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Abstract 13	

Different genomic sites evolve inter-dependently due to the combined action of epistasis, non-additive 14	

contributions of different loci to genome fitness, and physical linkage of different loci due to their common 15	

heritage. Both epistasis and linkage, partially compensated by recombination, cause correlations between 16	

allele frequencies at the loci (linkage disequilibrium, LD). The interaction and competition between epistasis 17	

and linkage are not fully understood, nor is their relative sensitivity to recombination. Modeling an adapting 18	

population in the presence of random mutation, natural selection, pairwise epistasis, and random genetic 19	

drift, we compare the contributions of epistasis and linkage. For this end, we use a panel of haplotype-based 20	

measures of LD and their various combinations calculated for epistatic and non-epistatic pairs separately. We 21	

compute the optimal percentages of detected and false positive pairs in a one-time sample of a population of 22	

moderate size. We demonstrate that true interacting pairs can be told apart in a sufficiently short genome 23	

within a narrow window of time and parameters. Outside of this parameter region, unless the population is 24	

extremely large, shared ancestry of individual sequences generates pervasive stochastic LD for non-25	

interacting pairs masking true epistatic associations. In the presence of sufficiently strong recombination, 26	

linkage effects decrease faster than those of epistasis, and the detection of epistasis improves.  We 27	

demonstrate that the epistasis component of locus association can be isolated, at a single time point, by 28	

averaging haplotype frequencies over multiple independent populations. These results demonstrate the 29	

existence of fundamental restrictions on the protocols for detecting true interactions in DNA sequence sets. 30	

 31	
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Introduction	32	
 33	
 Epistasis is inter-dependence of fitness effects of mutations occurring at different loci caused by 34	
biological interactions between domains of proteins and between proteins and nucleic acids [1-4]. In 35	
biological systems, amino acids in proteins domains interact with each other. The resulting networks of 36	
interactions that include direct protein-protein binding and allosteric effects, shape the gene regulation and 37	
metabolic networks. Epistasis is a widespread property of biological networks [2, 5-8] and a subject of 38	
intense studies. The vital role it plays in the genetic evolution of populations and the heritability of complex 39	
traits is well established. The existing estimates indicate that the variation of an inherited trait across a 40	
population can only partially be explained by the additive contributions from the relevant alleles. On 41	
average, 70% of the inheritance may be due to epistasis or epigenetic effects [9]. Epistasis defines the 42	
evolutionary paths and creates fitness valleys, i.e., intermediate genetic variants with reduced fitness [10-12].	43	
 A crucial biological scenario is a viral population adapting to the abrupt changes in external 44	
conditions. Examples include the transmission to a new host, the invasion of a new organ, or the process of 45	
immune evasion or the development of drug resistance. Typically, virus adaptation consists of primary 46	
mutations followed by a cascade of several compensatory (helper) mutations [13-18]. These mutations help 47	
the adapting virus to pass through a fitness valley [11]. During this process, compensatory mutations rescue 48	
the replicative fitness of virus while preserving its resistant phenotype [13, 15, 19]. 	49	
 However, epistasis is not the only force causing inter-dependence in the evolution of genomic 50	
regions. The other dominant factor is the host of linkage effects existing between genomic regions that co-51	
evolve in the same time frame and share the same ancestors [20, 21]. They include Fisher-Muller effect 52	
(clonal interference), genetic hitchhiking and genetic background effects, and Hill-Robertson interference 53	
between genetic drift and selection [21-23].   54	
 The other effect of linkage  is a genetic association between loci, or linkage disequilibrium (LD). 55	
The effects of linkage on the evolution of a long genome in the presence of selection is well understood 56	
theoretically [12, 24-31]. The theory shows that linkage significantly slows adaptation many times, enhances 57	
accumulation of deleterious mutations, and changes the shape of the phylogenetic tree [32, 33]. The 58	
magnitude of linkage effects grows rapidly with the number of loci, L. Recombination partly offsets linkage 59	
effects and accelerates evolution [34-40] and competes with epistasis [41]. Epistasis has been shown to be 60	
potentially important for the evolution of recombination in a two-locus model [42, 43]. 61	
 One consequence of linkage at large L is the strong interaction between the evolutionary trajectories 62	
of different sites that, depending on the case, can be both positive and negative. LD stemming from this 63	
interaction is easy to confuse with epistasis effects. Linkage effects become small only in populations that 64	
are exponentially large in the number of sites L [25]. Further, working with sequence data from real 65	
populations, it is often unclear how to discriminate the effects of shared ancestry from those of epistasis, and 66	
which of the two evolutionary forces dominates in each case (for a comprehensive review, see [1, 44, 45]). 67	
Therefore, despite of a considerable theoretical and experimental effort, detecting epistasis from genomic 68	
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data remains a challenge.   69	
 In the present work, we offer an evolutionary explanation for  the observed difficulty of the detection 70	
of epistasis from one-time data set. The idea is to generate mock data using a Monte-Carlo model of 71	
evolution and then try to discriminate between effects of linkage and epistasis. We use a panel of six 72	
pairwise LD measures to compare their distributions between epistatic and random pairs in a broad range of 73	
model parameters. We also use 3D and 2D maps of all possible combinations of LD measures and employ an 74	
optimization algorithm based on a priori knowledge to estimate the best, theoretically possible identification 75	
of epistatic pairs. As a result, we delineate the region of time and model parameters where the epistatic pairs 76	
can be detected against the linkage background. Finally, we investigate the role of recombination and the 77	
effects of averaging over multiple independently-evolving populations. 78	
 79	

