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1 Abstract

2 Landscape genomics integrates population genetics with landscape ecology, allowing 

3 the identification of putative molecular determinants involved in environmental 

4 adaptation across the natural geographic and ecological range of populations. Wild 

5 Phaseolus vulgaris, the progenitor of common bean (P. vulgaris), has a remarkably 

6 extended distribution over 10,000 km from northern Mexico to northwestern Argentina. 

7 Earlier research has shown that this distribution represents a range expansion from 

8 Mesoamerica to the southern Andes through several discrete migration events and that 

9 the species colonized areas with different temperature and rainfall compared to its core 

10 area of origin. Thus, this species provides an opportunity to examine to what extent 

11 adaptation of a species can be broadened or, conversely, ecological or geographical 

12 distribution can be limited by inherent adaptedness. In the current study, we applied a 

13 landscape genomics approach to a collection of 246 wild common bean accessions 

14 representative of its broad geographical and climatic distribution and genotyped for 

15 ~20K SNPs. We applied two different but complementary approaches for identifying loci 

16 putatively involved in environmental adaptation: i) an outlier-detection method that 

17 identifies loci showing strong differentiation between sub-populations; ii) an association 

18 method based on the identification of loci associated with bio-climatic variables. This 

19 integrated approach allowed the identification of several genes showing signature of 

20 selection across the different natural sub-populations of this species, as well as genes 

21 associated with specific bio-climatic variables related to temperature and precipitation. 

22 The current study demonstrates the feasibility of landscape genomics approach for a 

23 preliminary identification of specific populations and novel candidate genes involved in 

24 environmental adaptation in P. vulgaris. As a resource for broadening the genetic 

25 diversity of the domesticated gene pool of this species, the genes identified constitute 

26 potential molecular markers and introgression targets for the breeding improvement of 

27 domesticated common bean.

28
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29 Author Summary

30 The ancestral form of common bean has an unusually large distribution in the Americas, 

31 extending over 10,000 km from ~35° N. Lat. to ~35° S. Lat. This wide distribution results 

32 from discrete long-range dissemination events to the Andes region from the original 

33 environments in Mesoamerica. It also suggests adaptation to new environments that are 

34 distinct from those encountered in Mesoamerica. In this research, we identified genes 

35 that may be involved in adaptation to climate variables in these new environments using 

36 two methods. A first method – outlier detection – was used to identify genome regions 

37 that differentiated the wild bean groups in the Andes resulting from discrete 

38 dissemination events among themselves and the different groups in Mesoamerica. The 

39 second method – genome-wide association – was used to identify candidate genome 

40 regions correlated with these same variables across the entire distribution from 

41 Mesoamerica to the southern Andes. The two methods identified two sets of candidate 

42 genes, several of which were related to the water status of plants, and illustrate how the 

43 genetic architecture of adaptation following long-range dissemination. This study 

44 provides sets of candidate genes as well as candidate wild bean populations that need 

45 to be corroborated for their use in increasing the water use efficiency of domesticated 

46 beans.
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47 Introduction

48 Climate change represents one of the primary threats for food security worldwide, but especially 

49 in developing countries that rely heavily on agricultural production from smallholder farmers 

50 (Rippke et al., 2016; Campbell et al., 2016). Indeed, several studies have highlighted a 

51 predominant role of climate change in reducing agricultural productivity and increasing inter-

52 annual variability in crop yields, thus directly affecting food availability and stability (Wheeler 

53 and von Braun, 2013; Challinor et al., 2014). The increase in average temperatures, along with 

54 the higher frequency and intensity of extreme weather conditions, will require the development of 

55 new plant varieties adapted to this changing environment in order to meet future food security 

56 needs (Lobell et al., 2008; Field et al., 2012). The development of new varieties requires the 

57 introduction of genetic diversity into breeding programs to find the correct combinations of 

58 favorable alleles in a specific crop (Ford-Lloyd et al., 2011). The genetic variability available in 

59 domesticated plants is generally low due to the bottleneck effect induced by domestication and 

60 subsequent selection during variety improvement (Ford-Lloyd et al., 2011; Zamir 2001; Gepts 

61 2014), thus new sources of genetic diversity need to be introduced into breeding programs.

62 Crop Wild Relatives (CWRs) represent a large, and mostly unexploited, source of genetic 

63 diversity readily available for plant improvement under climate change (Ford-Lloyd et al., 2011; 

64 Zamire 2001; Gepts 2014; Spillane and Gepts 2001; Brozynska et al., 2016). However, the use of 

65 CWRs in breeding programs for improving stress resistance in domesticated species could be 

66 hindered by the lack of knowledge of the genetic determinants of resistance, difficulties in 

67 phenotyping a large number of individuals under agricultural conditions, and the existence of 

68 linkages between target resistance genes and unfavorable loci subject to linkage drag (Brozynska 

69 et al., 2016; Cortés et al., 2013; Zhang et al., 2017). One possible solution for overcoming the 
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70 first two difficulties is the integration of environmental and genotypic datasets to understand the 

71 genetic basis of natural selection in wild populations, an approach known as ‘landscape 

72 genomics’ (Schoville et al., 2012; Bragg et al., 2015). In addition, this approach offers both 

73 theoretical and practical applications since it strengthens the understanding of plant natural 

74 adaptation but allows also the identification of germplasm accessions and molecular markers that 

75 could be readily applicable – pending validation - for breeding improvement of domesticated 

76 plants (Anderson et al., 2016).

