
Direct inference of the distribution of 

fitness effects of spontaneous mutations 

in Chlamydomonas reinhardtii

Katharina B. Böndel1,5,*, Susanne A. Kraemer1,²,*, Tobias S. 

Samuels¹, Deirdre McClean³, Josianne Lachapelle4, Rob W. 

Ness4, Nick Colegrave¹ and Peter D. Keightley¹

   
1Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9
3FL, UK
2Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
3Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh,
Edinburgh EH9 3FL, UK
4Department of Biology, William G. Davis Building, University of Toronto, Mississauga, L5L1C6,
Canada
5Current address: Institute of Plant Breeding, Seed Science and Population Genetics, University of
Hohenheim, 70599 Stuttgart, Germany

*These authors contributed equally to this work.

ORCID:

KBB: 0000-0001-8919-729X

SAK: 0000-0002-4418-1873

Key words

Distribution of fitness effects, spontaneous mutations, Chlamydomonas reinhardtii

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2019. ; https://doi.org/10.1101/571018doi: bioRxiv preprint 

http://orcid.org/0000-0001-8919-729X
https://doi.org/10.1101/571018
http://creativecommons.org/licenses/by/4.0/


Abstract

   

Spontaneous  mutations  are  the  source  of  new  genetic  variation  and  are  thus  central  to  the

evolutionary  process.  In  molecular  evolution  and  quantitative  genetics,  the  nature  of  genetic

variation depends critically on the distribution of fitness effects (DFE) of mutations. Spontaneous

mutation accumulation (MA) experiments have been the principal approach for investigating the

overall rate of occurrence and cumulative effect of mutations, but have not allowed the effects of

individual  mutations  to  be  studied  directly.  Here,  we  crossed  MA  lines  of  the  green  alga

Chlamydomonas reinhardtii with its unmutated ancestral strain to create haploid recombinant lines,

each carrying an average of 50% of the accumulated mutations in a variety of combinations. With

the aid of the genome sequences of the MA lines, we inferred the genotypes of the mutations,

assayed their growth rate as a measure of fitness, and inferred the DFE using a novel Bayesian

mixture model that allows the effects of individual mutations to be estimated. We infer that the DFE

is highly leptokurtic (L-shaped), and that a high proportion of mutations increase fitness in the

laboratory environment. The inferred distribution of effects for deleterious mutations is consistent

with  a  strong  role  for  nearly  neutral  evolution.  Specifically,  such  a  distribution  predicts  that

nucleotide variation and genetic variation for quantitative traits will be insensitive to change in the

effective population size.

Introduction

Understanding evolution requires an understanding of the origin of new genetic variation from 

mutation. This includes knowing the rates of mutation at individual loci and the magnitudes of their 

effects on fitness and other traits.  Of particular interest is the distribution of fitness effects for new 

mutations (the DFE), describing the relative rates of occurrence of mutations with different 

selective effect sizes. The DFE informs about the frequencies of small- versus large-effect 

mutations and the frequencies of advantageous versus deleterious mutations, and is therefore of 

fundamental importance in population and quantitative genetics. For example, the DFE appears in 

the nearly neutral model of molecular evolution (Ohta 1977), where deleterious mutations are 

effectively selected against in large populations, but behave as selectively neutral in small 

populations. Kimura (1979; 1983) showed that if the DFE is strongly leptokurtic (L-shaped) 

molecular genetic variation at sites subject to natural selection increases slowly with increasing 

effective population size (Ne), and molecular evolution is potentially constant between species with 

different effective size. This is therefore broadly consistent with empirical observations. The DFE is 

also important for predicting selection response for quantitative traits and the nature of quantitative 
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genetic variation (Robertson 1967). For example, the contribution of mutation to response to 

selection depends critically on the shape of the DFE, the response occurring more quickly with 

more leptokurtic distributions (Hill 1982). Analogously with the relationship between nucleotide 

variation and Ne, genetic variation for fitness (or a trait correlated with fitness) is predicted to 

increase slowly as a function of Ne if the DFE is leptokurtic (Keightley and Hill 1990), and could 

thus explain why genetic variation for quantitative traits is apparently relatively invariant between 

species (Potsma 2014).

In the light of its fundamental importance, there has been much previous work aimed at inferring 

the DFE. Two different approaches have principally been applied for spontaneous mutations 

occurring in the whole genome (rather than just a single locus): the analysis of nucleotide 

polymorphism data from a sample of individuals from a population, and spontaneous mutation 

accumulation (MA) experiments (reviewed by Eyre-Walker and Keightley 2007). Under the former 

approach (Eyre-Walker et al 2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008; Tataru et al

2017), the site frequency spectra for putatively neutral and selected sites (typically synonymous 

and nonsynonymous sites of protein-coding genes, respectively) are compared, and parameters of

the DFE for the mutations at the selected sites inferred. The approach makes several 

assumptions, notably that variation at the selected sites is explained by a balance between an 

input of new deleterious mutations, natural selection and genetic drift, and that selection is absent 

from the putatively neutral class of sites. It is only capable of inferring the DFE for mutations that 

stand an appreciable chance of segregating in the sample of individuals from the population, 

implying that inferences are only relevant to mutations with effects that are not substantially greater

than 1/Ne. This can be an extremely small value if Ne is large. Furthermore it can only be applied to

specific functional categories of sites in the genome.

In a spontaneous MA experiment, sublines of the same initial genotype are maintained at small 

effective population size in the near absence of natural selection for many generations, allowing 

mutations to accumulate effectively at random. The DFE can be estimated using the among-MA 

line distribution of phenotypic values for traits related to fitness (such as fecundity or viability) 

(Keightley 1994; García-Dorado 1997; Shaw et al 2002). The information that can be obtained by 

this approach is extremely limited, however, principally because the numbers of mutations carried 

by individual lines are not included in the analysis, so an overall genomic rate parameter has to be 

estimated, and this is highly confounded with the DFE parameters (Keightley 1998; Halligan and 

Keightley 2009). 

Genome sequencing technology now allows the identification of the nearly complete complement 

of mutations carried by a set of MA lines, and in combination with phenotypic information this can 
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potentially be used to leverage information on the DFE (Katju and Bergthorsson 2018). Previous 

analysis of spontaneous MA experiments have, however, only studied the cumulative effects of 

new mutations, whereas accurate inference requires estimation of the effects of individual 

mutations. For example, we have shown that there is a negative correlation between the number of

new mutations carried by a MA line and fitness, but this gives only limited information on the DFE 

(Kraemer et al. 2017). 

Previously, we carried out a spontaneous MA experiment in the single-celled green alga 

Chlamydomonas reinhardtii for ~1,000 generations, have measured fitness-related traits in a range

of environmental conditions (Morgan et al 2014; Kraemer et al 2016; 2017), and have employed 

genome sequencing to determine the complement of mutations carried by the lines (Ness et al 

2015). Here, we have crossed six of these C. reinhardtii MA lines of the CC-2931 genetic 

background with a compatible ancestor of the same background genotype, but of the opposite 

mating type. We thereby generated 1,526 recombinant lines (RLs), each carrying an average of 

50% of the mutations of the MA line parent in different combinations. We genotyped the RLs at the 

locations of the known mutations and assayed their growth rate as a measure for fitness. Across 

the six lines there are nearly 400 unique mutations, so an analysis where each mutation is treated 

as a fixed effect is not appropriate. Instead, we developed a MCMC approach with a random 

effects model in which mutation effects are assumed to be sampled from some distribution or a 

mixture of distributions. We investigate a number of distributions to infer the distribution of effects 

for the individual mutations on growth rate. We show that the DFE is highly leptokurtic (L-shaped) 

and that a high proportion of mutations increase fitness in the laboratory environment.

 

Results

To directly infer the DFE, we crossed six C. reinhardtii MA lines derived from the CC-2931 strain to 

an ancestral strain of the same genetic background and the opposite mating type to produce a 

total of 1,526 recombinant lines (RLs) (Table 1, Table S1). We genotyped 386 of the 476 mutations 

detected in our previous whole-genome sequencing study (Ness et al. 2015) (Table 1, Table S2). 

Among the 681 different recovered haplotypes, mutations were present at an average frequency of

49.1% (10.3% - 85.4%), which is close to the expected average of 50% (Figure S1). The number 

of haplotypes obtained for each MA line and their frequencies were quite variable, however (Table 

S3). For example, we obtained 214 haplotypes for MA line L03, and no haplotype was found more 

than four times, whereas we obtained only 67 haplotypes for MA line 14 and one of these 

haplotypes was found 18 times.
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Table 1. Data overview.

MA line cross Number of
Mutations

Number of
RLs

Number of
haplotypes

L03 39 247 214

L06 69 238 109

L07 59 261 69

L09 98 272 68

L11 66 272 154

L14 55 236 67

Combined 386 1,526 681

     

Relationship between number of mutations and growth rate

As a measure of fitness, we assayed the maximum growth rate of each RL, the parental MA lines 

and the unmutated ancestral strain in liquid culture. To determine whether mutations have an 

overall directional effect on fitness, we used mixed models to test for a relationship between the 

number of mutations carried by RLs and their ancestors and fitness (Figure 1). In the case of only 

one of the six MA lines (L03), including number of mutations leads to a significantly better fit (P = 

0.0008; Table 2), and the improvement in fit for an analysis of the combined data set of all six MA 

line crosses is nonsignificant (P = 0.080). This could either mean that there is insufficient power to 

detect mutational effects, or that there is a mixture of mutations with positive and negative effects 

on fitness. The latter explanation is supported, because there is a highly significant between-

haplotype component of variation for the trait (P < 2.2x10-16 for the whole data set; P between 

4.1x10-13 (L14) and 0.022 (L06) for the individual MA lines). We repeated this analysis fitting 

number of mutations of specific types (SNP, indel, exonic, intronic, intergenic; Table S4). Including 

the number of mutations gave a significantly better fit in the cases of MA line L03 for all mutation 

types except intronic, for MA line L11 for intronic mutations and for the whole data for exonic 

mutations.
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Table 2. Likelihood ratio tests for mixed model analysis of growth rate as a function of number of 

mutations of all kinds with 1 degree of freedom.

