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Abstract  
 

Cortical development is characterized by distinct spatial and temporal patterns of maturational 

changes across various cortical shape measures. There is a growing interest in summarizing 

complex developmental patterns into a single index, which can be used to characterize an 

individual’s brain age. We conducted this study with two primary aims. First, we sought to 

quantify covariation patterns for a variety of cortical shape measures, including cortical 

thickness, gray matter volume, surface area, mean curvature, and travel depth, as well as white 

matter volume, and subcortical gray matter volume. We examined these measures in a sample 

of 869 participants aged 5-18 from the Healthy Brain Network (HBN) neurodevelopmental 

cohort using the Joint and Individual Variation Explained (Lock et al., 2013) method. We 

validated our results in an independent dataset from the Nathan Kline Institute - Rockland 

Sample (NKI-RS; N=210) and found remarkable consistency for some covariation patterns. 

Second, we assessed whether covariation patterns in the brain can be used to accurately 

predict a person’s chronological age. Using ridge regression, we showed that covariation 

patterns can predict chronological age with high accuracy, reflected by our ability to cross-

validate our model in an independent sample with a correlation coefficient of 0.84 between 

chronologic and predicted age. These covariation patterns also predicted sex with high 

accuracy (AUC=0.85), and explained a substantial portion of variation in full scale intelligence 

quotient (R2=0.10). In summary, we found significant covariation across different cortical shape 

measures and subcortical gray matter volumes. In addition, each shape measure exhibited 

distinct covariations that could not be accounted for by other shape measures. These 

covariation patterns accurately predicted chronological age, sex and general cognitive ability. In 

a subset of NKI-RS, test-retest (<1 month apart, N=120) and longitudinal scans (1.22 ± 0.29 

years apart, N=77) were available, allowing us to demonstrate high reliability for the prediction 

models obtained and the ability to detect subtle differences in the longitudinal scan interval 

among participants (median and median absolute deviation of absolute differences between 

predicted age difference and real age difference = 0.53 ± 0.47 years, r=0.24, p-value=0.04). 

 
Key words: brain age prediction, cortical covariation pattern, individual and joint analysis, brain 

developmental pattern  
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1. Introduction 
 

The human brain undergoes dramatic structural changes throughout the lifespan, including 

brain maturation processes from childhood to adolescence and young adulthood. Characterizing 

typical developmental trajectories of brain structure maturation is essential for understanding 

neurodevelopmental disorders and vulnerabilities of the brain (Gogtay et al., 2004; Toga et al., 

2006). Most studies of brain development have focused on the cortex and subcortical 

structures. For instance, developmental trajectories of cortical thickness, cortical and subcortical 

gray matter (GM) volume, surface area, mean curvature, and white matter (WM) development in 

different age groups have been extensively examined using both cross-sectional (Asato et al., 

2010; Barnea-Goraly et al., 2005; Hill et al., 2010) and longitudinal data (Giedd et al., 1999; 

Gogtay et al., 2004; Lenroot et al., 2007; Mensen et al., 2017; Sowell et al., 2004). It is well 

recognized that cortical development is spatially heterogeneous with individual brain regions 

following distinct temporal patterns of maturational changes (Toga et al., 2006). To best 

characterize the complexity of cortical development across different brain regions, investigators 

have begun to use brain structural features to derive a comprehensive index of brain 

development (Cole and Franke, 2017; Erus et al., 2015). 

 

Brain-based age prediction is thought to be important for understanding normal brain 

developmental process in healthy individuals, as well as atypical brain structural/functional 

developmental patterns that might have clinical implications (Davatzikos et al., 2009; 

Dosenbach et al., 2010). Among brain structural features, cortical thickness (Khundrakpam et 

al., 2015; Lewis et al., 2018) and GM volume (Franke et al., 2010) have been used to predict 

brain age. An increasingly broad range of possible measures exist for characterizing brain 

cortical structures, including surface area, mean curvature, travel depth, and WM volume; 

additionally, some studies have used the GM/WM difference or contrast (Franke et al., 2012; 

Lewis et al., 2018) or developed composite metrics incorporating multiple features to increase 

the brain age prediction accuracy (Brown et al., 2012; Erus et al., 2015; Lewis et al., 2018). 