Results 80	

 81	

Computer simulation of evolution 82	
We consider a haploid population of N genomic sequences comprised of L sites, where L >> 1, and either a 83	
favorable or deleterious allele is present at each site. Evolution of the population between discrete 84	
generations is simulated using a Wright-Fisher model including the evolutionary factors of random mutation 85	
with the rate µ per site, random genetic drift, and natural selection, as described in Methods. Natural 86	
selection includes positive (antagonistic) epistatic interaction between selected pairs of deleterious alleles. A 87	
simple case of genomes with uniform selection coefficient s0 and uniform epistatic strength, E, is considered. 88	
We also assume that epistatic pairs are isolated, i.e., that each genomic site interacts with only one site. The 89	
initial population is randomized as it is done in virus passage experiments, with an average allelic frequency 90	
f0.  In most of our work, we initially neglect the factor of recombination and primarily focus on asexual 91	
evolution, but lift this restriction in the end and explore broad parameter ranges.  We aim to simulate the 92	
detection of epistatic pairs and identify the best conditions for detection theoretically. 	93	
 94	
Measures of linkage disequilibrium (LD) 95	
Various haplotype-based measures based on known haplotype frequencies have been proposed to 96	
characterize the allelic association between loci. We will list four measures, as follows.  97	
 Lewontin's measure.  A classical measure of statistical correlation between alleles at different loci 98	
has a form [46]  99	
 100	

𝐷! = !
!!"#

,       𝐷 = 𝑓!" − 𝑓! 𝑓!                                         (1) 101	

Dmax = 
max −𝑓!𝑓! ,− 1 − 𝑓! 1 − 𝑓! ,𝐷 < 0 
min  𝑓! 1 − 𝑓! , 1 − 𝑓! 𝑓! ,𝐷 > 0

 102	

 103	
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Here 𝑓!"  is the average frequency of a bi-allelic haplotype of loci i and j, and Dmax is a normalization 104	

coefficient making sure that 𝐷! ∈ 0, 1 . 105	
 Pearson's correlation coefficient. An alternative is the correlation coefficient between pairs of loci r, 106	
expressed as [47] 107	

𝑟 =  𝐷 𝑓! 1 − 𝑓! 𝑓! 1 − 𝑓!        (2) 108	

 109	
 Kimura-Wu measure.  More recently, Wu and colleagues proposed another statistical marker of 110	
linkage disequilibrium, which, for binary alleles, has a form [48] 111	
  112	

𝑊𝑈 = log !!!!!!
!!"!!"