77 Several methods have been developed for identifying signatures of natural selection (e.g., 

78 selective sweeps) in natural populations. These methods can be divided mostly in outlier-

79 detection methods, which identify hard-selection sweeps, and association methods, which 

80 identify soft-selection sweeps (Schoville et al., 2012; Wagner and Fortin, 2013). Outlier-detection 

81 methods are based on population differentiation analysis and aim at identifying loci with drastic 

82 differences in allele frequencies between populations, as measured by Fst (Wright, 1949; 

83 Lewontin and Krakauer, 1973). Although based on the assumption that alleles fixed within sub-

84 populations could confer an evolutionary advantage in the ecological niche occupied (Haldane, 

85 1930; Kimura, 1962), these methods do not take directly into account climatic data and could be 

86 biased by complex population structure and/or demography (Narum and Hess, 2011). On the 

87 other hand, association methods directly correlate genotypic with environmental data and rely on 

88 the assumption that variations of allele frequencies across environmental gradients are possible 

89 signature of local adaptation (Manel et al., 2010). The theory beneath environmental association 

90 methods are practically the same as that used in Genome Wide Association Studies (GWAS) 

91 (Hirschhorn and Daly, 2005). Both approaches employ mixed model association approaches for 

92 correcting the confounding effects that could be introduced by population structure and 

93 relatedness in the sample (Lipka et al., 2015).
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94 Common bean (Phaseolus vulgaris L.) is an essential staple crop providing most of proteins 

95 and micronutrients in the diet of the majority of the population in several developing countries 

96 (Gepts et al., 2008). The regular consumption of this crop provides several health benefits, like 

97 reducing the risks of heart disease, obesity, and diabetes (Messina, 2014). Its cultivation improves 

98 agricultural sustainability thanks to its nitrogen-fixing ability (Rubiales and Mikić, 2015). 

99 Common bean shows a surprisingly high genetic diversity, with the presence of at least three 

100 geographically isolated and divergent wild gene pools located in 1) Mesoamerica and the 

101 northern Andes (MW); 2) the Central Andes (Ecuador and northern Peru; PhI); and 3) the 

102 Southern Andes (southern Peru, Bolivia, and northwestern Argentina; AW) (Chacón et al., 2007; 

103 Koenig and Gepts, 1989; Debouck et al., 1993; Mamidi et al., 2013). Common bean was 

104 domesticated independently in Mexico and the Southern Andes, producing locally-adapted 

105 varieties and landraces with specific characteristics (Bitocchi et al., 2013; Blair et al., 2012; 

106 Gepts et al., 1986, Mamidi et al., 2011, Rossi et al., 2009, Singh et al., 1991).  The intermediate 

107 gene pool in the Central Andes was not domesticated (Debouck et al., 1993; Kami et al., 1995). 

108 This wild group has been recently identified as a cryptic sister species of P. vulgaris, named 

109 Phaseolus debouckii A. Delgado, which was disseminated from the center of origin of this 

110 species in Mesoamerica and remained geographically isolated from the other wild gene pools of 

111 this species (Rendón-Anaya et al., 2017a,b).

112 Wild common bean is an annual vine plant, which is distributed from the state of Chihuahua 

113 in northern Mexico (approx. 35° N. Lat.) to the Córdoba province in Argentina (approx. 35° S. 

114 Lat.), encompassing almost 70 latitudinal degree or about 10,000 km (Gepts, 1998; Porch et al., 

115 2013). This species grows in both tropical and sub-tropical environments across the Americas at 

116 elevations between 500 and 2,000 m a.s.l. with annual rainfall from 500 to 1,800 ml (Cortés et 

117 al., 2013, Gepts, 1998, Porch et al., 2013). This broad geographic and ecological distribution 
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118 suggests the existence of genotypes adapted to a wide variety of environmental conditions, which 

119 could be useful donors of abiotic stress resistance for improving domesticated common bean 

120 production under climate change (Porch et al., 2013, Acosta-Gallegos et al., 2007).

121 Future projection of climate changes under different models predict a reduction of suitability 

122 for common bean production in areas where this plant is an essential staple crop and also a source 

123 of household income, hence endangering food security and increasing rural poverty in already 

124 susceptible areas of the world (Ramirez-Cabral et al., 2016). For this reason, it is essential to 

125 understand the molecular mechanisms involved in wild common bean adaptation to different 

126 environments and to identify molecular markers that could be useful in breeding improvement of 

127 this crop. The application of landscape genomics approaches in wild common bean could help 

128 address these issues, as demonstrated previously in several other plant species like soybean, 

129 barley, Medicago truncatula, maize, and Brachypodium (Anderson et al., 2016, Westengen et al., 

130 2012, Yoder et al., 2014, Dell'Acqua et al., 2014, Abebe et al., 2015).

131 In the current study, we applied a landscape genomics approach to understand environmental 

132 adaptation to a dataset comprised of 246 wild common beans genotyped for ~20K previously 

133 developed SNPs (Ariani et al., 2018). A similar analysis was performed previously in this species 

134 using 148 SNPs located in genes putatively involved in adaptation to biotic or abiotic stresses 

135 (Rodriguez et al., 2016). However, the higher number of markers developed in this study and the 

136 broader and more even distribution across the genome of these markers, results in a more 

137 comprehensive and precise analysis of environmental adaptation in this species. In addition, the 

138 genes identified as associated with environmental variables can be validated and applied in the 

139 future for domesticated common bean breeding improvement.
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140 Results

141 Bio-climatic data analysis

142 The bio-climatic variables downloaded from the WorldClim database concern mostly 

143 temperature and rainfall during the year. These bio-climatic variables were developed for 

144 generating biologically informative variables useful for species distribution modeling and 

145 landscape genomics approaches. In our analyses, the 19 bio-climatic variables analyzed showed a 

146 great degree of correlation, in particular for similar variables like bio_14 (precipitation of the 

147 driest month) and bio_17 (precipitation of the driest quarter), or bio_13 (precipitation of the 

148 wettest month) with bio_16 (precipitation of the wettest quarter) (S1 Fig).

