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In an outbreak of an emerging disease the epidemiological characteristics of8

the pathogen may be largely unknown. A key determinant of ability to control9

the outbreak is the relative timing of infectiousness and symptom onset. We10

provide a method for identifying this relationship with high accuracy based11

on data from household-stratified symptom-onset data. Further, this can be12

achieved with observations taken on only a few specific days, chosen optimally,13

within each household. This constitutes an important tool for outbreak re-14

sponse. An accurate and computationally-efficient heuristic for determining15

the optimal surveillance scheme is introduced. This heuristic provides a novel16

approach to optimal design for Bayesian model discrimination.17

Keywords: Bayesian model discrimination; epidemiology; optimal experimental design;18

random forests.19

Introduction20

The timing of infectiousness relative to symptom onset has been identified as a key factor in21

ability to control an outbreak (11). The explanation is intuitive: If symptoms appear before22

infectiousness, then contact tracing and isolation strategies will be effective, whereas for post-23

infectiousness symptom presentation, broader, non-symptom based strategies must be adopted.24

1

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2019. ; https://doi.org/10.1101/571547doi: bioRxiv preprint 

https://doi.org/10.1101/571547
http://creativecommons.org/licenses/by-nc/4.0/


Consequently, identifying the relative timing as early as possible in an outbreak is imperative to25

assessing potential for control and selecting a measured response.26

27

Severe acute respiratory syndrome (SARS) is a prime example of a disease in which symp-28

toms foreshadow significant levels of infectiousness (2). This played a critical role in limiting29

mortality and morbidity in outbreaks during 2003, via simple public health measures such as30

isolation and quarantining (2,8,11,14,16,18). Smallpox is most similar to SARS in this respect,31

but must be contrasted with HIV, where a large proportion of secondary infections occur before32

symptoms (11). For influenza, the relationship is less clear, with symptoms and infectiousness33

likely coinciding closely, with some transmission possible before symptom onset (17,21). This34

relationship will not be known in an outbreak of an emerging pathogen, and one must turn to35

early outbreak surveillance data for insights.36

37

Many jurisdictions organize their emerging disease monitoring policies around households.38

As an example, First Few Hundred studies are proposed as a first response surveillance scheme39

following the identification of a novel disease and/or strain as part of national pandemic plans (3,40

12,19). Following the observation of a first symptomatic individual, their household is enrolled41

in an intensive surveillance program, so that day of symptom onset for subsequent cases within42

that household are recorded. Methods have recently been developed to characterise transmis-43

sibility and severity of a novel pathogen – other factors influencing ability to control an out-44

break (11) – based on such data. Currently lacking is a method for accurate determination of45

relative timing of infectiousness and symptom onset using this data.46

47

Here we introduce, and demonstrate through a simulation study, a method for identifying48

with high accuracy the timing of infectiousness relative to symptom onset from household-49

stratified symptom surveillance data. Remarkably, we show this is achievable with observations50

taken on only a few specific days, chosen optimally, within each household. Our approach to51

determining the optimal surveillance scheme is based on an efficient heuristic. This heuristic52

provides a general, computationally-efficient approach to optimal design for Bayesian model53

discrimination.54
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Bayesian model discrimination for outbreak control55

We model disease dynamics within each household as a continuous-time Markov chain (15),56

that counts the number of household members that are susceptible (S), exposed (E), infectious57

(I), or recovered (and immune; R). Under this model, the timing of symptom onset relative to in-58

fectiousness is mapped to which transition is observed: symptoms appear either upon infection,59

infectiousness, or recovery. The challenge is to determine which of these three (observation)60

models best describes the household-stratified symptom-onset data (Figure 1a).61

62

There is a relatively rich literature on Bayesian model discrimination (1,7,10,29), and opti-63

mal design for such (6,28), which are the most appropriate tools and framework to address this64

question. A general difficulty with this theory is that practical implementation is at best diffi-65

cult, and often infeasible. This has led to methods based on approximate Bayesian computation66