       (3) 113	

 114	
which represents the logarithm of the Z-measure proposed much earlier by Kimura [49].  115	
 Universal footprint of epistasis. In our recent work [50], we introduced another bi-allelic measure of 116	
LD  117	
 118	

𝐸 = 1 − !"# (!!! !!!)
!"# (!!"!!" !!!!)

      (4) 119	

The advantage of this measure with respect to previous three is that it has a direct meaning in terms of fitness. 120	
For isolated interacting pairs, it represents the degree of mutual compensation of two deleterious mutations 121	
when frequencies in Eq. 4 are ensemble-averaged (see Methods below). Here the value E = 0 corresponds to 122	
the absence of compensation (epistasis), and E = 1 to full mutual compensation of the two mutations. Note 123	
the singularity in Eq. 4 at f10 f01 = f00

2; we checked that it does not affect our results. 124	
 Below we investigate the effect of linkage for interacting and noninteracting pairs of loci using the 125	
measures defined in Eqs. 1-4. Also, we employ an optimization algorithm that, exploiting a priori knowledge 126	
of the correct epistatic pairs, puts the best possible threshold between the two distributions of LD. We 127	
consider different combinations of two or three LD measures to obtain the best detection possible.  128	
  129	
LD of epistatic and non-epistatic pairs are distinct in a narrow parameter window  130	
We started by plotting the distribution of six LD measures calculated from Eq. 1 over individual pairs of sites, 131	
at different times (Fig. 1).  We show separately the distribution for two subsets of pairs: the known epistatic 132	
subset (dark shade) and all the pairs  (light shade). In the beginning, LD is narrowly distributed around zero, 133	
for both epistatic and non-epistatic subsets (Fig. 1, row 1).  134	
 135	
Fig. 1.  LD- and haplotype-based measures of epistasis identify a narrow time window of epistasis detectability. We compared 136	
the time-dependent distribution of 6 markers of LD shown in 6 columns. Each column show the profile of the distribution of a 137	
measure of epistasis: D11, D01 (Eq. 1), r11, r01 (Eq. 2), WU (Eq. 3) and UFE (Eq. 4). Different rows correspond to different time 138	
points: t = 1, t = 5, t = 10, t = 25 and t = 50. The shaded regions correspond to the density distributions for all possible pairwise 139	
interactions (lighter color) and the known epistatic pairs (darker shade). The shaded areas are normalized distributions reflecting the 140	
fact that epistatic pairs represent a tiny fraction of the all possible pairs in a genome. The fluctuations of non-epistatic pairs increasing 141	
in time overlap onto the distributions of epistatic pairs. Parameters: N = 2 104, s0 = 0.1, L = 50, E in the range [0, 1], µL = 7 10-2.  142	
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Each odd site interacts with its neighbor on the right (1-2, 3-4, 5-6, ...) with epistatic strength E = 0.75. Initially, sequences were 143	
random with average allelic frequency set to f = 0.4. The negative control result in  the absence of epistasis (E = 0) is presented on 144	
Supplementary Fig. S1. 145	
 146	
Subsequent time points (Fig 1, rows 2 and 3) show progressive separation of the two distributions. In the 147	
course of further evolution (Fig. 1, rows 4 and 5), the distribution of randomly-chosen pairs, which was 148	
initially narrow and concentrated near the origin E = 0, gradually expands and overlaps with the small 149	
epistatic distrbution (Fig 1). This effect implies that non-epistatic pairs of sites, due to the stochastic nature 150	
of evolution, produce large LD of random sign. In this case, it is impossible to tell apart epistatic pairs from 151	
any of these measures of LD. 152	
 153	
Results are robust to the choice of an LD measure or their combination 154	
Next, we checked whether combinations of LDs used together can improve detection. We have calculated all 155	
possible combination of six LD measures in Eq. 2 and tried to separate interacting and non-interacting pairs 156	
using 3D and 2D scatter plots. A representative example is shown in Fig. 2, for E=0, and for E=0.75 at two 157	
time points. Other possible combinations of 2 and 3 measures are summarized in Table S1 in Supplement.  158	
 159	
Fig. 2. The optimization algorithm to identify ideal conditions for detection of epistasis is exemplified through the 3D scatter 160	
plot of three different measures of LD. Left: A representative example of  three-dimensional scatter plots of three statistics, UFE, 161	
D'01 and r11, plotted for all individual pairs of sites (blue circles) and for known epistatic pairs (red circles). Right and middle: two-162	
dimensional projections. The three rows correspond to the absence of epistasis (E = 0, top), and two time points in the presence of 163	
epistasis, within the detection window and outside (middle and bottom). All possible combinations of two and three measures have 164	
been tested and summarized in Table S1. At intermediate time t=10, a district cloud of epistatic pairs (red dots) cluster together 165	
outside the overall distribution of all pairs and, hence are detectable. At long times, substantial overlap with non-interacting pairs bias 166	
contaminates detection. To optimize detection, we define a detection threshold for each of the detection variables (UFE, WU and the 167	
four haplotypes) and adopted an optimization algorithm that minimizes the following quantity "DET + a FPOS", where a is a fitting 168	
parameter, DET represent the detection percentage, and FPSO is the percentage of false positive, based on prior knowledge of the 169	