149 The loading plot on the first two PCs showed some correlations between bio-climatic 

150 variables and principal components, as well as strong correlations between some of the bio-

151 climatic variables analyzed (Fig 1A). In particular, bio_12 (annual precipitation) and bio_4 

152 (temperature seasonality) showed a strong correlation with PC1. On the other hand, bio_5 (max 

153 temperature of the warmest month), bio_8 (mean temperature of the wettest quarter), and bio_10 

154 (mean temperature of the warmest quarter) showed a strong correlation with PC2. Interestingly, 

155 most of the variables related to precipitation (bio_12, bio_14, bio_16, bio_17, bio_18, and 

156 bio_19) were positively correlated with PC1, the variables related to seasonal variation (bio_2, 

157 bio_4, bio_7, and bio_15) were negatively correlated with PC1, while the variables related to 

158 temperature (bio_1, bio_5, bio_8, bio_9, bio_10, and bio_11) were negatively correlated with 

159 PC2. 

160 In addition, this PCA on the bio-climatic variables for the genotypes analyzed showed that 

161 the first two principal components (PC1 and PC2) explained 75% of the variance (Fig 1B), while 

162 PC1 to PC4 explained cumulatively > 90% of the variance (S2 Fig). A plot of PC1 vs. PC2 
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163 showed some differences in the distribution of the different gene pools of wild common bean in 

164 the PC dimensional space. In particular, the majority of genotypes from the Mesoamerican (MW1 

165 to MW3) and Intermediate (PhI) gene pools were distributed towards the positive part of PC1, 

166 while the Andean group were located in the negative part of this axis (Fig. 1A). Given the origin 

167 of the genus Phaseolus in the Mesoamerican area (with local descendants represented by MW1 

168 and MW2), three range expansions characterize this species: 1) PhI, which established wild 

169 populations on the western slope of the Andes in Ecuador and northern Peru; 2) AW, 

170 encompassing wild populations in the southern Andes; and 3) MW3, a more recent and perhaps 

171 ongoing dissemination to Central America and the eastern slope of the northern Andes (Ariani et 

172 al., 2018). Inspection of Fig 1A and S3 Table shows that the distribution of the PhI group, which 

173 resulted from the earliest range expansion event, correlates - on bioPC3 - with Isothermality 

174 (bio_3), Temperature Seasonality (bio_4), bio_13 (Precipitation of the Wettest Month), and 

175 bio_18 (Precipitation of the Warmest Quarter), consistent with a dispersal to an equatorial region. 

176 In contrast, the predominant distribution of the southern Andean accessions (AW) in the upper 

177 left quadrant of Fig 1 is consistent with earlier observations that the populations of this gene pool 

178 are distributed in cooler and drier locations, as shown by correlations with bio_6 (Minimum 

179 Temperature of the Coldest Month), bio_9 (Mean Temperature of the Driest Quarter, bio_11 

180 (Mean Temperature of the Coldest Quarter) and bio_1 (Annual Mean Temperature). This 

181 dissemination occurred with a concomitant lower potential evapotranspiration (Ariani et al. 

182 2018). Dispersal of the MW3 group (Fig 1) increased Isothermality (bio_3) and decreased 

183 Seasonality (bio_4) and Precipitation Seasonality (bio_15); it also increased Precipitation during 

184 the Driest Month (bio_14) and Driest Quarter (bio_17).

185
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186 Genome scan of selection

187 An analysis of the scree plot of the PCA analysis conducted on SNP data (molecular PCA) 

188 showed that a quarter of the variance could be explained by the first principal component, even 

189 though molPC2 to molPC5 also explained a considerable amount of variance in the data (Fig 

190 2A). On the other hand, after molPC5, no large increase in the cumulative explained variance 

191 could be detected. This pattern of the scree plot is representative of a possible range expansion of 

192 this species across the Americas, as hypothesized by a prior evolutionary analysis of this same 

193 collection (Ariani et al., 2018). Visual inspection of p-value distribution for genome scans for 

194 K=2 and K=3 showed a large proportion of low and high p-values, while for K=4 and K=5 the 

195 distribution of p-values was more uniform, especially for K=5 (S3 Fig). For this reason, we 

196 selected K=5 for further genome scan analysis.

197 A plot of genetic PCA analysis performed with the pcadapt algorithm was able to 

198 discriminate between the different wild gene pools of this species (Fig 2B). In particular, the 

199 MW1-MW3 groups were mostly localized on the positive part of the molecular PC1 (molPC1) 

200 axis, while the AW gene pool was localized towards the negative end of molPC1. Interestingly, 

201 molPC1 mostly differentiated MW vs. AW, while molPC2 and molPC3 clearly separated the 

202 MW+AW groups from the PhI (Fig 3). 

203 The genome scan analysis with K=5 identified 84 significant variants (Bonferroni-corrected 

204 p-value ≤ 0.001) distributed throughout the 11 chromosomes of common bean (Fig 4), tagging 70 

205 annotated genes (S1 Table). The highest number of tagged genes were identified on 

206 chromosomes Pv02 and Pv04 with 15 and 11 genes, respectively. The genes identified as selected 

207 by genome scan analysis were mostly related to plant development (17 genes), hormone response 

208 (10 genes), ion homeostasis (5 genes), and response to stress (9 genes). 
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209 Of the 70 genes identified by the analysis, 20 of them (28%) were located within a haplotype 

210 block (S1 Table). When mapping the significant SNPs identified by genome scan analysis to the 

211 latest reference genome (v2.1), 62 genes (88%) were confirmed as putatively under selection also 

212 in this assembly (S1 Table). Interestingly, among the genes not identified in v2.1, three were not 

213 present in the annotation file, while one gene (Phvul.001G080400) was renamed Phvul.L006501 

214 and was located to a scaffold instead of chromosome 1.