     

MA line cross Chi square P-value

L03 11.2 0.00080

L06 0.77 0.38

L07 0.18 0.67

L09 0.072 0.79

L11 2.4 0.12

L14 0.72 0.40

whole data set 3.1 0.080

Figure 1. Relationship between growth rate and number of mutations carried by a RL or ancestor 

for the six CC-2931 MA line crosses. Linear regression lines are shown.
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Inference of the DFE by MCMC assuming mutation effects fall into discrete categories

The relationship between mutation number and fitness tells us little about the DFE for individual 

mutations. We therefore developed an approach that allows the DFE be estimated in a Bayesian 

mixture model (implemented by Markov Chain Monte Carlo, MCMC). This assumes that the effects

of mutations either come from a mixture of point masses or a mixture of gamma distributions. To 

maximize power, we focussed much of the analysis on a merged data set of all six MA line 

backcrosses.

We first examined whether there is evidence for an overall directional effect of new mutations on 

growth rate by running the analysis while assuming a two category model with one non-zero effect 

category (effect = e1, proportion = q1) and one zero-effect category (i.e., e0 = 0, q0 = 1 - q1). The 

results (Table 3, Figure S2, S3) suggest that there is an appreciable frequency (~4%) of mutations 

reducing growth rate by ~3%, whereas the majority of mutations are allocated to the zero-effect 

category.

Table 3. Bayesian MCMC estimates and 95% credible intervals for mutation effect (e) and 

mutation frequency (q) parameters under two or three-category models. Both models include a 

class of mutations with zero effect on the trait.

Parameter Mutation
categories in

model

Estimate 95% credible interval

e1 2 -0.031 -0.044 -0.023

q1 2 0.042 0.020 0.079

e1 3 -0.024 -0.043 -0.011

q1 3 0.071 0.031 0.42

e2 3 0.021 0.010 0.068

q2 3 0.048 0.010 0.41

We then analysed the combined data set assuming a model with three categories of mutational 

effects (one zero-effect category and two finite effect categories, e1 and e2). As expected, given 

that the two-category model supports the presence of negative mutational effects, a category of 

negative effects is inferred (e1, Table 3; Figure S4, S5). This has a similar posterior mode as the 

two-category model, but the credible interval is somewhat wider, as expected for a more data rich 

model. There is also support for a class of positive-effect mutations (e2, Table 3), which has a 
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somewhat lower absolute modal estimate than the negative category. The estimated frequency of 

positive-effect mutations is only slightly lower than that of the negative-effect mutations.  Results 

from the analysis of data from individual MA line crosses (Table S5) are consistent with the 

presence of a mixture of negative- and positive-effect mutations. 

We then analysed data sets in which phenotypic values were permuted within plate. As expected 

under the null model, the distributions of estimated values of e1 and e2 centre on zero and the 

estimates of e1 and e2 from the real data are well outside the distributions obtained from permuted 

data (Figure S6).

Analysis of a model with four categories of effects (one of which is a zero-effect category) also 

gives negative and positive posterior modes for two classes of mutational effects e1 and e2.  

However, it is difficult to determine whether there is an additional mutational class e3  that is 

different from the zero-effect class or e1 and e2 because of the presence of label switching (Jasra 

et al 2005) between the three classes of effects and their frequencies (data not shown). 

Two-sided gamma DFE model

Although informative about the overall directional effects of mutations, models in which mutations 

fall into discrete categories are unrealistic, because they assume no variance among the effects of 

mutations within each category. We therefore analyzed the combined data set for the six MA line 

crosses under a two-sided gamma distribution of effects, which assumes that the effects of 

mutations are continuously distributed.  We assumed the gamma distribution, because it is a 

flexible two-parameter distribution (α = scale, β = shape) that can take a wide variety of shapes, 

ranging from a highly leptokurtic, L-shaped distribution (β → 0) to a point mass (β → ∞). We 

assumed that positive- and negative-effect mutations can have different absolute means, but their 

distributions have the same shape parameter. The results from the analysis of the combined data 

set (Table 4; Figure S7) suggest that the DFE is highly leptokurtic (i.e., β is close to 0.3), and that 

the means for positive-and negative-effect mutations (= β/α) are very small, reflecting the 

concentration of mutations with effects close to zero. Consistent with the analysis assuming 

discrete classes of mutations (Table 3), there is a substantial proportion of positive-effect mutations

(i.e., ~80%; Table 4). The estimated DFE for the two-sided gamma distribution is shown along with 

that for the three category point mass DFE in Figure 2.
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Table 4. Bayesian estimates and 95% credible intervals for parameters of gamma distributions of 

negative and positive mutation effects (indexed by 0 and 1, respectively), under a two-sided 

gamma distribution models with the same or different means for negative- and positive-effect 

mutations. For example, e1 is the estimated mean of the gamma distribution of positive effect-

mutations and q1 is their frequency.

Parameter Model Estimate 95% credible interval

β Two-sided gamma, same means 0.32 0.26 0.70

e 0.0049 0.0037 0.0070

q1 0.48 0.39 0.58

β Two-sided gamma, different means 0.30 0.24 0.71

e0 -0.0092 -0.020 -0.0060

e1 0.0021 0.0013 0.0032

q1 0.84 0.73 0.90

Figure 2. Inferred DFE assuming a two-sided gamma model (smooth line) and a point mass DFE 

for the three category model (transparent blue rectangles).
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The credible intervals for the absolute means of negative- and positive-effect mutations do not 

overlap (Table 4), suggesting that the model with different means is more parsimonious that a 

model assuming a two-sided gamma distribution with the same means (Table 4; Figure S8). A 

model with different shape parameters for negative- and positive-effect mutations gives similar 

estimates for the mean effects and proportion of positive-effect mutations as the model with a 

single shape parameter, but stable estimates of the shape parameters could not be obtained, 

suggesting that this model is over-parameterised. We also analysed a more complex mixture 

model that, in addition to gamma-distributed negative- and positive-effect mutations, incorporated 

a class of zero-effect mutations.  This allows a discontinuous DFE that has a “spike” at zero. 

However, the modal estimate for the frequency of the zero-effect class was zero and its upper 

credible value was 1%, indicating that the two-sided gamma distribution captures the leptokurtic 

shape of the DFE adequately.

Relationships between estimated mutation effects and mutation types

To investigate whether mutations in certain mutation classes (such as exonic/non-exonic) are more

or less likely to be associated with fitness, we calculated the effect of each mutation (as the 

posterior mean) under the two-sided gamma distribution model and then computed the difference 

between the average squared effects for mutations in mutually exclusive annotation classes. We 

examined average squared differences, because the additive variance contributed by a mutation is

proportional to its squared effect. The results are negative in the sense that there are no 

statistically significant relationships for any of the mutation types tested (Table 5). 

Table 5. Average squared effects of mutations (x1000) of certain mutation type classifications 

estimated under the two-sided gamma distribution model. For example, in the row labelled “SNP v 

Indel”, e2(-) and e2(+) are the average squared effects for SNP and indel mutations, respectively. P-

values for the difference between the squared effects of mutations were obtained by bootstrapping 

mutations 1,000 times.

Mutation type e2(-) e2(+) P-value

SNP v Indel 0.074 0.073 0.84

Non-exonic v Exonic 0.061 0.083 0.15

Non-intronic v Intronic 0.081 0.059 0.17

Non-intergenic v Intergenic 0.074 0.067 0.92
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Discussion

In this paper, we integrate information on the fitness of MA lines, ancestral lines and crosses 

between MA lines and their ancestors with the complement of mutations carried by each line or 

cross.  By crossing MA lines with their ancestors, each RL is expected to contain a different 

complement of mutations, which can be determined by genotyping. If there is sufficient replication, 

it is possible to estimate the individual phenotypic effects of mutations. The total number of 

mutations genotyped in the six MA lines studied was 386, however, implying that the effects of 

most mutations must be very small, and estimation of a fixed effect for each mutation is 

inappropriate. We therefore developed a random effects model, fitted a mixture of distributions 

using MCMC, and obtained Bayesian estimates of the parameters of the distributions. We 

investigated models in which each mutation is assigned to one of a number of classes of fitness 

effects (which includes a class with zero effect) or we assume that mutation effects are drawn from

a mixture of gamma distributions. Our approach has similarities to the Bayesian mixture model 

method BayesR (Moser et al 2015) developed to estimate the distribution of SNP effects in 

genome-wide association studies. BayesR simultaneously analyses all informative SNPs (we 

likewise include all mutations) and fits a mixture of distributions of SNP effects, including a zero-

effect class. Specifically, BayesR estimates the relative frequencies of the zero-effect class and a 

mixture of normal distributions of SNP effects with fixed variances. In this respect, BayesR differs 

from our method, where we estimate discrete categories of effects or gamma distribution 

parameters as variables in the model, and we also simultaneously estimate the frequencies of 

mutations in the different effects categories or gamma distributions.