(ABC), which requires only simulation of realisations from each model, and is computationally67

feasible for a wide range of models. Unfortunately, there exists ‘a fundamental difficulty’ in68

establishing robust methods based upon summary statistics (25, 26); however, see the recent69

work of Dehideniya et al. (9).70

71

Another approach to model discrimination in an ABC framework has been proposed by72

Pudlo et al. (22). They treat model discrimination as a classification problem, for which ma-73

chine learning methods are ideal, and in particular propose the use of random forests to perform74

this task. This approach provides a highly-efficient, and importantly, robust method for model75

discrimination. Hainy et al. (13) expand on this approach as specifically applied to optimal76

design for model discrimination.77

78

We apply these tools, first for accurate, robust characterisation of relative timing of symp-79

toms and infectiousness, and second, for optimal design of early outbreak surveillance for accu-80

rate model discrimination. Specifically, the aim of the latter is to select an optimal surveillance81

scheme, consisting of a fixed number of observations, in order to discriminate three differ-82

ent timings of symptom onset relative to infectiousness, within a household-stratified epidemic83

model. We evaluate the impact of assumptions and summary statistics. Additionally, we pro-84

pose a new, computationally-efficient and highly-accurate heuristic for optimal design choice,85

which in this application determines the optimal days upon which to perform surveillance in86
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households.87

88

Methods89

Epidemic model90

We demonstrate using an example system of a novel infectious disease, spreading in a popu-91

lation structured into households. We assume that the population is large and mixing between92

households is random, such that after a household is initially infected, the remaining transmis-93

sion within the household is independent of transmission outside the household (5, 27). There-94

fore, transmission dynamics within households can be modelled independently (4). Given this95

novel etiological agent, we wish to determine if symptom onset occurs at the time of infection,96

infectiousness, or recovery (i.e., these are the three candidate models we wish to discriminate).97

The model behaviours are otherwise assumed identical. To be emphatic, the underlying disease98

dynamics is identical in all three models, each differing only in when observations are made,99

corresponding to different timings of symptom onset (Figure 1a).100

101

We model the epidemic dynamics in households as a continuous-time Markov chain (Figure102

1a) (15). Individuals transition from susceptible (S) to exposed (E), then to infectious (I), and103

finally to recovered (R), with rates as described in Table 1.104

Table 1: Events, transitions and rates within a household.

Description Transition Rate
Infection (S, I)→ (S − 1, E + 1) βSI/(N − 1)
Infectiousness (E, I)→ (E − 1, I + 1) σE
Recovery (I, R)→ (I − 1, R + 1) γI

We assign a distribution to each parameter (Supplemental Figure S1), based on physical105

quantities to reflect the assumed prior knowledge of the etiological agent:106

• 1
σ
∼ Gamma(6, 1/2), representing a mean exposed duration of 3 days (mode at approxi-107

mately 2.5 days);108
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• 1
γ
∼ Gamma(6, 1/2), representing a mean infectious duration of 3 days (mode at approx-109

imately 2.5 days); and,110

• R0 ∼ 1 + Gamma(2, 1/2), representing a mean R0 (the expected number of secondary111

cases caused by an infectious individual in a fully susceptible population) of 2 (mode at112

approximately 1.5).113

These distributions are sampled per-simulation, i.e., sampled parameters are kept constant across114

all households within a given epidemic. We also test the accuracy of model discrimination when115

these parameters are known, fixed quantities
(
β = 2

3
, σ = γ = 1

3
; see Supplemental Figure S3116

for results
)
.117

118

Following the first symptomatic case in a household, the number of symptomatic cases119

within the household is observed daily; i.e., the instant that the first individual in a household120

shows symptoms is time zero. Then, the number of cases seen before time 1 constitutes the first121