215 Among the genes identified, we found several related to drought and/or abscisic acid (ABA) 

216 response. Phvul.002G331700, a homolog of the Arabidopsis KUP6, is involved in potassium 

217 uptake transporter and stomata movement and Phvul.002G143100 is a glycine-rich domain 

218 protein (GRP) involved in auxin signaling and stress response. Phvul.004G102800 is a homolog 

219 to Arabidopsis SLAH3 involved in ABA response; Phvul.008G161000 is a homolog of 

220 Arabidopsis CAO, a gene related to chlorophyll biosynthesis and ABA signaling; and 

221 Phvul.009G050600 is a gene annotated as an importin β protein involved in ABA and drought 

222 response in Arabidopsis.

223

224 Genome-wide association analysis

225 A genome-wide association analysis identified 49 genes associated with the bio-climatic 

226 variables selected for this analysis. Except for the bio_18 variable (Precipitation of Warmest 

227 Quarter), for which no associations were detected, the other variables were associated with at 

228 least one gene. The bio-climatic variables with the highest number of associated genes were 

229 bio_3 (Isothermality) with 29 genes, and bio_12 (Annual precipitation) with 11 genes (S2 Table). 

230 The associated genes were located in all 11 common-bean reference genome chromosomes, 

231 except for chromosome Pv06 where there were no significantly associated SNPs. Some of the 
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232 genes were associated with more than one bio-climatic variables (Fig 5), suggesting the 

233 possibility that they could be related to multiple environmental stimuli. 

234 Of these 49 genes identified by genome-wide association analysis, only 10 (20%) were 

235 located within a haplotype block (S2 Table). In addition, when mapping significant SNPs 

236 identified by association analysis to the latest reference genome (v2.1), 44 genes (88%) were 

237 confirmed as putatively associated with environmental variables also in this assembly (S2 Table). 

238 Four out of five of the missing genes were not present in the v2.1 annotation file.

239 Among the genes significantly associated with one or more bio-climatic variables, we found 

240 several of them related to hormone response, ion homeostasis, plant development, metabolism, 

241 and response to stress, in particular drought (S2 Table). Among the genes identified, we found 

242 some interesting candidates probably involved in stress resistance, like Phvul.001G034400, a 

243 homolog of Arabidopsis KEA6 involved in potassium homeostasis; Phvul.010G155000, 

244 homologous to an Arabidopsis phospholipase D α 1 (PLDα1) involved in ABA signaling; 

245 Phvul.010G035200 homolog of a cytokinin responsive factor homologous of Arabidopsis; and 

246 Phvul.008G161700, homologous to an Arabidopsis thioredoxin involved in ROS signaling. 

247 Interestingly, there was no overlap between the genes identified by genome scan and association 

248 analysis.

249

250 Candidate gene allele distributions

251 To evaluate the geographic distribution of alleles in candidate genes identified by genome scan 

252 and association analysis, we clustered the genotypes into groups with a K-means clustering 

253 approach on the molecular PCs calculated with pcadapt. The advantage of a K-means clustering 

254 approach, over a standard population structure analysis, is that it clearly assigns individuals to 
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255 specific clusters. The K-means clustering approach identified three clusters for the MW group, 

256 with two clusters (MW1 and MW2) located in Mexico and another (MW3) in Central America 

257 and Colombia, plus one cluster each for the intermediate (PhI) and the Andean (AW) group (S4 

258 Fig). Interestingly, the clustering results closely resembled those obtained in a previous study 

259 with more advanced population structure approaches (S3 Table) (Ariani et al., 2018).

260 The allele frequency distribution of the candidate genes identified by genome scan showed 

261 drastic differentiation between the genetic groups identified (Fig 6), as expected from the 

262 assumptions of the genome scan approach, with some alleles being private for just one of the 

263 genetic group (like the alternative alleles for GRP and CAO that were observed only in the AW 

264 group). On the other hand, the genes identified by association analysis showed a wide variety of 

265 allele frequencies distribution across the different genetic groups (Fig 7), even though some 

266 genes had only a single allele in some of the populations (like the reference allele for PLD and 

267 TRX in the PhI and AW group). In general, the genes identified by association analysis showed a 

268 higher variation of allele frequencies among the different MW groups.
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270 Discussion

271 Wild common bean (P. vulgaris) grows in several areas of Mexico and Central and South 

272 America, from northern Mexico to northwestern Argentina across ~70 latitudinal degrees, in 

273 different environments with a wide range of altitudes, average temperatures, and rainfall regimes 

274 (Cortés et al., 2013, Gepts 1998, Porch et al., 2013). Thanks to this exceptional geographic 

275 distribution, its complex evolutionary history, and high levels of genetic diversity, this species 

276 represents an extraordinary resource for evolutionary studies (Chacón et al., 2007, Koenig and 

277 Gepts, 1989, Mamidi et al., 2013, Rendón-Anaya et al., 2017a,b, Bitocchi et al., 2012, Kwak and 

278 Gepts, 2009), but can be also a conceptual framework for testing and validating landscape 

279 genomics approaches in wild plant populations and its feasibility for breeding improvement of 

280 domesticated crops (Anderson et al., 2016). In the current study, we identified several genes that 

281 could be involved in environmental adaptation in wild common bean by combining genome scan 

282 and association analysis. If validated, the genes identified could be useful candidates for 

283 improving stress resistance in domesticated common bean. The concordance between the genes 

284 tagged by significant SNPs identified between the two different reference genomes assembly 

285 suggests also high concordance between the two versions, with possible minimal differences due 

286 to the different sequencing data used for the assembly. In addition, the integration of haploblocks 

287 information with the genes identified by our analysis showed that most of these genes (70-80%) 

288 are located in regions with low LD in wild common bean. This result suggests that those same 

289 genes could be located in regions with relatively high recombination frequencies, thus facilitating 

290 possible introgression into the domesticated gene pool. 