Previous approaches to infer the distribution of fitness effects for spontaneous mutations (the DFE)

using data from MA experiments have compared the distributions of estimated trait values for MA 

lines and unmutated controls. The simplest approach is the Bateman-Mukai method (Bateman 

1959; Mukai 1964), which uses the changes of trait mean and genetic variance between MA lines 

and unmutated controls to estimate a genomic mutation rate parameter (U, the frequency of 

mutations with an effect on the trait) and the average effect of a mutation (e), while assuming that 

all mutations have the same effect. The information that can be obtained by the Bateman-Mukai 

method, and other approaches that use the full distribution of MA line phenotypic values (Keightley 

1994; García-Dorado 1997; Shaw et al 2002), is extremely limited, however (reviewed by Halligan 

and Keightley 2009). The limitation arises because the genomic mutation rate and e are 

confounded with one another under the Bateman-Mukai approach, so the DFE and U are also 
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confounded, and there is little information to distinguish between alternative models for the DFE if 

the effects of mutations are assumed to vary (Keightley 1998). 

For five of the six CC-2931 MA line crosses, there is a negative relationship between growth rate 

and the number of mutations carried by a RL, although in some cases the relationship is very 

weak. This result is broadly consistent with the tendency for most C. reinhardtii MA lines to have 

lower growth rate than their ancestors (Morgan et al 2014; Kraemer et al 2016), and with Kraemer 

et al (2017), who generally observed negative relationships between fitness measured in 

competition with a marked strain and the numbers of mutations carried for MA lines of several 

genetic backgrounds. Kraemer et al (2017) also attempted to estimate a multi-category DFE based

on the relationship between mutation number and fitness, but the amount of information available 

was limited, principally because there were only 10-14 MA lines tested of each genetic 

background. Here, we have characterized 1,526 RLs and a large number of combinations of 

genotypes, and therefore expect this design to be more powerful for inferring properties of the DFE

than previous approaches that analysed individual MA lines.

We first investigated models in which mutation effects fall into discrete categories, including a zero-

effect category. Under a two category model, there is a strong signal of growth rate-reducing 

mutations (estimated effect ~ -3%), consistent with the overall negative effect of spontaneous 

mutations we previously observed. The majority of mutations (~96%) are, however, allocated to the

zero-effect class. Under a three class model, most mutations are also allocated to the zero-effect 

class, there is a negative-effect category with similar fitness effect and frequency as in the two 

class model, and a third category of positive-effect mutations (effect ~+2% on fitness). The 

frequency of positive-effect mutations is ~6%, but the credible interval is very wide. We then 

analysed a two-sided gamma distribution model, in which there are different means for the 

distributions of positive- and negative-effect mutations. Arguably, this is more realistic than the 

multi-category model, which assumes that mutation effects are invariant within a category. 

Consistent with the results from the analysis of the model with three discrete categories, there are 

both negative-and positive-effect mutations, and the proportion of positive-effect mutations is 

surprisingly high (~80%). The distributions for negative- and positive-effect mutations are highly 

leptokurtic (i..e., the estimate of the shape parameter is ~0.3), and the absolute means of the 

distributions are both <1%, reflecting the concentration of density around zero. It appears that the 

effects of positive mutations are smaller than negative mutations, and the amount of mutational 

variance contributed by positive-effect mutations is ~20% that of negative-effect mutations. The fit 

of the estimated two-sided gamma distribution of effects is compared to the frequency distribution 

of the estimated effects of the individual mutations in Figure 3. Overall, the fit to the expected 

distribution is reasonable, although it appears that the inferred distribution may under-fit negative-
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effect mutations. There is one mutation with a positive effect of +5% (a G→C mutation in the 

3'UTR of a gene on chromosome 6  of unknown function) and several mutations with absolute 

negative or positive effects >1%. The annotations associated with the 10 mutations with the 

highest absolute effects (i.e., the most extreme 2.5%) are shown in Table S6. There is no 

significant enrichment of any annotation we tested for these most extreme effects (or for the most 

extreme 5%; data not shown).

Figure 3. The estimated reflected gamma distribution of effects (expected) compared to the 

distribution of posterior mean estimates for the effects of the individual mutations (observed).

Why are we seeing a high proportion of positive-effect mutations? One possibility is that mutations 

that increase fitness are common in natural populations, and this is reflected in MA experiments 

(Shaw et al 2003; Rutter et al 2018). An alternative view is that deleterious mutations predominate 

in nature, principally because organisms are well adapted to the environments they typically 
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experience (Keightley and Lynch 2003). Consistent with this, functional elements of the genome 

are typically conserved (Graur et al 2013), and analysis of the frequency of amino acid and 

synonymous polymorphisms within populations suggests that advantageous amino acid mutations 

are infrequent (Schneider et al 2011). A second possible explanation is that the algae were 

assayed in an environment which the species does not encounter in the wild, and some mutations 

that are deleterious in nature increase growth rate in the laboratory. A third possibility is that natural

selection could not be prevented during the MA experiment, and there was either positive selection

for mutations increasing growth or negative selection acting on mutations decreasing growth rate. 

This could take the form of between colony selection, if the fastest growing colonies were picked 

preferentially. Alternatively, there could be within colony selection, if new advantageous mutations 

occurring during colony expansion rise in frequency, or new deleterious mutations are removed 

during colony expansion. The effective population size was ~7 (Morgan et al. 2014), and we infer 

that few mutations have positive effects >10%, so any substantial selection for positive-effect 

mutations seems unlikely. On the other hand, deleterious mutations with effects >10% (including 

lethal or near-lethal mutations) would be under-represented.

The inferred DFE is is highly leptokurtic; many mutations have a very small effect and their is a 

long tail of large effect mutations. Under the reflected gamma distribution model the shape 

parameter of the distribution of negative- and positive-effect mutations is ~0.3. This is close to the 

value assumed by Kimura (1979, 1983) when analysing the nearly neutral model of molecular 

evolution, and is therefore consistent with the observation that amino acid variation is relatively 

insensitive to Ne (Ohta 1977; Kimura 1983), since a high proportion of sites in the Chlamydomonas

genome are in protein-coding exons. It is also relevant to the narrow range of variation observed at

synonymous and noncoding sites (Leffler et al 2012), if such sites become effectively selected in 

populations of large effective size. Such a leptokurtic distribution also has implications for the 

response to artificial selection and maintenance of variation for quantitative traits. If mutation 

effects are drawn from a leptokurtic distribution, then the response from new mutations builds up 

quicker than under the infinitesimal model, but is more variable, since response depends on the 

chance appearance and fixation of mutations with large effects (Hill 1982). A weak relationship 

between genetic variance for fitness or a correlated trait and Ne is also predicted (Keightley and Hill

1990).

To our knowledge, our approach of crossing MA lines to their ancestors and genotyping and 

phenotyping the crosses has not been previously attempted. It is related to that applied to induced 

mutations in RNA viruses (Sanjuan et al 2004) and in mismatch repair–deficient E. coli (Robert et 

al 2018).  A limitations of our approach is that some mutations we previously identified by whole-

genome sequencing (Ness et al 2015) were not amenable to genotyping. Specifically, some 
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classes of mutations, such as large indel events or transposable element insertions, were not 

detectable by our short-read sequencing study, or may have occurred in regions that could not be 

aligned to the reference genome (Ness et al 2015). The approach is limited by the precision of 

phenotyping for mutations with small effects on growth rate. In general, laboratory-based 

measurements of mutation effects on fitness have been limited to those stronger than 10-3 (Gallet 

et al 2012). Mutations with effects of this magnitude or below will be allocated to the zero-effect 

category under the discrete class model or will have estimated effects close to zero under the two-

sided gamma distribution model. Such mutations might be effectively selected in natural 

populations, however. The approach therefore has the capability of informing about mutations 

which may be under such strong selection in nature, and as such rarely segregate in natural 

populations. Other approaches that focus on the frequency distribution of segregating 

polymorphisms (Eyre-Walker et al 2006; Keightley and Eyre-Walker 2007; Boyko et al. 2008; 

Tataru et al 2017) inform about weakly selected mutations and therefore complement the present 

approach.

Materials and Methods

Mutation accumulation lines and the ancestral strain

Production and sequencing of MA lines of six strains of C. reinhardtii has been described 

previously (Morgan et al. 2014, Ness et al. 2015). Here, we focus on MA lines derived from CC-

2931, a strain first sampled in Durham, North Carolina in 1991 that has a typical mutation rate 

among several strains we investigated (Ness et al. 2015) and decreasing mean fitness with 

increasing mutation number (Kraemer et al. 2017).

The MA lines and their ancestral strain are of the same mating type (mt-), so we first produced a 

“compatible ancestor” to which the MA lines could be crossed. This was done by backcrossing CC-

2931 to a strain of the opposite mating type (CC-2344, mt+) for 13 generations with the aim of 

producing a strain identical to CC-2931, except for the region around the mating type locus on 

chromosome 6. Genome sequencing of the compatible ancestor (using the method of Ness et al. 

2015) unexpectedly revealed, however, non-CC-2931 regions not only on chromosome 6 but also 

on chromosomes 4, 5, and 16 (Figure S9, S10) comprising a total of 7.6% of the genome and 

leaving 13 pure CC-2931 chromosomes. We dealt with this issue by including markers for these 

regions as factors in the analyses (see below).
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Generation of first generation recombinant lines (RLs)

For each MA line, we set up nine independent matings with the compatible ancestor, and collected 

32 recombinant lines (RLs) from each to obtain a total of 288 RLs per MA line. Matings were set up

by inoculating cultures for both parents into 200 µl of liquid Bold's medium (Bold 1942), and 

incubating these under standard growth conditions (23°C, 60% humidity, constant white light 

illumination) while shaking at 180 rpm for four days. Nitrogen-free conditions are required to trigger

mating in C. reinhardtii (Sager & Granick 1954), so we centrifuged the cultures (3500 g, 5 

minutes), removed the supernatant, and added 200 µl of nitrogen-free liquid Bold's medium. We 

then mixed 50 µl each of MA line and compatible ancestor cultures and incubated the matings for 

approximately 24 hours under standard growth conditions to allow zygotes to form at the surface. 