observation, between time 1 and 2 the next observation, and so on. This proceeds for 14 days,122

with any symptoms occurring after time 14 not observed.123

124

When testing the effect of asymptomatic infections on model discrimination, we sample an125

additional parameter, pobs, the probability that an individual shows symptoms at the time they126

would in the model in question. We explored two scenarios: (1) pobs ∼ Beta(5, 5) (i.e., a mean127

pobs of 0.5), and (2) pobs ∼ Beta(7.5, 2.5) (i.e., a mean pobs of 0.75).128

Random forest model selection129

To attempt to discriminate models, we use the approximate Bayesian random forest approach130

of Pudlo et al. (22). This proceeds as follows:131

• Select a number of simulations, Ns, and a number of households, Nh.132

• For each model:133

– Sample a set of parameters θ = (R0, σ, γ) from the (prior) distributions.134

– Simulate Nh households given these parameters.135

– Repeat this process Ns times.136
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• Given the Ns simulations from each model, extract the data corresponding to the consid-137

ered design.138

• Construct a random forest that predicts the model label, given the simulations.139

• Assess the accuracy of the process on a left-out test set.140

Once a design has been chosen, to employ this process when an outbreak is observed it would be141

input to the (trained) random forest, to obtain a prediction of which model it is most consistent142

with.143

Random forests were constructed using the Python scikit-learn RandomForestClassifier al-144

gorithm (23), with 200 trees.145

Summary statistics146

To more effectively use the household data in training the random forest, we summarize raw147

household data as daily histograms of incidence, as in Figure 1c. That is, we count the propor-148

tion of households that, on day d, observed an incidence of i, and then use the resultant (design149

size) × (household size + 1) data vector as the new random forest predictors. For example,150

with designs of size 5, households of size 5, and 200 households, the raw data would consist151

of 5 × 200 = 1000 predictors, whereas the histogram summaries would consist of 5 × 6 = 30152

predictors.153

Optimal sampling design154

Conducting a First Few Hundred-style study can be extremely labour intensive. Consequently,155

we wish to assess the potential for model discrimination when sampling is only performed on a156

subset of days, rather than every day. If we choose to only sample on D < 14 days, within the157

first 14 days following the first symptomatic case in each household, we must necessarily also158

choose the optimal days on which to sample. We choose those days that produce the highest159

classification accuracy on a left-out test set. This design problem is small, with only
(
14
D

)
designs160

of sizeD (or 214 = 16, 384 total designs) to evaluate, so we apply exhaustive search in this case;161

however a combinatorial optimisation algorithm could be applied and would likely be necessary162

in a more complex design problem to search for the optimal design.163
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Heuristic solution164

Rather than evaluating the full set of possible designs, or applying an optimisation algorithm,165

we propose a heuristic for efficiently finding high-quality designs of a given size. This heuristic166

is to perform random forest model selection on the largest possible design, extract the random167

forest feature importance Figure 1b), and use this random forest feature importance to rank168

design points. Specifically, days are ranked on their maximum feature importance; the sum of169

the importance of features from a day was also tested, but had inferior performance. A design170

of size d uses the highest-ranked d design points. The random forest feature importance metric171

we use is the mean decrease in Gini impurity (24) of a feature across the trees in the random172

forest (this metric is easily extracted from the python scikit-learn random forest algorithm (23)).173

Results174

Random forest-based Bayesian model discrimination was able to accurately discriminate rela-175

tive timing of symptoms and infectiousness for simulated household-stratified symptom-onset176

data: with 200 households of size 5, accuracy was 0.923 (with random parameters, and 10,000177

training simulations per model). Accuracy was reduced with fewer households: to 0.853 with178

100 households, and 0.657 with only 25 households (Figure 1d). These results were robust with179

respect to variation in household size, with accuracy ranging from 0.892 with 200 households180

of size 3 to 0.935 with 200 households of size 7.181

182

Remarkably, model discrimination remained accurate when only a small subset of daily183

household data were observed, when the observations were from an optimal design: a design of184

size 5 and 190 households was sufficient to produce a classification accuracy of ≥ 0.90 (Figure185