291
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292 Genome scan of selection

293 Molecular PCA analysis clearly separated the three major groups of this species (MW1-MW3, 

294 PhI, and AW), as observed in previous research. In particular, the Intermediate gene pool (PhI) 

295 was shown again to most diverged group from the Mesoamerican and Andean gene pools, 

296 especially along the molPC2 and molPC3 axes (Fig 2), further supporting the hypothesis that this 

297 gene pool is actually a distinct species of Phaseolus (Rendón-Anaya et al., 2017a,b). A genome 

298 scan based on molecular PCA analysis identified several genes with a strong signature of 

299 selection (hard-selection sweep) that could be involved in environmental adaptation across the 

300 geographical range of this species. The identification of several genes involved in plant 

301 development and hormone and stress response, suggests that the different populations of this 

302 species adapted to their environment by integrating and adjusting to developmental, hormonal 

303 and environmental cues. Several genes among those identified could reflect adaptation to abiotic 

304 stress. These genes are also of interest for improving stress resilience in common bean, like the 

305 KUP6 potassium (K+) transporter located on chromosome Pv02 (Phvul.002G331700). This gene 

306 has been directly linked to drought stress by regulating ABA response and stomata movements in 

307 Arabidopsis (Osakabe et al., 2013). A homolog of this gene located on chromosome Pv03 

308 (Phvul.003G052900) showed a higher genetic and transcriptional diversity in Mesoamerican 

309 domesticated beans than in wild ones (Bellucci et al., 2014; Bitocchi et al., 2017). Due to the 

310 possible role of KUP-like genes in response to drought stress and their identification as selected 

311 genes in both wild and domesticated populations of common bean, further studies should focus 

312 on the evolution and diversity of this gene family in this species.

313 Another gene identified in the current study and possibly involved in adaptation to drought 

314 response in wild common bean is Phvul.004G102800, homolog of SLAH3 of Arabidopsis, which 
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315 was annotated as an S-type anion channel. This type of channels is rapidly regulated by ABA and 

316 stimulates stomata closure by inhibiting inward K+ channels, thus reducing K+ influx into guard 

317 cells (Geiger et al., 2011; Zhang et al., 2016). In addition to being involved in drought stress 

318 response, this same gene has been recently identified also as related to salinity stress response in 

319 Arabidopsis by regulating ion homeostasis between root and shoots (Cubero-Font et al., 2016). 

320 The chlorophyll alpha oxygenase (Phvul.008G161000), identified as a gene under selection 

321 (and a homolog of Arabidopsis CAO), has a primary role in the biosynthesis of chlorophyll b 

322 (Espineda et al., 1999). However, Arabidopsis mutants for this gene showed a reduction of 

323 antioxidant compounds (specifically glutathione) in guard cells and an increased ABA sensitivity 

324 in comparison to wild type plants (Jahan et al., 2016), suggesting a possible involvement of this 

325 gene in adaptive response to stressful environments.

326 Phvul.002G143100, identified as selected within the different sub-populations of P. vulgaris, 

327 is annotated as a glycine-rich domain protein, homologous of Arabidopsis GRDP2 gene. GRP are 

328 a multi-gene superfamily present in several organisms, including plants (Sachetoo-Martins et al., 

329 2000). This gene family has been associated in plants with several developmental processes and 

330 in responses to both biotic and abiotic stresses (Mangeon et al., 2010). A recent study focusing on 

331 the characterization of the direct Arabidopsis homologs of this gene (ATGRDP2) demonstrated 

332 that this gene regulates plant growth and flowering by accumulating higher level of indole-3-

333 acetic acid and improves abiotic stress response (Ortega-Amaro et al., 2014). In particular, the 

334 over-expression of this gene in transgenic plants increased growth rate and reduced days to 

335 flowering. It also increased salt tolerance in comparison to wild-type plants.

336 In addition to the previous genes identified as selected by genome scan analysis and 

337 putatively involved in environmental response in plants, Phvul.009G050600 was identified and 

338 annotated as an importin β-protein homologous to Arabidopsis KPNB1. This gene mediates the 
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339 import of proteins and protein complexes between the cytoplasm and the nucleus and is essential 

340 in regulating signal transduction pathways in response to environmental and developmental 

341 stimuli (Merkle, 2003). In particular, the Arabidopsis homolog of Phvul.009G050600 

342 (AtKPNB1) has been directly related to ABA and drought response previously (Luo et al., 2013).

343

344 Genome-wide association analysis

345 Association analysis between genotypic data and bio-climatic variables identified several genes 

346 significantly associated with one or more bio-climatic variables, putatively involved in plant 

347 development, ion homeostasis, and stress response. Among these genes, several could be useful 

348 as potential molecular markers for improving abiotic stress in domesticated common bean. As 

349 examples, we identified a gene related to potassium homeostasis and annotated as a K+ efflux 

350 antiporter (KEA) gene associated with bio_12 (Annual Precipitation) and bio_7 (Temperature 

351 Annual Range). Potassium is an essential macronutrient involved in several physiological and 

352 developmental processes in all living organism, and in plants this cation is also essential in 

353 maintaining plant osmotic potential, cytosolic pH, and stomata movement (Shabala, 2003, 

354 Sharma et al., 2013). In addition, variation in K+ homeostasis is one of the first responses to 

355 several abiotic and biotic stresses in plants, allowing the plants to rapidly respond to stressful 

356 conditions (Shabala and Pottosin, 2014) and making the KEA gene identified in the current study 

357 an interesting candidate gene for further analysis.