The zygote mats were transferred to Petri dishes containing Bold's agar and incubated in the dark 

for five days to allow zygote maturation. To kill any vegetative cells associated with the zygote 

mats, the Petri dishes were exposed to chloroform for 45-60 seconds. Subsequently, the Petri 

dishes were incubated under standard growth conditions until the matured zygotes had 

germinated. As controls for the chloroform treatment, 30 µl of both of the unmated parents of each 

of the mating reactions were subjected to the same procedure, and the respective mating reaction 

was discarded if any growth was observed. After successful germination, 2 ml of liquid Bold's 

medium was added to the Petri dishes to allow the germinated cells to go into suspension. The 

suspensions were then diluted and spread onto new Petri dishes containing Bold's agar and 

incubated under standard growth conditions until individual colonies had grown sufficiently to be 

picked. Initially 36 individual clones representing individual RLs were picked from each mating and 

transferred into 200 µl liquid Bold's medium and incubated under standard growth conditions while 

shaking at 180 rpm for three days. Finally, 32 of the 36 picked RLs were transferred onto Bold's 

agar in 7 ml bijou containers for long-term storage.

Sample preparation for DNA extraction and genotyping

We used the competitive allele-specific PCR (KASPTM, Kompetitive Allele Specific PCR) technology

to genotype the RLs of each MA line, the corresponding MA line, the compatible ancestor and the 

original unmutated ancestral strain (CC-2931) at the locations of the mutations previously reported 

for the MA lines (Ness et al. 2015). For allele-specific primer design, DNA regions of 1,000 base 

pairs (bp) surrounding each mutation were extracted from the C. reinhardtii reference genome 

(strain CC-503; version 5.3; Merchant et al. 2007). The regions were then corrected to match the 

consensus sequence of the CC-2931 MA lines.

For DNA extraction, we obtained cell pellets of at least 50 mg as follows. We inoculated the RLs 

and ancestors into 200 µl of liquid Bold's medium and incubated these under standard conditions 

with shaking at 180 rpm for four days. The cultures were then transferred to individual wells of 6-
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well plates filled with 6 ml of Bold's agar and incubated under standard conditions until a thick lawn

had grown. Cells were then scraped off, transferred to 2 ml tubes and frozen at -70 °C. DNA 

samples were extracted from the frozen cell pellets and genotyped by LGC Genomics 

(http://www.lgcgenomics.com) using the sequences flanking each mutation of interest.

In addition to genotyping the known mutations, we genotyped markers that distinguish the mating 

types and the non-CC-2931 regions (Figure S9). For the mating type locus we designed markers 

matching loci specific to the two mating types, the fus1 locus for the mt+ mating type and the mid 

locus for the mt- mating type. For the non-CC-2931 regions we included markers for sites that 

differed between the two strains within these regions.

Determination of RL mating types by crossing

In addition to using genetic markers, we determined mating type using crosses. In separate mating

reactions, we mated each RL with the ancestral strain and with the compatible ancestor, using a 

modification of the mating protocol described above, in which we extended the incubation period 

for the mating reaction under standard growth conditions to approximately 48 hours and then 

incubated plates in the dark for 5 days. To kill vegetative cells, we then incubated the plates for 5 

hours at -20 °C, added 100 µl of a Bold's medium containing twice the amount of nitrogen as 

Bold's medium, and incubated the plates under standard growth conditions while shaking at 180 

rpm until zygotes had germinated. We assigned mating type for each RL based on the combined 

results of the mating test and the mating type genotyping test. If one test failed, we used the result 

of the other. If the tests disagreed or both failed, a mating type was deemed not assignable and 

was recorded as missing data.

Measurement of growth rate

To generate growth curves for the individual RLs and their parents (i.e., the corresponding CC-

2931 MA line and the compatible ancestor), we inoculated each of these separately into individual 

wells of  96 well plates containing 200 µl of liquid Bold's medium. Each plate contained samples 

from 58 RLs, all derived from the same MA line and their parental lines. We allocated lines 

randomly among the 60 central wells to avoid plate edge effects (Morgan et al. 2014) and filled the 

outer wells with 200 µl of medium to maintain humidity and reduce evaporation in the central wells.

All plates were initially incubated for four days under standard conditions. On day 4, we transferred

2 µl of each culture to the corresponding well on a new 96-well plate filled with 198 µl liquid Bold's 

medium to start the growth assay. As an estimate of cell density, we measured absorbance at 650 

nm every 12 hours over a period of 96 hours. We repeated this complete procedure twice in order 

to have two temporally independent replicates for each RL.
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Maximum growth rate can be estimated from each growth curve as the slope of the linear 

regression of the natural log (ln) of absorbance on time during the exponential phase of growth. 

Unfortunately, the start and duration of exponential growth varied between growth curves, so we 

were unable to simply estimate growth over the same time window for each growth curve. Instead 

we used the following procedure. For each growth curve we generated a number of 48 hour time 

windows which spanned 4 measurements in our growth curves. The first started at 12 hours and 

ran to 60 hours, the second started at 24 hours and ran to 60 hours and so on until we had all 

possible windows up until 96 hours. For each window we then carried out a regression of ln 

absorbance on time. The slope of this regression line gives us an estimate of the rate of increase 

during this time period, whilst the proportion of the total variation in growth rate explained by the 

linear regression on time (the R2 value) gives an estimate of how well the linear relationship fits the

data. We carried out this procedure for windows of 60 hours (5 time points), 72 hours (6 time 

points) and 84 hours (7 time points). We then excluded any windows for which the fit of the linear 

model was not adequate (R2 < 0.75). We then examined the slope estimates from each of the 

remaining windows and used the highest estimate as our measure of maximum growth rate for that

growth curve. Visual inspection of the fitted lines on the time series showed that this procedure 

was effective in identifying the period of maximum growth for the variety of observed growth 

trajectories. For a total of 8 RL replicate time series measures, an adequate fit was not achieved 

for any of the time windows due to extremely unusual growth trajectories, and these were excluded

from further analysis (Table S1).

Data processing and preparation

Mutations that were invariant across all samples were considered as artifactual and excluded. We 

also excluded mutations that were in complete linkage with either the mating type locus or one or 

more marker from the non-CC-2931 regions (Table S2). In the case of 21 mutations, only one of 

the two allele-specific primers worked successfully, and consequently no genotype information on 

the mutation was available for about 50% of the RLs. We corrected such mutations by changing 

the missing genotype to the non-amplified allele (Table S7). We excluded RLs for which genotypes

of more than 10% of mutations were missing and/or for which more than 5% of mutations were 

assigned as heterozygous. C. reinhardtii is haploid, and multiple heterozygous calls suggest that 

the RL contains several different genotypes, and potentially cross-contamination. The rationale for 

setting these thresholds for missing data and heterozygous calls came from plotting the 

distributions of percentages of missing data and heterozygous calls for the complete data set. Only

a small number of RLs have more than 10% of missing mutations and/or have more than 5% of the

mutations assigned as heterozygous (Figure S11).

After carrying out the above filtering steps, several missing genotypes remained, so we imputed as
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many as possible to facilitate analyses. We first assigned missing genotypes for cases where RLs 

of apparently identical haplotype originated from the same mating reaction. In a second step, we 

computed the squared measure of linkage disequilibrium between pairs of mutations (r²) 

(Charlesworth and Charlesworth 2010). We then examined the remaining mutations that have 

missing genotypes in turn. If r² between a mutation and its neighbouring mutation was above 0.7, 

we imputed its allelic state using the state of the neighbouring mutation. 1,982 (0.97%) of the total 

205,351 data points across all MA lines were initially missing (=number of mutations x number of 

samples including all replicates of RLs and ancestors). With our imputation approach, we were 

able to impute 1,766 (89%) of them so that only 216 (0.11%) missing data points remained. 

Relationship between number of mutations and growth rate

To examine the relationship between RL growth rate and the number of mutations carried, we fitted

a linear mixed model to the combined data set from all 6 MA lines and to the individual MA lines, 

with growth rate as the response variable and the number of mutations carried as a continuous 

linear predictor. To control for other sources of variation we also fitted mating type and all markers 

for the non-CC-2931 regions as fixed factors, and MA line, haplotype and growth assay plate as 

random factors. The significance of the number of mutations was examined by comparing models 

with and without this term, using a likelihood ratio test. The analysis was also done for specific 

mutation types (SNP, indel, exonic, intronic, intergenic). Models were fitted using the  lme4 (Bates 

et al. 2015) package in R (R Core Team 2018). The data along with the R code are provided in the 

supplementary online materials.

Inference of the distribution of effects of mutations for growth rate

We developed a MCMC approach to infer the distribution of effects of mutations for growth rate, 

assuming two kinds of models. We modelled a discrete distribution in which each mutation’s effect 

fell into one of a number (nc) categories, and a two-sided gamma distribution allowing different 

parameters for the distributions of negative- and positive-effect mutations. To control for the effects 

of mating type and presence/absence of non-CC-2931 chromosomal regions, we estimated nf two-

level fixed effects. Normally distributed plate effects and residual effects and the overall mean were

also fitted. When analysing a merged data set of all six MA line crosses, a different mean was fitted

for each MA line and any RL with one or more missing genotypes was excluded.

The data for the RLs bred from one MA line are represented in Table 6. Let nb be the number of RL 

observations and let nm be the total number of mutations in the MA line. Mutations are encoded in a

nb x nm  matrix, M, whose elements (0 or 1) indicate the presence or absence of a mutation in a RL. 

