 times and calculate the average number of discoveries and the average

false discovery rate for all testing procedures.

The estimated proportion of true nulls are shown in Table 1 and the estimated SNRM for the dose,

endotoxin, kidney and smoker studies are the 0.86, 0.45, 0.35, and 0.8 quantiles of the SNR distribution,

respectively.

6.4 True positive enrichment analysis

Consider i = 1, 2, ...,m test statistics zi calculated on a gene-by-gene basis from a biological study.

Given these test statistics, we propose a new summary statistic for gene sets based on the enrichment

of true positives. The procedure works as follows. For each gene i, we can calculate the local false

discovery rate based on the chosen test statistic:

lfdr(zi) = Pr{null|zi} = π0
f0(zi)

f(zi)
,

where π0 is the prior probability that a hypothesis test is null, f0(zi) is the null density, and f(zi) is a

mixture of the null and alternative densities [7]. Next, we average the local false discovery rate in gene

set S,

TPE(S) =

∑
i∈S

(1− lfdr(zi))

|S|
.

As an example, if we calculated TPE(S) = 0.9 then it corresponds to a gene set with an average of 0.9

true positives. Thus this gene set has a high proportion of true positives.
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The advantages of working in this framework are (i) it is computationally fast to calculate TPE(S) for

all gene sets, (ii) the interpretation of important gene sets is more intuitive, and (iii) covariate-adjusted

local false discovery rates can easily be incorporated to improve statistical power.
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