358 Another gene, significantly associated with bio_14 (Precipitation of Driest Month) is 

359 Phvul.010G155000, which is annotated as a phospholipase (PLDα1). This gene is involved in the 

360 biosynthesis of phosphatidic acid (PA), which is an important signaling molecule in response to 

361 several stresses in plants (Saucedo-García et al., 2015). In particular, PA is involved in the ABA 
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362 signaling cascade and regulates stomata closure in plants by directly interacting and blocking 

363 ABI1, an inhibitor of ABA response in plants (Zhang et al., 2004). This gene regulates stomatal 

364 closure and ABA-dependent hydrogen peroxide (H2O2) production in Vicia faba as well (Qu et 

365 al., 2014), making this gene an interesting candidate for improving drought response in common 

366 bean.

367 An additional gene, significantly associated with bio_5 (Max Temperature of Warmest 

368 Month), is Phvul.010G035200, annotated as a cytokinin response factor homologous of 

369 Arabidopsis CRF4. Cytokinin is an essential plant hormone involved in growth and 

370 developmental processes (Durán-Medina et al., 2017, Kieber and Schaller, 2014), but in recent 

371 years it has also been implicated in the response and adaptation to different environmental 

372 stresses (Novakova et al., 2007, O'Brien and Benková, 2013). CRF genes are a class of plant 

373 transcription factors responsive to cytokinin that integrate hormonal and environmental signals 

374 for adapting plant growth and development in response to the environment (Kim, 2016, Rashotte 

375 and Goertzen, 2010). The Arabidopsis homolog of this gene has been previous related to 

376 acclimation to cold temperatures (Zwack et al., 2016). Since this gene has been associated with 

377 temperature variables in wild common bean, it could also be involved in adaptation to 

378 temperature variation in this species.

379 Another gene of interest, Phvul.008G161700, is significantly associated with bio_3 

380 (Isothermality) and is annotated as a thioredoxin protein. These proteins are involved in the 

381 regulation of oxidative stress response and in scavenging reactive oxygen species (ROS) in plants 

382 (Gelhaye et al., 2005). Other than being simple byproducts of cellular metabolism, ROS 

383 molecules has been recognized as important signaling molecules that regulate the response to 

384 several environmental stresses in plants (D'Autréaux and Toledano, 2007, Sewelam et al., 2016). 

385 Due to their ability to control the redox state of the cell, thioredoxin represents a key component 
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386 of the ROS signal transduction pathways in plants and in the response to environmental stress 

387 (Sevilla et al., 2015). Thus, this gene could constitute another interesting candidate gene for 

388 improving stress resistance in domesticated common bean.

389

390 Comparison of genes identified by genome scan and GWAS

391 Even though the genes identified by outlier-detection methods (hard-selection sweeps) and 

392 association methods (soft-selection sweeps) are involved in similar processes, there was no 

393 overlap between the candidate genes identified by the two approaches in this study. This could be 

394 the direct result of the different assumptions underlying these methods. Indeed, genome scan 

395 analysis identify genes that shows drastic variations of allele frequencies between natural 

396 subpopulations (Schoville et al., 2012, Wagner and Fortin, 2013). This approach is independent 

397 from bio-climatic variables, thus the SNPs identified as under selection by this analysis could be 

398 the results of selective mechanisms not considered by association analysis, like soil composition, 

399 pathogen pressure and/or competition with other plants. On the other hand, association analyses 

400 identify SNPs showing slight variations in allele frequencies across environmental gradients that 

401 can increase environmental adaptation in natural populations (Schoville et al., 2012, Wagner and 

402 Fortin, 2013). This selection process usually acts on natural standing variations and favor the 

403 presence of multiple alleles and haplotypes, instead of allele fixation within populations 

404 (Hermisson and Pennings, 2005).

405

406 Epilogue

407 In conclusion, landscape genomic analysis of wild common bean genotypes allowed us to 

408 identify several genes showing a signature of presumed selection in this species. It is likely that 
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409 two methods – genome scan and GWAS - are indeed complementary for understanding local 

410 adaptation in wild plant populations, as observed previously in other species (Dell'Acqua et al., 

411 2014, Pyhäjärvi et al., 2013) and are a feasible approach for the preliminary identification of 

412 novel candidate genes for adaptation to climatic differences along the exceptionally broad habitat 

413 of wild common bean. Further corroboration of the actual role of the candidate genes in 

414 adaptation will come from introgression of these genes from wild to domesticated beans and a 

415 concurrent phenotypic analysis showing improved performance under stress conditions.

416 Our long-term objective is to identify both populations (Ariani et al., 2018) and genes 

417 (this study) that have been putatively under selection by the abiotic stresses of temperature, 

418 rainfall, and the related variable, potential evapotranspiration. Identification of these potential 

419 sources of genetic tolerance are only a first step towards the development of more stress-resilient 

420 beans. The next step is to corroborate the effectiveness of these wild populations and these 

421 candidate genes as a source of stress-tolerance through indirect selection for these genes in 

422 selected populations resulting from the cross between candidate populations and domesticated 

423 testers (Acosta-Gallegos et al., 2007). In a recent paper, Cortés and Blair (2018) identified 115 

424 SNPs tagging 77 annotated genes potentially selected by drought tolerance among a set of wild 

425 bean populations, using correlations between SNPs and an average yearly drought index. They 

426 argued that drought tolerance and performance under well-watered conditions were mutually 

427 incompatible. The testcrosses just mentioned between domesticated testers and wild populations 

428 that have been subjected to different drought stress conditions, as identified in this study and 

429 Ariani et al., (2018), will allow us to examine this hypothesis, which has considerable 

430 implications for breeding for stress tolerance.