The fixed effects associated with each observation are encoded in a matrix, F, of dimension nb x nf 
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with elements 0 or 1. Plate numbers (np levels) and phenotypic values associated with each 

observation are vectors r and y, respectively, both of dimension nb.

Table 6. Representation of the data from a MA line crossing experiment 

Description Symbol Dimension

Number of observations nb Scalar

Overall number of mutations nm Scalar

Mutation matrix M nb x nm

Number of fixed effects nf Scalar

Fixed effects matrix F nb x nf

Number of plates np Scalar

Plate number vector r nb

Phenotypic value vector y nb

Each MCMC iteration, the state of one of the model’s variables (which are elements of vectors or 

scalars defined in Table 7-9) is proposed, then accepted or rejected based on change in log 

likelihood. Posterior distributions of the model variables provide Bayesian parameter estimates.

Multi-category model

Under this model, one category of mutations has no effect on fitness, and the remaining categories

have non-zero effects. The mutation category vector (m) specifies the category in which each 

mutation currently resides, the value zero signifying that a mutation is in the zero effect category 

(Table 7). Elements of m are proposed by randomly picking an integer in the range 0 .. 1 – nc, 

which is different from the current value. State variables for the effects and frequencies associated 

with each category are encoded in vectors e and q, respectively. The first element (e0) of e is fixed 

at zero, since it is the effect of the invariant zero-effect class, and the first element of q is set to q0 =

1−∑
i=1

nc −1

q i ,the frequency of the zero-effect class. Proposals for the remaining elements of q are 

random uniform deviates added to the current value. Changes to the values of all other variables 

are drawn from normal distributions with mean zero. The variances of the uniform and normal 

distributions of proposal deviates are adjusted during a burn-in phase so that about 25% of 

proposals are accepted.
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Table 7. Variables in the MCMC model specific to the multi-category model.

Description of variable Symbol Dimension Constraints on value

Vector of mutation categories m 1..nm Integer, 0.. 1 –  nc

Vector of mutation effects e 0.. nc – 1 –

Vector of mutation frequencies q 0.. nc – 1 ∑
1

nc −1

q < 1

Table 8. Variables of the model common to the multicategory and two-sided gamma distribution 

models.

Description of variable Symbol Dimension Constraints on value

Vector of fixed effects f 1.. nf –

Vector of plate effects p 1.. np –

Random plate effect variance Vp Scalar –

Overall mean y Scalar –

Residual variance Ve Scalar –

Proposals are accepted or rejected by applying the Metropolis-Hastings algorithm based on the log

likelihood of the data and the priors (which are designed to be uninformative), given the parameter 

values.  The overall log likelihood contains contributions from the numbers of mutations in different 

categories, their frequencies, the random plate effect, and each observation, which are considered 

independent. Let v be a vector of dimension 0 to 1 – nc containing the numbers of mutations in 

each of the nc categories in the current proposal, and multinomial(nc, q, v) be the probability of 

sampling v from a multinomial distribution parameter q. Let normal(y, y, Ve) be the normal 

distribution probability density function for point y with mean y and variance Ve. Let gi be the 

genotypic value of RL i, which is the sum of the effects of the mutations it carries. This is calculated

from the set of mutations carried by the RL (specified in M), the categories into which these 

mutations fall (specified in m) and the effect associated with each category (specified in e):

gi=∑
j=1

nm

e [ M ij×m j ] , (1)
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where the square brackets denote vector or matrix indexing, i.e., e[x] = ex. The overall log 

likelihood of the data is then:

log L=∑
i=1

nm

log (q [m i ]) + log (multinomial (nc ,q, v)) + ∑
i=1

np

log (normal (p i ,0,V p)) +

∑
i =1

nb

log(normal (y i−g i− ∑
j=1

n f

F ij× f j −p [r i ] , y , V e))

(2)

Note that the model with three categories (including a zero-effect category) is equivalent to a 

model with a mixture of two gamma distributions both with shape parameters → ∞ plus a zero-

effect category (see below).

Two-sided gamma distribution model

Under the two-sided gamma distribution model (whose variables are defined in Table 9), the 

current state of a mutation in the MCMC is defined by two variables. The first is whether the 

mutation has a negative or positive effect, encoded as 0 or 1 in vector μ. The second variable is 

the genotypic effect of the mutation, encoded in a matrix E of dimension [0..1]x[1..nm]. The current 

value of the element of μ selects the mutation’s current genotypic effect, i.e., for mutation i the 

genotypic value is E[μi][i]. The frequencies of negative- and positive-effect mutation are encoded in 

vector q. The scale and shape of the gamma distributions for negative and positive-effect 

mutations are encoded in vectors α and β, respectively. Proposals for q0 are random uniform 

deviates added to the current value, such that 0 < q0 < 1 and q1 = 1 - q0.  A proposal for an element

of μ is 0 if the current value is 1 and vice versa. Changes to the values of all other variables are 

drawn from normal distributions with mean zero with adjustment during the burn-in as described 

above.

Table 9. Variables in the model specific to the two-sided gamma distribution model.

Description of variable Symbol Dimension Constraints on value

Vector of mutation sign indicators μ 1..nm Integer, 0..1

Matrix of mutation effects E [0..1]x[1..nm] Positive real number

Vector of frequencies of negative and 

positive-effect mutations
q 0..1 0 < q0 < 1

Vector of shape parameters α 0..1 Positive real number
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Vector of scale parameters β 0..1 Positive real number

Let gamma(x, α, β) be the gamma distribution PDF for point x, given scale and shape parameters 

α and β, respectively. Let v be a vector (with two elements indexed by 0 and 1) containing the 

numbers of mutations with negative and positive effects in the current proposal, and binomial(q0, 

v0) be the probability of sampling v0 negative-effect mutations, given that the frequency of negative-

effect mutations is q0. Let gi be the genotypic value of RL i (the sum of the effects of the mutations 

it carries, as above). This is calculated from the set of mutations carried by the line (specified in M),

the types into which these mutations fall (i.e., negative or positive specified in μ) and the effect of 

each mutation (specified in E):

g i=∑
j=1

nm

Eμ j j × δ j × M ij , (3)

where δj takes the value -1 if μj is 0 and +1 if μj  is 1. The overall log likelihood of the data is:

log L=∑
i=1

nm

{log (gamma(Eμi ,i
,α[μ i ],β[μ i])) + log (q [μ i])} + log (binomial (q0, v 0)) +

∑
i=1

n p

log {normal (pi ,0,V p)} + ∑
i=1

nb

log(normal (y i−g i− ∑
j=1

nf

F ij×f j −p[ r i ], y , V e))

(4)

We considered models where the shape parameter of the gamma distributions for negative- and 

positive-effect  mutations were the same or allowed to be different. We also implemented a 

somewhat more complex mixture model in which there are three categories of mutations: a zero-

effect category and gamma-distributed positive and negative-effect mutations, as described above.

Running the MCMC

MCMC runs started with a burn-in of 108 iterations for multi-category models or 109 iterations for 

two-sided gamma distribution models. Parameter values were then sampled every 10,000 

iterations for 9x108 iterations for multi-category models or for 5x109 iterations for two-sided gamma 

distribution models. From each sampled iteration the vector of state variables was stored for 

generation of plots of parameter values against iteration number or posterior density plots. The 

posterior mode was taken as the parameter estimate, and 95% credible intervals computed on the 

basis of ranked parameter values. Priors for fixed effects, plate effects and the overall mean and 

variance were uninformative. The prior for mutation frequencies was a uniform distribution 
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bounded by 0 and 1, and were therefore informative. Priors for the mutation effect parameters 

(under the multiple category model) were uniform in the range +/- 0.5 phenotypic standard 

deviations.  Priors for the mean of the gamma distributions (under the two-sided gamma 

distribution model) were uniform in the range zero to 0.5 phenotypic standard deviations. Priors for 

the shape parameters of the gamma distributions were uniform in the range 0.1 to 100.

To check whether signals detected in the data were genuine, phenotypic values for fitness were 

permuted among backcross lines within plates without replacement. The distribution of estimates 

for parameters of interest obtained from such permuted data sets were computed.  Significant 

estimates from the original data were expected to lie outside these distributions.

Simulations

To check the method, simulated data sets with either two, three or four categories of mutational 

effects or a two-sided gamma DFE and 40 mutations in each data set were analysed as described 

above, while assuming the same model as simulated. In all cases posterior modes are close to the

parameters values of the simulations (Figure S12-S15).
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Supplementary figures

Figure S1. Proportion of ancestral  (red),  derived (blue) missing (grey) states at  each mutated
position for each haplotype. Haplotypes are sorted from left to right according to the proportion of
ancestral states at the mutated positions.
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Figure S2. Results of MCMC analysis of combined data set of RLs from six MA lines, assuming a
model  with two categories of  mutational  effects  one of  which has an effect  of  zero.  Bayesian
posterior  density plots  are for  parameters  e1 and  q1 (the effect  and proportion of  mutations in
category 1, respectively).
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Figure S3. Values of sampled parameters e1 and q1 (effect and frequency of mutations) in MCMC
run. The mutation effect is shown unscaled by the trait mean.
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Figure S4. Results of MCMC analysis of combined data set of 6 MA line backcrosses assuming a 
model with three categories of mutational effects (including one category with an effect of zero). 
Bayesian posterior density plots are shown for e and q parameters (the effect of and proportion of 
mutations, respectively, in the two finite-effect categories).
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Figure S5. Values of sampled parameters e and q [effect and frequency for negative- (index 1) and
positive-effect (index 2) mutations] in MCMC run. The mutation effects are shown unscaled by the 
trait mean.