1d, Figure 2a). Accuracy increased as the design size (i.e., number of days of surveillance) and186

the number of households increased. The heuristic produced the exact optimal design at design187

sizes 4 and 5 (Figure 2b), and an effectively indistinguishable level of accuracy compared to188

the optimal for larger design sizes (Figure 1d). The heuristic ensured a substantial reduction189

in computation time: to produce Figure 1d, 39 random forests were required when using the190

heuristic, compared to 49,107 random forests to produce the optimal results. We also explored191

the impact of varying household size, the amount of training data used, and of using fixed,192

known parameters rather than parameters sampled from a distribution: larger households and193

more training points produced small increases in accuracy (Supplemental Figures S2, S3), and194
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known epidemic parameters produced substantial increases in accuracy (Supplemental Figure195

S3).196

The key design points (i.e., sampling days) for optimal designs were consistently the first197

day (Figure 2b), followed by other days early in the outbreak (i.e., days 2–4), and the final198

sampling day (day 14). Days 6–13 typically had little impact on model discrimination accuracy199

(i.e., optimal Accuracy consistently levelled off as design size increased beyond 5; Figure 1d,200

Supplemental Figure S3), and the optimal combination of these days varied due to stochasticity201

in both training and test data. This is consistent with the feature importance used to develop202

the heuristic (Figure 1b), i.e., those days that were consistently optimal were those with highest203

feature importance.204

205

To assess the impact of asymptomatic infections on model discrimination, we repeated the206

analysis, except with each individual only being symptomatic (at the point that they otherwise207

would) with probability pobs (again, sampled from a prior distribution). This partial observation208

made model discrimination substantially more challenging: with designs of size 5 and 200209

households (Figure 2a), accuracy was 0.796 when pobs had a mean of 0.75, and accuracy was210

0.653 when pobs had a mean of 0.5 (compared to 0.908 with complete observation).211

Discussion212

Identifying the relative timing of symptom onset and infectiousness in an emerging epidemic is213

critical to outbreak control. We have demonstrated that it is not only possible to accurately iden-214

tify the relative timing based upon household-stratified data available early in an outbreak, but215

that it can be done without observing each household every day. Moreover, we can use random216

forest feature importance to inform a heuristic that vastly reduces the computation necessary to217

choose high-accuracy designs.218

219

It is remarkable that it is possible to discriminate models so accurately, given that they share220

identical epidemic dynamics, and only differ in observation. The non-parametric nature of the221

random forest is able to use small but clear differences between models (e.g., Figure 2c) to222

extract sufficient information to discriminate them. Combining the raw household data to form223

summary statistics is critical to this: if the raw household data is used rather than the summary224
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Figure 1: (a) Model schematic describing: transitions between states within each household
continuous-time Markov chain; the three observation models being discriminated between; and,
the way that these household-level data are observed. (b) Random forest feature importance for
the full 14-day design, used to construct the heuristic for smaller designs. (c) Histogram sum-
maries of the daily household-level data under a given design, used as predictors in the random
forest. (d) Resulting random forest accuracy as design size increases, for the true optimal de-
sign (solid lines) and heuristic solution (crosses with dashed line). These results correspond
to households of size 5, with 10,000 training samples from each model, each with parameters
drawn from the distributions displayed in Supplemental Figure S1.