431
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432 MATERIALS AND METHODS

433 Plant material and genotypic data

434 A panel of 246 wild P. vulgaris accessions, previously genotyped with a Genotyping-By-

435 Sequencing (GBS) protocol using the CviAII restriction enzyme (Ariani et al., 2018), was 

436 analyzed. The panel was representative of the ecological and geographic distribution of this 

437 species and included 157 genotypes of the Mesoamerican (MW), 77 of the Southern Andes 

438 (AW), and 12 of the Central Andes (Northern Peru-Ecuador; PhI) gene pools. The SNPs 

439 considered in this study were those with a Minor Allele Frequency (MAF) ≥ 0.05 and less than 

440 20% missing data. The list of the accessions sequenced, with gene pool information and 

441 geographic coordinates, is available in S4 Table, while genotyping data in VCF format are 

442 available as a Dash dataset (https://doi.org/10.25338/B8DW39). The seeds were provided by the 

443 Genetic Resources Unite at the International Center of Tropical Agriculture (CIAT, Cali, 

444 Colombia) and the United States Department of Agriculture Western Regional Plant Introduction 

445 Station (Pullman, WA). 

446

447 Spatial Analysis

448 Spatial analyses were conducted within the R statistical environment (www.r-project.org) using 

449 the dismo package and its dependencies (raster and sp). The geographic coordinates of the 

450 individuals analyzed in this study were used for retrieving the 19 bio-climatic summary variables 

451 from the WorldClim database (http://www.worldclim.org/). The data were downloaded at a 30-

452 second resolution (approximately 0.86 km2 at the equator). In order to identify a subset of bio-

453 climatic variables that best summarizes our dataset, we performed a Principal Component 

454 Analysis (PCA) on the scaled and centered variables using the ChemometricsWithR package 
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455 (Wehrens 2011). We then selected the first two variables with the highest positive and negative 

456 loading in the first four principal components (PC1 to PC4) (S3 Table). Since some of the 

457 selected bio-climatic variables showed a high correlation (S1 Table), we decided to pick only one 

458 of the correlated variables for further analysis. The final bio-climatic variables analyzed in this 

459 study were: bio_3 (Isothermality), bio_5 (Max Temperature of Warmest Month), bio_6 

460 (Minimum Temperature of Coldest Month), bio_7 (Temperature Annual Range), bio_12 (Annual 

461 precipitation), bio_14 (Precipitation of Driest Month), and bio_18 (Precipitation of Warmest 

462 Quarter). In addition to the above-mentioned bio-climatic variables, we included also annual 

463 Potential EvapoTranspiration (PET) downloaded from the Global Aridity and PET Database 

464 (http://www.cgiar-csi.org/data/global-aridity-and-pet-database).

465

466 Genome Scans for Selection and Association Analysis

467 Genome scans for selection (i.e., hard selective sweeps) were performed on the final set of SNPs 

468 using the pcadapt R package (Luu et al., 2017), an algorithm able to detect population structure 

469 and outlier loci by performing a PCA analysis on SNP genotypic data. The best number of sub-

470 populations was inferred by visually evaluating the scree plot of eigenvalues for the different 

471 principal components (K); the genomic scans for selection were performed for K in the range 2-5. 

472 The p-values obtained by this analysis were corrected using the Bonferroni method and only 

473 SNPs with a corrected p-value ≤ 0.001 were considered as significant. 

474 Association analysis (i.e., soft selective sweeps) was performed separately for each of the 

475 seven selected bio-climatic variables and annual PET. For this analysis, we used the LFMM 

476 algorithm (Frichot et al., 2013) implemented in the LEA R package (Frichot and François, 2015). 

477 This method was developed specifically for identifying signature of environmental selection in 
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478 genomic data and can efficiently correct for population history and isolation-by-distance (IBD). 

479 To correct for spurious association determined by population structure or IBD, the number of 

480 latent factors (i.e., populations) needs to be decided a priori and subsequently evaluated using the 

481 genomic inflation factor parameter. Since LFMM is based on Monte Carlo Markov Chain 

482 (MCMC) sampling, we ran it multiple times for each association analysis and then averaged the 

483 p-values (as suggested in the software documentation). To identify the best number of 

484 populations (K) for association with each bio-climatic variable, we performed three runs of the 

485 program with K in the range 4-10 and estimated the inflation factor from these runs (Devlin and 

486 Roeder, 1999). Plots of the inflation factor for different values of K (S5 Fig) showed that the best 

487 inflation factor for reducing False Discovery Rate (FDR) (i.e., closest to 1) was six for Bio12, 

488 Bio14, and Bio5, and 7 for Bio6, Bio18, Bio7, Bio3, and PET. Based on this preliminary 

489 screening, we re-ran the program with the best number of K for 10 times with 10,000 MCMC 

490 iterations and a burn-in period of 1,000. The p-values where then averaged across the different 

491 runs and corrected using the Bonferroni method. SNPs with a corrected p-value ≤ 0.05 were 

492 considered as significant.

493

494 Identification of putatively selected genes

495 The distance between significant SNPs, identified by genome scans or association analysis based 

496 on the P. vulgaris v1.0 genome annotation (https://phytozome.jgi.doe.gov/pz/portal.html) 

497 (Schmutz et al., 2014), was evaluated using the GenomicRanges/rtracklayer packages or R 

498 (Lawrence et al., 2009, 2013). Only genes within 5 Kb of a significant SNPs were chosen as 

499 putatively selected genes. This 5 Kb upper limit was selected based on the genotyping approach 

500 used in this study (that did not allow a full coverage of the genome), but also considered the 
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501 presence of possible regulatory regions immediately adjacent to gene sequences (Li et al., 2012). 

502 To understanding if the genes identified by significant SNPs were in regions with high linkage 

503 disequilibrium (LD), we identified haploblocks from the complete set of SNPs data using the 

504 PLINK program (Purcell et al., 2007) with default parameters. For downstream analysis, we 

505 considered only blocks longer than 100 bp. We then integrated this information with the genes 

506 identified as putatively selected by genome scan or association analysis, to determine if these 

507 candidate genes were located in haploblock regions. This analysis identified 1338 haplotype 

508 blocks evenly distributed across the 11 chromosomes (Dash dataset: 

509 https://doi.org/10.25338/B8DW39).