34

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2019. ; https://doi.org/10.1101/571018doi: bioRxiv preprint 

https://doi.org/10.1101/571018
http://creativecommons.org/licenses/by/4.0/


Figure S6.  Distribution  of  posterior  modal  estimates  for  mutation  effect  parameters  e1 and  e2

obtained from analysis of datasets in which phenotypic values are permuted within plates with
replacement under the three mutation category model.
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Figure S7. Values of sampled parameters  q1 (frequency of positive-effect mutations),  β (gamma
distribution shape parameter) and means for negative and positive effect mutations in MCMC run
for  the  two-sided  gamma  distribution  with  different  means  for  negative-  and  positive-effect
mutations.  The mean mutation effects are shown unscaled by the trait mean.
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Figure S8. Values of sampled parameters  q1 (frequency of positive-effect mutations),  β (gamma
distribution shape parameter) and mean absolute effect of mutations in MCMC run for the two-
sided gamma distribution with the same means for negative- and positive-effect mutations. The
mean absolute mutation effect is shown unscaled by the trait mean.
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Figure S9. SNP densities along chromosomes 4, 5, 6, and 16 between the compatible ancestor for
CC-2931 and its two ancestral strains. SNP densities were calculated for 80 kb windows along the
chromosomes between the compatible ancestor and CC-2931 (red) and between the compatible
ancestor and the mating type + donor strain (black). A mutation density of 0 indicates no genetic
differences between the compatible ancestor and the strain it was compared to. The positions for
the  markers  for  the  non-CC-2931  regions  (blue)  and  for  the  mating  type  marker  (green)  are
indicated.
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Figure S10. SNP densities along chromosomes 1 - 3, 7 - 15, and 17 between the compatible
ancestor  for  CC-2931 and its  two ancestral  strains.  SNP densities  were calculated  for  80  kb
windows  along  the  chromosomes  between  the  compatible  ancestor  and  CC-2931  (red)  and
between the compatible ancestor and the mating type + donor strain (black). A mutation density of
0 indicates no genetic differences between the compatible ancestor and the strain it was compared
to.
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Figure  S11. Distribution  of  missing  data  and  heterozygous  calls.  The  distribution  of  A)  the
proportion of missing data, i.e. non callable mutations across the whole data set, and of B) the
proportion of heterozygous calls. Based on these distributions RLs with > 10% missing data and/or
> 5% heterozygous calls were excluded from all analyses.
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Figure S12. Posterior density plots for parameters e1 and q1 from MCMC analysis of simulated 
data with two categories of mutational effects, including one zero-effect category. The simulated 
values were e1 = 0.25 and q1 = 0.2. The mutation effect here and in Figs S2 and S3 are expressed 
in phenotypic standard deviation units. There were 40 mutations simulated and 10,000 
observations.
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Figure S13. Posterior density plots for e and q parameters from MCMC analysis of simulated data
with  three  categories  of  mutational  effects,  including  one  zero-effect  category.  The  simulated
values were e1 = -0.3, q1 = 0.1, e2 = 0.2 and q2 = 0.2.
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Figure S14. Posterior density plots for e and q parameters from MCMC analysis of simulated data
with four categories of mutational effects, including one zero-effect category. The simulated values
were e1 = 0.4, q1 = 0.15, e2 = 0.2, q2 = 0.2, e3 = -0.3 and q3 = 0.1.
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Figure S15. Posterior density plots for mean effects of negative (e-) and positive mutations (e+),
gamma  distribution  shape  parameters  (beta-  and beta+)  and  the  proportion  of  positive-effect
mutations (q1) from MCMC analysis of simulated data under a two-sided gamma distribution of
mutational effects. The simulated values were  e- = 0.5, e+ = 0.25, beta- = 0.5, beta+ = 2,  q1 =
0.25,.
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Supplementary tables

Table S1  RLs that were excluded from all analyses.
     

MA line backcross RL Reason

L03 L03_008 > 10% missing data, > 5% heterozygous calls

L03 L03_043 R2 No fitness data for replicate 2

L03 L03_047 > 10% missing data, > 5% heterozygous calls

L03 L03_058 > 10% missing data, > 5% heterozygous calls

L03 L03_060 > 10% missing data

L03 L03_061 > 10% missing data, > 5% heterozygous calls

L03 L03_063 > 10% missing data, > 5% heterozygous calls

L03 L03_067 > 10% missing data

L03 L03_070 > 10% missing data, > 5% heterozygous calls

L03 L03_072 > 10% missing data, > 5% heterozygous calls

L03 L03_073 > 10% missing data

L03 L03_088 > 10% missing data

L03 L03_101 > 10% missing data

L03 L03_110 > 10% missing data, > 5% heterozygous calls

L03 L03_111 > 10% missing data

L03 L03_117 > 10% missing data, > 5% heterozygous calls

L03 L03_122 > 10% missing data, > 5% heterozygous calls

L03 L03_125 > 10% missing data

L03 L03_126 > 10% missing data

L03 L03_130 > 10% missing data

L03 L03_135 > 10% missing data, > 5% heterozygous calls

L03 L03_136 > 10% missing data, > 5% heterozygous calls

L03 L03_137 > 10% missing data, > 5% heterozygous calls

L03 L03_145 > 10% missing data, > 5% heterozygous calls

L03 L03_167 > 10% missing data

L03 L03_174 > 10% missing data

L03 L03_175 > 10% missing data, > 5% heterozygous calls

L03 L03_178 > 10% missing data, > 5% heterozygous calls
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L03 L03_185 > 10% missing data

L03 L03_189 > 10% missing data, > 5% heterozygous calls

L03 L03_190 > 10% missing data, > 5% heterozygous calls

L03 L03_202 > 10% missing data, > 5% heterozygous calls

L03 L03_211 > 10% missing data, > 5% heterozygous calls

L03 L03_212 > 10% missing data, > 5% heterozygous calls

L03 L03_218 > 10% missing data, > 5% heterozygous calls

L03 L03_230 > 10% missing data, > 5% heterozygous calls

L03 L03_242 > 10% missing data, > 5% heterozygous calls

L03 L03_243 > 10% missing data

L03 L03_251 > 10% missing data

L03 L03_262 > 10% missing data, > 5% heterozygous calls

L03 L03_266 > 10% missing data

L03 L03_270 > 10% missing data, > 5% heterozygous calls

L06 L06_021 > 10% missing data

L06 L06_065 Ancestral (MA line ancestor)

L06 L06_066 Ancestral (MA line ancestor)

L06 L06_067 Ancestral (MA line ancestor)

L06 L06_068 Ancestral (MA line ancestor)

L06 L06_069 Ancestral (MA line ancestor)

L06 L06_070 Ancestral (MA line ancestor)

L06 L06_071 Ancestral (MA line ancestor)

L06 L06_072 Ancestral (MA line ancestor)

L06 L06_073 Ancestral (MA line ancestor)

L06 L06_074 Ancestral (MA line ancestor)

L06 L06_075 Ancestral (MA line ancestor)

L06 L06_076 Ancestral (MA line ancestor)

L06 L06_077 Ancestral (compatible ancestor)

L06 L06_078 Ancestral (MA line ancestor)

L06 L06_079 Ancestral (MA line ancestor)

L06 L06_080 Ancestral (MA line ancestor)
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L06 L06_081 Ancestral (MA line ancestor)

L06 L06_082 Ancestral (MA line ancestor)

L06 L06_083 Ancestral (MA line ancestor)

L06 L06_084 Ancestral (MA line ancestor)

L06 L06_085 Ancestral (MA line ancestor)

L06 L06_086 Ancestral (MA line ancestor)

L06 L06_087 Ancestral (MA line ancestor)

L06 L06_088 Ancestral (MA line ancestor)

L06 L06_089 Ancestral (MA line ancestor)

L06 L06_090 Ancestral (MA line ancestor)

L06 L06_091 Ancestral (MA line ancestor)

L06 L06_092 Ancestral (MA line ancestor)

L06 L06_093 Ancestral (MA line ancestor)

L06 L06_094 Ancestral (MA line ancestor)

L06 L06_095 Ancestral (MA line ancestor)

L06 L06_096 Ancestral (MA line ancestor)

L06 L06_103 > 10% missing data

L06 L06_107 > 10% missing data, > 5% heterozygous calls

L06 L06_111 > 10% missing data, > 5% heterozygous calls

L06 L06_114 > 10% missing data

L06 L06_116 > 10% missing data, > 5% heterozygous calls

L06 L06_118 > 10% missing data, > 5% heterozygous calls

L06 L06_124 > 10% missing data, > 5% heterozygous calls

L06 L06_143 > 10% missing data

L06 L06_156 Not sent off for genotyping

L06 L06_161 Not sent off for genotyping

L06 L06_163 > 10% missing data, > 5% heterozygous calls

L06 L06_186 > 10% missing data

L06 L06_267 > 10% missing data, > 5% heterozygous calls

L06 L06_271 > 10% missing data, > 5% heterozygous calls

L06 L06_272 > 10% missing data

47

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2019. ; https://doi.org/10.1101/571018doi: bioRxiv preprint 

https://doi.org/10.1101/571018
http://creativecommons.org/licenses/by/4.0/


L06 L06_273 > 10% missing data

L06 L06_275 R1 No fitness data for replicate 1

L06 L06_276 > 10% missing data

L07 L07_016 > 10% missing data, > 5% heterozygous calls

L07 L07_019 > 10% missing data, > 5% heterozygous calls

L07 L07_026 > 10% missing data

L07 L07_035 > 10% missing data

L07 L07_036 > 10% missing data

L07 L07_037 > 10% missing data

L07 L07_049 > 10% missing data

L07 L07_080 > 10% missing data, > 5% heterozygous calls

L07 L07_097 > 10% missing data, > 5% heterozygous calls

L07 L07_111 > 10% missing data, > 5% heterozygous calls

L07 L07_115 > 10% missing data, > 5% heterozygous calls

L07 L07_119 > 10% missing data, > 5% heterozygous calls

L07 L07_14 R2 No fitness data for replicate 2

L07 L07_150 R2 No fitness data for replicate 2

L07 L07_154 > 10% missing data, > 5% heterozygous calls

L07 L07_157 > 10% missing data

L07 L07_169 > 10% missing data

L07 L07_175 > 10% missing data

L07 L07_186 > 10% missing data, > 5% heterozygous calls

L07 L07_209 > 10% missing data, > 5% heterozygous calls

L07 L07_210 > 10% missing data, > 5% heterozygous calls

L07 L07_215 > 10% missing data

L07 L07_230 > 10% missing data

L07 L07_232 > 10% missing data

L07 L07_238 > 10% missing data

L07 L07_267 > 10% missing data, > 5% heterozygous calls

L07 L07_270 Not sent off for genotyping

L07 L07_274 > 10% missing data, > 5% heterozygous calls
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L07 L07_277 > 10% missing data