identity of true epistatic pairs. Parameters as in Fig. 1 170	
 171	
We wrote an optimization algorithm which separates the cloud of interacting pairs from the cloud of non-172	
interacting pairs in the best possible way, using a priori knowledge about the identity of pairs (Fig. 2). We 173	
adjusted the threshold to optimize the difference between the detection rare and the false positive rate. This 174	
method, employing the principle of machine learning, does not give any substantial improvement on the 175	
detection window (See Supplementary Table 1). For a real data sets, a priori knowledge about interacting 176	
pairs is usually unavailable, so that the detection of epistasis in a single population at one time point will be 177	
even worse than our prediction.  178	
 179	
Parameter sensitivity analysis confirms the narrow window of detection 180	
Selection coefficient. Next, we investigated how the window of detection changes with model parameters. 181	
We calculated the detection rate and the false positive rate for the six measures of LD at different values of 182	
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selection coefficient, s0 (Fig. 3). For each measure, the results show an inverse scaling of the detection time 183	
window on s0. Note that the window closes at very small s0, where evolution is almost selectively neutral, 184	
and epistasis is never detectable.  185	
 186	
Fig. 3. Detection of epistasis is confined in a time window whose width is controlled by the mean selection coefficient. 187	
Percentile of detection and false discovery as a function of time is averaged over 25 random simulation runs per each value of s0, the 188	
constant selection coefficient for each allele in the sub-population. The detection of epistatic pairs for a panel of measures of LD, 189	
namely, D11, D01 (Eq. 1), r11, r01 (Eq. 2), WU (Eq. 3) and UFE (Eq. 4). Results from a detection protocol that maximizes the 190	
difference between the detection percentile and the false-positive fractions by tuning the detection threshold, show the same trend for 191	
all measures considered. At time ~1.5/s0 generations, we observe the beginning of a transition which completely blurs the detection 192	
of epistatic interaction at time ~2.5/s0. The initial allelic frequency f0 = 0.45, s0 is shown, the other parameters are as in Fig. 1.  193	
 194	
 195	
 Distributed selection coefficient. Next, we conducted a sensitivity analysis with respect to the other 196	
model parameters (Fig. S5). Firstly, we lifted the simplifying assumption of a constant selection coefficient, s 197	
= s0, and allowed variation of s among sites according to a half-Gaussian distribution. We obtain a similar 198	
dependence of the window width on the average selection coefficient (Fig. S5), although with a higher false 199	
positive rate within the detection window than for the case with constant s.  200	
 Length of the genome.We found out, that sequence length L limits the detectability of epistasis 201	
substantially (Fig. S5). An increase of the sequence length or a reduction of the population size leads to 202	
narrowing and, eventually, disappearance of the detection window. These results limit the applicability of 203	
these methods to short sequences. Indeed, the number of all possible locus pairs increases with genome 204	
length L proportionally to  L2, and the number of epistatic pairs increases only as L, so that the task of finding 205	
"the ruby in the rubbish" becomes harder at larger L [1, 44, 45]. 206	
 Population size. We observed a very slow (logarithmic) expansion of the detection window with 207	
population size N (Fig. S5). This is consistent with the results of asexual evolution models, which predict a 208	
very slow logarithmic dependence on N for all the evolutionary observables, including evolution speed, 209	
genetic diversity, and the average time to most recent ancestor [25-31, 35-37, 39, 40, 51]. Only in very large 210	
populations whose size increases exponentially genome length L, linkage effects become small [25]. In these, 211	
astronomically large populations, epistasis would be easily detectable. 212	
 Initial standing variation. We have observed a detection window in time only at the initial 213	
frequencies of deleterious alleles above 10% (Fig. S5). At smaller frequencies, detection lapses. We can 214	
conclude that detection of epistasis in a single population studied  is possible in a narrow parameter range. 215	
 216	
Recombination improves detection. Until now, we have assumed a completely asexual evolution. In our 217	
next step, we investigated the role of recombination, parametrised by the average number of crossovers per 218	
genome, M, and by the probability of outcrossing per genome, r. We obtained that intermediate 219	
recombination rates rescue the detection of epistasis by disrupting linkage and yet preserving the epistasis 220	
contribution to LD. At our default parameter set (Fig. 1), we observed a significant reduction of linkage 221	
fluctuations starting from r = 20% and M = 5 (Fig. 4). The results show that LD effects of linkage are much 222	
more resistant to recombination than, for example, the evolution speed, which increases substantially already 223	
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at tiny values of r  [34-40]. We found out also that extremely high levels of recombination decrease LD for 224	
epistatic pairs as well, thus rendering epistasis undetectable.  Thus, there exists a narrow window of 225	
recombination rates where epistasis can be observed outside of the detection window for time and other 226	
parameters described above.  227	