510

511 Comparison with latest genome reference

512 A new genome reference for P. vulgaris (v2.1) has been released on Phytozome although it has 

513 yet to be peer-reviewed. We compared the genes and the SNPs identified by our analysis between 

514 the old (v1.0) and the newest (v2.1) genome version. To compare the results between the two 

515 genomes, we mapped the significant SNPs, identified by genome scan and association analysis in 

516 the v1.0 genome reference, onto the v2.1 version. For this analysis, we extracted the 100 bp 

517 upstream and downstream of a significant SNPs (200 bp window) in the v1.0 version and mapped 

518 them to the v2.1 reference genome using nucleotide BLAST (Camacho et al., 2009). For each 

519 SNP and relative flanking region, we then selected the best hit in the v2.1 genome and identified 

520 the genes annotated in the new reference located within 5 Kb of the hit (as described in the 

521 ‘Identification of putatively selected genes’ section).

522
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523 Candidate genes evaluation across genetic groups

524 For clustering individuals based on genetic groups and visualizing allele frequency variations 

525 across clusters, we applied a K-means clustering approach using the first 5 PCs obtained from 

526 pcadapt analysis. We selected K=5 as the best number of clusters, based on the scree plot of the 

527 eigenvalues obtained with pcadapt. The clustering analysis was performed using the python 

528 scikit-learn library (Pedregosa et al., 2011). For each genetic cluster, we calculated allele 

529 frequencies for SNPs tagging candidate genes using VCFtools (Danecek et al., 2011) and plotted 

530 them on genetic maps using R. 

531

532
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566 Figure legends

567 Fig 1 Bio-climatic data analysis. (A) Loading plot of the PCA analysis. (B) Principal Component 

568 Analysis (PCA) of the bio-climatic data. Groups are colored according to the K-mean clustering 

569 analysis conducted in this study, which gave results very similar to the STRUCTURE analysis 

570 conducted by Ariani et al. (2018): MW1, MW2, and MW3: Mesoamerican wild gene pools; AW: 

571 Andean wild gene pool; PhI: Intermediate wild gene pool.

572 Fig 2 Principal Component Analysis on SNP data. (A) Screeplot of the PCA explained variance. 

573 (B) PCA plot based on molecular data of the different genotyped analyzed in the current study. 

574 Groups are colored according to the K-mean clustering analysis conducted in this study, which 

575 gave results very similar to the STRUCTURE analysis conducted by Ariani et al. (2018): MW1, 

576 MW2, and MW3: Mesoamerican wild gene pools; AW: Andean wild gene pool; PhI: 

577 Intermediate wild gene pool.

578 Fig 3 Three-dimensional plot of the PCA analysis on molecular data. Points are colored as in Fig 

579 2B. 

580 Fig 4 Manhattan plot of the genome scan data with 5 sub-populations (K). The blue dashed line 

581 represents the significance threshold (Bonferroni p-value ≤ 0.001).

582 Fig 5 Chromosome ideogram of the genes identified as associated with the bio-climatic variables 

583 analyzed. Only chromosomes with significantly associated variants are shown. Each circle 

584 represents a different bio-climatic variable. When available, gene annotations are shown. The 

585 centromeric regions shown are based on the results from Sevilla et al. (2015).

586 Fig 6 Allele frequency distribution across different genetic groups for candidate genes identified 

587 by genome scan analysis.  P. vulgaris v1.0 genes annotation and ID: (A) Potassium uptake 

588 transporter (Phvul.002G331700); (B)  Glycine-rich domain protein (Phvul.002G143100); (C) 

589 ABA response (Phvul.004G102800); (D) Chlorophyll biosynthesis and ABA signaling 
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590 (Phvul.008G161000); (E)  ABA and drought response (Phvul.009G050600). For panel (E) the 

591 PhI group was removed because SNP data were completely missing. REF: Reference allele, in 

592 red, ALT: Alternative allele, according to the P. vulgaris v1.0 gene version, in blue (Sevilla et al., 

593 2015).

594 Fig 7 Allele frequency distribution across different genetic groups for candidate genes identified 

595 by association analysis. P. vulgaris v1.0 genes annotation and ID: (A) Potassium efflux antiporter 

596 (Phvul.001G034400); (B) Phospholipase D α 1 (Phvul.010G155000); (C) Cytokinin responsive 

597 factor (Phvul.010G035200); (D) Thioredoxin (Phvul.008G161700). Reference and Alternative 

598 alleles are colored as in Fig 6.

599

600 Supporting information

601 Tables

602 S1 Table. Candidate genes identified by genome scans.

603 S2 Table. Candidate genes identified by genome-wide association analysis.

604 S3 Table. Eigenvalues of the different bioclimatic variables along the first four principal 

605 components.

606 S4 Table. List of the final wild Phaseolus vulgaris analyzed in this study. Accession ID, country 

607 of origin, geographical coordinates of collection, and gene pool information are shown (from 

608 Ariani et al. 2018).

609 Figures

610 S1 Fig. Correlation graphs between bio-climatic variables for the different P. vulgaris accessions 

611 analyzed. Correlation coefficients are rendered using circles (upper-right part) or by showing 

612 directly the value (lower-left part). Color are based on color-bar in the right side of the graph.

613
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614 S2 Fig. Cumulative variance explained by the different PCs when performing a PCA on bio-

615 climatic variables.

616 S3 Fig.  P-values distribution for genome scans with 2 (A), 3 (B), 4 (C) or 5 (D) sub-populations.

617 S4 Fig. Plot of geographic distribution of the wild P. vulgaris analyzed in the current studies. 

618 Genotypes are colored based on the different clusters identified by K-means clustering (Fig 1B, 

619 Fig. 2B, S4 Table).

620 S5 Fig.  Plots of the inflation factor for different values of K across the climatic variables 

621 selected for association study.
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