L09 L09_040 > 10% missing data, > 5% heterozygous calls

L09 L09_048 > 10% missing data

L09 L09_055 > 10% missing data, > 5% heterozygous calls

L09 L09_061 > 10% missing data

L09 L09_063 > 10% missing data

L09 L09_064 > 10% missing data, > 5% heterozygous calls

L09 L09_072 > 10% missing data, > 5% heterozygous calls

L09 L09_089 > 10% missing data

L09 L09_091 > 10% missing data

L09 L09_092 > 10% missing data

L09 L09_117 Not sent off for genotyping

L09 L09_170 > 10% missing data, > 5% heterozygous calls

L09 L09_179 > 10% missing data, > 5% heterozygous calls

L09 L09_187 > 10% missing data, > 5% heterozygous calls

L09 L09_257 > 10% missing data, > 5% heterozygous calls

L09 L09_284 > 10% missing data

L09 L09_58 R2 No fitness data for replicate 2

L11 L11_006 R1 No fitness data for replicate 1

L11 L11_021 R1 No fitness data for replicate 1

L11 L11_022 R2 No fitness data for replicate 2

L11 L11_059 > 10% missing data

L11 L11_085 > 10% missing data

L11 L11_168 Not sent off for genotyping

L11 L11_252 Not sent off for genotyping

L11 L11_257 Ancestral (compatible ancestor)

L11 L11_258 Ancestral (compatible ancestor)

L11 L11_260 Ancestral (compatible ancestor)

L11 L11_261 Ancestral (compatible ancestor)

L11 L11_264 Ancestral (compatible ancestor)

L11 L11_270 Ancestral (compatible ancestor)
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L11 L11_272 Ancestral (compatible ancestor)

L11 L11_277 Ancestral (compatible ancestor)

L11 L11_280 Ancestral (compatible ancestor)

L11 L11_283 Ancestral (compatible ancestor)

L11 L11_285 Ancestral (compatible ancestor)

L11 L11_286 Ancestral (compatible ancestor)

L14 L14_008 > 10% missing data

L14 L14_016 > 10% missing data

L14 L14_018 > 10% missing data, > 5% heterozygous calls

L14 L14_033 > 10% missing data, > 5% heterozygous calls

L14 L14_034 > 10% missing data

L14 L14_035 > 10% missing data, > 5% heterozygous calls

L14 L14_036 > 10% missing data, > 5% heterozygous calls

L14 L14_038 > 10% missing data, > 5% heterozygous calls

L14 L14_039 > 10% missing data, > 5% heterozygous calls

L14 L14_040 > 10% missing data, > 5% heterozygous calls

L14 L14_041 > 10% missing data, > 5% heterozygous calls

L14 L14_082 > 10% missing data

L14 L14_083 > 10% missing data

L14 L14_089 > 10% missing data, > 5% heterozygous calls

L14 L14_090 > 10% missing data

L14 L14_093 Not sent off for genotyping

L14 L14_101 > 10% missing data, > 5% heterozygous calls

L14 L14_111 > 10% missing data, > 5% heterozygous calls

L14 L14_119 > 10% missing data + heterozygous calls

L14 L14_121 > 10% missing data

L14 L14_129 > 10% missing data

L14 L14_142 > 10% missing data

L14 L14_146 > 10% missing data, > 5% heterozygous calls

L14 L14_148 > 10% missing data

L14 L14_151 > 10% missing data
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L14 L14_153 > 10% missing data

L14 L14_156 > 10% missing data, > 5% heterozygous calls

L14 L14_161 > 10% missing data

L14 L14_164 > 10% missing data, > 5% heterozygous calls

L14 L14_179 > 10% missing data, > 5% heterozygous calls

L14 L14_181 > 10% missing data, > 5% heterozygous calls

L14 L14_193 > 10% missing data, > 5% heterozygous calls

L14 L14_194 > 10% missing data

L14 L14_203 > 10% missing data, > 5% heterozygous calls

L14 L14_209 > 5% heterozygous calls

L14 L14_211 > 10% missing data

L14 L14_212 > 5% heterozygous calls

L14 L14_215 > 5% heterozygous calls

L14 L14_219 > 10% missing data

L14 L14_231 > 10% missing data, > 5% heterozygous calls

L14 L14_232 > 10% missing data

L14 L14_237 Not sent off for genotyping

L14 L14_240 > 10% missing data

L14 L14_244 > 10% missing data, > 5% heterozygous calls

L14 L14_245 > 10% missing data, > 5% heterozygous calls

L14 L14_246 > 10% missing data, > 5% heterozygous calls

L14 L14_252 > 10% missing data

L14 L14_254 > 10% missing data, > 5% heterozygous calls

L14 L14_262 > 10% missing data, > 5% heterozygous calls

L14 L14_267 Ancestral (compatible ancestor)

L14 L14_274 > 10% missing data, > 5% heterozygous calls

L14 L14_285 > 10% missing data, > 5% heterozygous calls
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Table S2. Mutations that were excluded from all analyses.
     

MA line backcross Mutation Reason

L03 L3_chr01_2853192 Genotyping failed

L03 L3_chr04_0396551 Genotyping failed

L03 L3_chr06_1024660 In LD with mating type locus

L03 L3_chr09_3699403 Genotyping failed

L03 L3_chr09_4250462 Genotyping failed

L03 L3_chr10_5990032 Genotyping failed

L03 L3_chr12_9420649 Invariable

L03 L3_chr13_2595770 Genotyping failed

L03 L3_chr13_2595772 Not sent off for genotyping

L03 L3_chr16_3660460 Not sent off for genotyping

L03 L3_chr17_3237430 Genotyping failed

L06 L6_chr03_6333285 Genotyping failed

L06 L6_chr03_6449831 Genotyping failed

L06 L6_chr05_1263226 Genotyping failed

L06 L6_chr08_1626948 Not sent off for genotyping

L06 L6_chr09_5245449 Not sent off for genotyping

L06 L6_chr09_5245452 Not sent off for genotyping

L06 L6_chr09_6279614 Invariable

L06 L6_chr10_2200561 Genotyping failed

L06 L6_chr12_2204753 Not sent off for genotyping

L06 L6_chr14_0785915 Not sent off for genotyping

L06 L6_chr14_0785916 Not sent off for genotyping

L06 L6_chr14_0785927 Not sent off for genotyping

L06 L6_chr16_4697465 Genotyping failed
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L07 L7_chr02_4765479 Genotyping failed

L07 L7_chr04_0604247 In LD with contamination marker

L07 L7_chr04_1739504 In LD with contamination marker

L07 L7_chr04_2429364 Invariable

L07 L7_chr04_2737599 In LD with contamination marker

L07 L7_chr06_6741115 Redundant

L07 L7_chr09_0039352 Genotyping failed

L07 L7_chr10_4212571 Genotyping failed

L07 L7_chr10_6222182 Genotyping failed

L07 L7_chr12_4663198 Genotyping failed

L07 L7_chr16_5939319 Invariable

L07 L7_chr17_2207272 Genotyping failed

L09 L9_chr03_2391763 Genotyping failed

L09 L9_chr03_6592653 Genotyping failed

L09 L9_chr04_3328621 In LD with contamination marker

L09 L9_chr08_0610482 Genotyping failed

L09 L9_chr09_4528997 Genotyping failed

L09 L9_chr09_6547417 Genotyping failed

L09 L9_chr10_1411121 Genotyping failed

L09 L9_chr10_6104272 Genotyping failed

L09 L9_chr12_2417018 Genotyping failed

L09 L9_chr12_9125255 Not sent off for genotyping

L09 L9_chr13_3359337 Genotyping failed

L09 L9_chr14_1780208 Genotyping failed

L11 L11_chr02_0199484 Genotyping failed

L11 L11_chr02_4125329 Genotyping failed

L11 L11_chr02_4125355 Not sent off for genotyping

L11 L11_chr04_3036330 In LD with contamination marker

L11 L11_chr04_3404045 Genotyping failed

L11 L11_chr06_0005804 In LD with mating type locus

L11 L11_chr06_1290990 Too much missing data
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L11 L11_chr07_1440089 Not sent off for genotyping