 228	
Fig. 4. Variation of the time window of detection with recombination. Percentile of detection and false discovery as a function of 229	
time is averaged over 25 random simulations (runs) in a broad range of parameters values. The detection rare and false positive rate 230	
of epistatic pairs with UFE at different values of s, randomly drawn from a half-Gaussian distribution of deleterious alleles. The 231	
presence of moderate recombination characterized by outcrossing rate r and the average number of cross-overs, M, broadens the 232	
detection window. We observe similar results for all the statistics considered in this study (data not shown). The default parameter set 233	
is E = 0.75, with the other parameters as in Fig. 1. 234	
 235	
 236	
Population divergence creates strong linkage effects   237	
In order to understand the reason behind the strong linkage effects masking epistasis, we investigated the 238	
time-dependent changes of the phylogenetic tree using a hierarchical clustering algorithm (Fig. 5a-d). The 239	
initial, randomized population display a star-shaped phylogeny, characterized by the same mean distance 240	
between all sequences and the most common sequence (Fig. 5). With time, the phylogenetic tree grows 241	
branches of increasingly related sequences (Fig. 5c, d). As simulation continues (Fig. 5d), the tree becomes 242	
more lopsided, while recent mutations create short branches at the bottom. At the same time, we observe that 243	
the tree has a decreasing number of ancestors. Eventually, the tree evolves into Bolthausen-Sznitman 244	
coalescent (BSC) with a single common ancestor, previously predicted for the stationary regime of traveling 245	
wave [25, 29, 37] (Fig. 5).  246	
 247	
Fig. 5.  Evolution of genealogy within a single, well-mixed population and comparative representation of multiple, 248	
independently evolving population. (a-d) Phylogenetic structure of a single population comprising a sample of 500 genomes at four 249	
different times: t = 0, 10, 20, and 30 generations. Mean genetic distance between genomes decreases in time, and the structure of the 250	
tree changes from a star-like shape towards a monophyletic tree (BS coalescent), with a single common ancestor. The right panel 251	
shows the reconstructed phylogenetic tree of three populations, independently evolved from the same initial random seed. At a glance, 252	
it is possible to determine that the three  populations do not share much sequence homology and segregate into different, 253	
phylogenetically distinct clades. N= 20000 genomes, initial average allelic frequency f0 = 0.40, other parameters as in Fig. 1. 254	
 255	
 Emergence of this phylogeny is coincident with the increase in the fluctuations of LD  of non 256	
interacting pairs (Fig. 1). The  reason for strong random LD is stochastic divergence of the population from 257	
the initial state, as illustrated by clustering of three independently evolved populations (Fig. 5, right). The 258	
distance between the trees obtained in separate runs increases linearly in time due to fixed beneficial 259	
mutations at randomly chosen sites. Haplotype configurations of the common ancestor of the population are 260	
inherited by all members of the population, with some small variation determined by the time to the most 261	
recent common ancestor. Thus, the stochastic divergence of individual populations creates strong LD with a 262	
random sign.  263	
 264	
 265	
The use of multiple populations defeats LD fluctuations and rescues epistatic signature 266	
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Because the linkage fluctuations arise due to stochastic divergence of the founder, the common ancestor, the 267	
natural idea is to use multiple populations to average over possible founder sequences. To test this idea, we 268	
evolved independently multiple populations at the same initial conditions and averaged the haplotype 269	
frequencies used in LD markers (Eqs. 1-4) over populations, for each pair of sites, separately. We found out 270	
that including a sufficient number of independent populations results in a substantial reduction of the noise 271	
and indefinite expansion of the window of detection (Fig. 6). Qualitatively similar results are obtained for all 272	
LD markers.  273	
 274	
Fig. 6. Detection of epistasis is rescued by simultaneous analysis of multiple independently-evolved populations. Left 4 plots:  275	
Percentile of detection (top)_ and false discovery (bottom) as a function of time are presented for UFE and WU measures. Number of 276	
replicate Monte-Carlo runs is shown. The haplotype frequencies are averaged over runs, which represent independently-evolved 277	
populations. At time ~1.5/s0, we observe the beginning of a transition which completely blurs the detection of epistatic interaction for 278	
a single replicate (blue line), however, already 5 replicates are sufficient to significantly extend the detection window up to ~2.5/s0, 279	
and a higher number of replicates completely eliminate false-positive pairs, while maintaining the average detection above 80%. 280	
Parameters:  E = 0.75, N = 20000, the others as in Fig 1. Right: Two-dimensional color maps for UFE measure of LD, which 281	
summarize the results of a similar analysis for two population sizes: N = 100 (middle plot) and N = 1000 (right plot). Y-axis: Number 282	
of independent populations. X-axis: time of evolution. Color shows the percentage of detection with the detection threshold of 283	
interacting pairs chosen to give the false discovery rate below 20%.  284	
 285	
 286	
DISCUSSION 287	