9

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2019. ; https://doi.org/10.1101/571547doi: bioRxiv preprint 

https://doi.org/10.1101/571547
http://creativecommons.org/licenses/by-nc/4.0/


5

10

5 10
Design size

D
es

ig
n 

po
in

ts
 in

cl
ud

e
d

0.4

0.6

0.8

1.0

50 100 150 200
Number of households

A
cc

ur
a

cy

pobs
1
0.75
0.5

a b

c

Figure 2: (a) Accuracy of model discrimination in designs of size 5, as the number of house-
holds increases, and under partial observation. Note that pobs is not a fixed parameter but is
sampled from a distribution; the listed value is its mean. The case with mean pobs of 0.5 was
sampled from a Beta(5,5) distribution, and a mean pobs of 0.75 from a Beta(7.5,2.5) distribution.
(b) Difference between heuristic designs (coloured points) and optimal designs (black boxes)
as the design size increases. Note that the heuristic selects the optimal design at design sizes 4,
5, 13, and 14. (c) Distribution of training sample observations (under each model and number
of households) for the most important feature under the heuristic: the proportion of households
with 2 cases observed on day 1. These results correspond to households of size 5, with 10,000
training samples from each model, each with parameters drawn from the distributions that ap-
pear in Supplemental Figure S1.
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statistics, accuracy is substantially lower (Supplemental Figure S4). While it can be difficult225

to interpret the classifications made by a random forest-classifier, interrogating key individual226

predictors (as in Figure 2c) provides clarity, and elucidates why feature importance provides a227

useful heuristic for choosing optimal designs (20).228

229

The accuracy of model discrimination decreases substantially as the proportion of cases that230

are asymptomatic increases. However, this can be compensated by increasing the number of231

households. The outbreaks in which early control is most critical are likely to be those in which232

most individuals are symptomatic, due to symptoms being strongly correlated with severity, for233

example hospitalisations and deaths.234

235

In some situations it may be necessary to consider more complicated surveillance schemes,236

in which case it may not be possible to evaluate the exact optimal design by exhaustive search.237

However, the heuristic proposed here should remain effective in more complicated design238

spaces, provided they have a similar form, i.e., designs of a given size are a subset of designs of239

larger sizes upon which the random forest can be trained to extract feature importance.240

241

Assumptions impact any model-based study. Here assumptions include: a constant house-242

hold size; enrolling each household in the study at the instant its first member shows symptoms;243

and, most critically, assuming that the underlying epidemic model is true. It is possible to select244

between models that differ in addition to observation process; however any increase in the num-245

ber of models to classify will likely result in increased computation and potentially decreased246

accuracy.247

248

In the future, the aim is to combine Bayesian model discrimination and parameter estimation249

in an online manner. Improving estimates of parameters improves the ability to discriminate250

models, and, more certainty regarding the model likely reduces variance in parameter estimates.251

This would allow for unified characterisation of all factors influencing the ability to control an252

outbreak.253
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Supplemental Information338

The supplemental information contains:339

• Plots of the prior distribution for each epidemic parameter used to generate the household340

data (Fig. S1).341

• A comparison of the accuracy of model discrimination as the size of households in the342

model varies from 3 to 7. This includes both the complete observation scenarios, and the343

scenarios wherein pobs = 0.5 (Fig. S2).344

• A comparison of the accuracy of model discrimination when parameters are known (fixed)345

values versus values sampled from the prior distributions; and of the impact of using 1,000346

versus 10,000 training samples (Fig. S3).347

• Model discrimination accuracy when the random forests are trained on the raw, unsum-348

marised data rather than the histogram summaries that appear in the main text (Fig. S4).349
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Figure S1: Distributions for model parameters.
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Figure S2: Change in accuracy of optimal designs as household size increases from 3 to 7,
under complete observation and mean pobs = 0.5. Based on 10,000 training simulations and
parameters sampled from distributions.
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Figure S3: Impact on accuracy of optimal designs as with fixed parameters vs. parameters
sampled from distributions, and with 1,000 vs. 10,000 training samples. Based on households
of size 5.
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Figure S4: Performance of random forest model discrimination when raw data were used as
predictors, rather than histogram summaries (with results in Figure 1d). Based on households
of size 5, with 10,000 training points, and random parameters.
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