L11 L11_chr07_3530249 Genotyping failed

L11 L11_chr07_6204627 Genotyping failed

L11 L11_chr10_2090993 Genotyping failed

L11 L11_chr10_5432588 Genotyping failed

L11 L11_chr11_1552340 Invariable

L11 L11_chr12_2668943 Genotyping failed

L11 L11_chr14_1374369 Genotyping failed

L11 L11_chr16_0633004 Genotyping failed

L11 L11_chr17_4231481 Genotyping failed

L11 L11_chr17_4571679 Invariable

L14 L14_chr01_0120115 Genotyping failed

L14 L14_chr01_5007018 Genotyping failed

L14 L14_chr01_7611905 Genotyping failed

L14 L14_chr02_8723312 Too much missing data

L14 L14_chr04_1124343 In LD with contamination marker

L14 L14_chr04_1894260 In LD with contamination marker

L14 L14_chr04_4053918 Genotyping failed

L14 L14_chr06_1147984 In LD with mating type locus

L14 L14_chr06_3070450 Genotyping failed

L14 L14_chr07_1385100 Genotyping failed

L14 L14_chr07_1385116 Not sent off for genotyping

L14 L14_chr07_6263182 Genotyping failed

L14 L14_chr09_2174021 Not sent off for genotyping

L14 L14_chr09_2174021 Not sent off for genotyping

L14 L14_chr10_1161876 Genotyping failed

L14 L14_chr10_3438536 Genotyping failed

L14 L14_chr10_3685929 Genotyping failed

L14 L14_chr12_7716813 Invariable

L14 L14_chr13_0798461 Genotyping failed

L14 L14_chr13_4453429 Genotyping failed
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L14 L14_chr14_0011473 Not sent off for genotyping

L14 L14_chr16_0035749 Genotyping failed

L14 L14_chr16_4993831 Invariable

L14 L14_chr17_5234812 Genotyping failed
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Table S3. Number of haplotypes from each MA line backcross.
     

MA line 
backcross

Mating #RLs #Haplotypes Haplotype distribution1 # 
NA

L03 M1 31 28 1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1

0

L03 M2 27 21 2,1,2,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,1 0

L03 M3 27 20 1,1,1,2,1,1,1,1,2,4,1,2,1,1,1,1,1,2,1,1 0

L03 M4 25 24 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0

L03 M5 27 23 1,1,1,1,1,3,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1 0

L03 M6 25 17 4,1,1,2,1,1,2,2,1,3,1,1,1,1,1,1,1 0

L03 M7 27 24 2,1,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0

L03 M8 28 27 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,
1,1

0

L03 M9 29 29 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1

0

L06 M1 31 9 7,2,3,8,5,2,1,1,2 0

L06 M2 32 2 20,12 0

L06 M3 0 0 NA 0

L06 M4 25 15 3,2,2,3,2,1,1,2,2,1,1,2,1,1,1 0

L06 M5 30 19 5,1,1,2,2,2,1,1,3,1,2,1,1,1,2,1,1,1,1 0

L06 M6 29 10 5,8,1,3,2,1,1,2,5,1 0

L06 M7 32 8 3,17,3,3,1,2,2,1 0

L06 M8 32 26 1,1,3,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,2,1,2,1,1,1,
1

0

L06 M9 27 20 2,2,2,2,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1 0

L07 M1 29 15 1,1,2,6,2,1,5,2,3,1,1,1,1,1,1 0

L07 M2 28 9 5,2,1,7,4,2,3,2,2 0

L07 M3 31 4 23,5,2,1 0

L07 M4 28 5 16,4,3,3,1 1

L07 M5 30 4 7,9,6,8 0

L07 M6 29 10 2,8,4,3,3,1,2,2,3,1 0

L07 M7 29 9 5,4,8,2,1,3,4,1,1 0

L07 M8 29 6 10,8,3,1,6,1 0
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L07 M9 28 7 1,11,5,4,1,2,4 0

L09 M1 32 10 3,7,5,3,3,5,2,2,1,1 0

L09 M2 26 10 5,7,1,3,3,2,1,2,1,1 0

L09 M3 28 7 1,5,2,5,7,7,1 0

L09 M4 31 6 14,3,1,10,2,1 0

L09 M5 32 2 24,8 0

L09 M6 29 15 1,1,2,4,2,3,1,4,3,1,1,1,1,2,2 0

L09 M7 32 8 3,1,11,4,4,7,1,1 0

L09 M8 32 7 7,2,9,6,5,2,1 0

L09 M9 30 3 11,11,8 0

L11 M1 32 12 7,5,3,3,4,2,1,2,1,1,1,2 0

L11 M2 31 13 4,2,5,1,1,2,4,3,3,2,2,1,1 0

L11 M3 31 8 8,7,5,6,1,1,2,1 0

L11 M4 32 27 1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,
1,1

0

L11 M5 32 24 1,1,1,1,2,2,1,1,1,1,1,1,2,2,1,1,4,1,2,1,1,1,1,1 0

L11 M6 31 24 2,2,1,1,2,1,1,1,4,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1 0

L11 M7 32 21 2,6,1,2,1,1,1,3,1,2,1,2,1,1,1,1,1,1,1,1,1 0

L11 M8 31 17 7,3,2,1,4,1,1,1,1,1,1,1,1,1,3,1,1 0

L11 M9 20 8 4,3,2,3,1,2,3,2 0

L14 M1 29 13 2,6,1,4,6,1,2,1,1,1,2,1,1 0

L14 M2 24 5 5,5,4,1,6 3

L14 M3 27 10 2,4,7,1,3,1,1,3,1,3 1

L14 M4 28 11 4,7,5,3,3,1,1,1,1,1,1 0

L14 M5 25 4 3,3,8,7 4

L14 M6 28 6 8,5,3,7,3,2 0

L14 M7 24 5 3,8,7,1,5 0

L14 M8 23 11 3,2,3,1,2,2,4,2,2,1,1 0

L14 M9 28 2 10,18 0

¹: Counts of each haplotype, e.g. for L03 mating 6 (M6) the first haplotype was found four times, 
the second only once, the third only once, the fourth twice, the fifth only once and so on. 
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Table S4. Likelihood ratio tests for mixed model analysis of growth rate as a function of number of
different mutation types with 1 degree of freedom.

     

MA line cross Mutation type Chi square P-value

L03 SNP 7.38 0.0066

L03 indel 19.58 0.0000097

L03 exonic 10.46 0.0012

L03 intronic 3.69 0.055

L03 intergenic 11.60 0.00066

L06 SNP 0.89 0.35

L06 indel 0.18 0.67

L06 exonic 2.21 0.14

L06 intronic 0.14 0.71

L06 intergenic 0.98 0.32

L07 SNP 0.36 0.55

L07 indel 0.50 0.48

L07 exonic 0.0093 0.92

L07 intronic 1.59 0.21

L07 intergenic 1.061 0.30

L09 SNP 0.022 0.88

L09 indel 1.054 0.30

L09 exonic 0.42 0.51

L09 intronic 0.050 0.82

L09 intergenic 0.044 0.83

L11 SNP 2.69 0.10

L11 indel 0.13 0.72

L11 exonic 0.40 0.53

L11 intronic 5.33 0.021

L11 intergenic 2.36 0.12

L14 SNP 0.35 0.55

L14 indel 2.35 0.13
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L14 exonic 0.64 0.42

L14 intronic 0.81 0.37

L14 intergenic 0.21 0.65

whole data set SNP 2.91 0.088

whole data set indel 2.53 0.11

whole data set exonic 4.52 0.033

whole data set intronic 0.53 0.47

whole data set intergenic 1.14 0.29
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Table S5

Parameter  estimates  for  the  two  mutation  effect  category  model,  including  one  zero-effect
category.

Parameter estimate (95% credible interval)

MA Line e1 q1

L03 -0.018 (-0.040, -0.003) 0.127 (0.031, 0.693)

L06 0.001 (-0.049, 0.060) 0.017 (0.003, 0.729)

L07 -0.019 (-0.063, 0.040) 0.019 (0.005, 0.765)

L09 0.001 (-0.043, 0.044) 0.002 (0.001, 0.819)

L11 0.051 (0.012, 0.072) 0.032 (0.007, 0.181)

L14 -0.038 (-0.061, -0.016) 0.051 (0.016, 0.192)
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Table S6

.csv file (large-effects.csv) containing effects and mutation types of top 10 absolute effect 

mutations.
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Table S7. Mutations that were corrected.
     

MA line 
backcross

Mutation # ancestral
calls

# derived
calls

# missing
data (NA)

Correction

L03 L3_chr05_3408017 0 150 138 NA replaced with 0

L03 L3_chr09_4604654 0 139 149 NA replaced with 0

L03 L3_chr11_0040103 0 142 146 NA replaced with 0

L03 L3_chr12_7098772 177 0 111 NA replaced with 1

L06 L6_chr05_2967344 132 0 156 NA replaced with 1

L06 L6_chr10_4886371 0 110 178 NA replaced with 0

L06 L6_chr10_5830415 120 0 168 NA replaced with 1

L06 L6_chr15_0715589 138 0 150 NA replaced with 1

L09 L9_chr05_0258561 0 164 124 NA replaced with 0

L09 L9_chr05_2061109 0 156 132 NA replaced with 0

L09 L9_chr05_3366061 0 201 87 NA replaced with 0

L09 L9_chr06_8166934 167 0 121 NA replaced with 1

L09 L9_chr09_3706134 0 158 130 NA replaced with 0

L09 L9_chr11_3439747 153 0 135 NA replaced with 1

L09 L9_chr17_4121513 0 110 178 NA replaced with 0

L09 L9_chr17_4814616 159 0 129 NA replaced with 1

L11 L11_chr02_0189093 0 138 150 NA replaced with 0

L11 L11_chr02_1921472 155 0 133 NA replaced with 1

L11 L11_chr08_0145992 134 0 154 NA replaced with 1

L11 L11_chr17_0652393 134 0 154 NA replaced with 0

L14 L14_chr04_0006715 121 0 167 NA replaced with 1
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