In the present work, using a Monte-Carlo simulation of a haploid population, we calculated the distributions 288	
of six measures of linkage disequilibrium and their combinations for epistatic and random locus pairs. We 289	
demonstrated that, in a single asexual population, the footprints of epistatic pairs are readable only in a 290	
narrow time interval between 0.2/s0 and 1.5/s0 generations. During later adaptation, the distribution of 291	
linkage disequilibrium for non-interacting pairs broadens and engulfs the distribution for epistatic pairs. 292	
These results indicate that, long before the onset of the steady state, linkage effects dominate over the effects 293	
of epistasis. This phenomenon is predicted in a broad parameter region and for all the LD statistics, 294	
suggesting that, in the context of inherited linkage fluctuations, all statistics based on pairwise linkage 295	
disequilibrium are equal. 296	
 To gain insight into the evolutionary origin of these fluctuations, we investigated phylogenetic trees 297	
of the entire population at different time points to observe that the shape of the tree strongly correlates with 298	
the magnitude of linkage fluctuations. The shape of the phylogenetic tree changes in time from the initially 299	
star-shaped genealogy to a Bolthausen-Sznitman (BS) coalescent [32, 33] previously analyzed in great detail 300	
for adapting asexual populations [25, 36, 37]. Once BS genealogy is established, individual sequences share 301	
a high degree of interrelatedness due to fixed beneficial mutations at randomly chosen sites. The presence of 302	
the BS coalescent is coincident with strong co-inheritance linkage fluctuations. The stochastic nature of their 303	
common ancestor sequence, divergent in time from common ancestors in other independent populations (Fig. 304	
5) is the cause of the strong fluctuations of LD. 	305	
 We have also directly quantitated the detection of epistatic pairs against the background of random 306	
linkage effects. We evaluated the sensitivity of the width of the detection window with respect to several 307	
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input parameters, such as the mean selection coefficient, the size of the population, the sequence length, and 308	
initial genetic variation, and the role of recombination. We observed that the window is proportional to the 309	
inverse average selection coefficient, 1/s0, but a very small s0 abolishes any chance of detection, so that the 310	
best detection is attained in the case of moderately weak selection. The detection window exists only for 311	
sufficiently small genomes.  The presence of recombination has the effect of compensating the linkage 312	
component and thus significantly improving the detection of epistasis. Yet, very frequent recombination 313	
disrupts epistatic effects. 	314	
 To isolate the epistatic component from co-inheritance effects, we performed simulations over 315	
several independently-evolved populations and averaged the haplotype frequencies over these runs. The 316	
results predict the number of independent population required to attain significant expansion of the detection 317	
window (Fig. 6). Thus, the averaging over multiple independently-evolved populations filters out linkage 318	
effects leaving a clear footprint of epistasis in a much broader parameter range. However one should note 319	
that the multiple-population sampling was conducted under the ideal conditions, in which every population 320	
evolved independently for the same time with the same parameter set, and represented the same fraction of 321	
the total sample. Unequal sampling or heterogeneous representation in real data sets may create additional 322	
problems.	323	
 Our model adopts several simplifying assumptions. (i) Deleterious alleles are assigned selection 324	
coefficient constant in time. (ii) We considered constant and fixed epistatic strength for all pairs. (iii) We 325	
focused on a simple topology of epistatic network. While these are reasonable assumptions to describe the 326	
problem of linkage fluctuations in biological systems, a real scenario with mixed sign epistasis and complex 327	
topology might pose additional challenges for the accurate detection of epistasis.  328	
  In summary, we offer an evolutionary reason for the fluctuations of epistatic estimates in the 329	
existing sequence sets. Linkage due to stochastic divergence of the common ancestor of a population from 330	
the origin is responsible for the high false-positive rates of epistasis detection in a single population. We 331	
demonstrated how the use of multiple independently-evolving populations, or the use of time series when 332	
available,   allows us to average out strong linkage effects and rescue the detectability of epistasis.  333	
	334	

METHODS 335	
We consider a haploid population of N binary sequences, where each genome site (nucleotide position) 336	
numbered by i =1, 2, …, L is either Ki =0 or Ki =1. We assume that the genome is long, L >> 1. Evolution of 337	
the population in discrete time measured in generations is simulated using a standard Wright-Fisher model, 338	
which includes the factors of random mutation with rate µL per genome, natural selection, and random 339	
genetic drift. Recombination is assumed to be absent. Once per generation, each genome is replaced by a 340	
random number of its progeny which obeys multinomial distribution. The total population stays constant 341	
with the use of the broken-stick algorithm. To include natural selection, we calculate fitness (average 342	

progeny number) 𝑒! of sequence Ki as given by [50]	343	

 344	
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 𝑊 = 𝑠!𝐾!!
!!! + 𝑆!"!

!!! 𝐾!𝐾!     (5) 345	

  346	

𝑆!" = 𝐸!" 𝑠! + 𝑠! 𝑇!"                           (6) 347	

 348	
The first term in Eq. 5 stands for the additive contribution of single mutations to fitness with selection 349	
coefficients si. The second term in Eq. 5 describes pairwise interactions of sites with magnitudes Sij, which 350	
are given by Eq. 6. Coefficient Eij represents the relative strength of epistatic interaction between sites i and 351	
j, while the binary elements of the matrix T indicate the interacting pairs by Tij = 1 and the other pairs by Tij 352	
= 0. An example of positive epistasis is the compensation of two deleterious mutations inside protein 353	
segments that bind each other. Note that Eij = 1 corresponds to full mutual compensation of deleterious 354	
mutants at sites i and j. We consider the simplest interaction topology of interacting neighbors, as given by 355	
T2i,2i+1 = 1 and 0 for all other pairs. 356	
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