However, it remains unclear to what extent different cortical shape measures covary and 

whether their covariation patterns are related to chronological age.  

 

To characterize covariation patterns across different cortical and subcortical measures, we use 

the Joint and Individual Variation Explained (JIVE) method (Lock et al., 2013) to estimate 

shared (i.e., covariation patterns common across all shape measures) and distinct (i.e., 
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covariation patterns specific to an individual shape measure) covariation patterns across six 

cortical shape measures (cortical thickness, GM volume, surface area, mean curvature, travel 

depth, WM volume) and subcortical GM volumes. JIVE was developed for simultaneously 

identifying consistent patterns across multiple data types and patterns unique to individual data 

types. Specifically, JIVE decomposes the total variance in data into three terms: joint variation 

across all seven shape measures, structured variation unique to individual shape measures, 

and residual noise that should be discarded from analyses. JIVE has been used in cancer 

studies to identify genetic variants across different data platforms (e.g., genotyping, mRNA and 

miRNA expression) (Hellton and Thoresen, 2016; O'Connell and Lock, 2016) and to identify the 

common variance between task-based fMRI connectivity and a wide range of behavioral 

measures (Yu et al., 2017). We hypothesized that integrative analysis of different cortical and 

subcortical shape measures can provide a more comprehensive picture of brain cortical and 

subcortical development from childhood to early adulthood, and thus may generate insights into 

the relationship between brain maturation and cognitive development. 

   

The main purposes of this study were to investigate (1) whether there are common and distinct 

covariation patterns across a set of the aforementioned six brain cortical shape measures along 

with subcortical GM volume, and (2) whether those common and distinct covariation patterns 

can accurately predict age using ridge regression (Hoerl and Kennard, 1970). Due to the impact 

of sex on brain structural differences and the relationships between cognitive function and brain 

structure (Erus et al., 2015; Kaczkurkin et al., 2019; Ruigrok et al., 2014; Schmithorst, 2009), we 

also assessed whether those JIVE components could predict sex and full scale intelligence 

quotient (FSIQ). To determine whether this approach is generalizable, we validated both our 

JIVE analysis and age prediction results in an independent dataset. Importantly, this replication 

involved the application of the JIVE components and prediction models derived in one sample 

(i.e., CMI Healthy Brain Network) to an independent sample that employed distinct imaging 

protocols and recruitment strategies. 

 

 

2. Materials and methods  
2.1 Datasets 
Detailed descriptions about the participants and neuroimaging data used in the study are 

outlined below. All brain features used in this study were extracted from T1-weighted 

(MPRAGE) scans.  
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2.1.1 Training data: The Healthy Brain Network cohort 
To characterize covariations common across and/or distinct within different structural shape 

measures, we used T1-weighted MRI scans from the Healthy Brain Network (HBN) project 

(Alexander et al., 2017). The HBN is an ongoing initiative focused on creating and sharing a 

biobank comprised of data from up to 10,000 New York City area children and adolescents 

(https://healthybrainnetwork.org/). A self-referred community sampling strategy is used, with 

more than 80% of children being identified with one or more mental health or learning disorders. 

Our analyses were based on N = 869 individuals (530 male, 339 female, mean age = 10.54 ± 

3.26, age range: 5.02 – 17.95 years; mean FSIQ: 98.81 ± 16.42; FSIQ range: 50 - 147) 

collected from three imaging sites used by the HBN. Structural MRIs were acquired at either 

1.5T (mobile MRI Scanner in Staten Island, N=630) or 3T (Siemens Tim Trio at Rutgers 

University, N=11; Siemens Prisma at Cornell Weill Medical College, N=228) using standard T1-

weighted sequences. Participants with serious neurological disorders (e.g., Huntington’s 

disease, amyotrophic lateral sclerosis, multiple sclerosis, cerebral palsy), acute brain 

dysfunction, diagnosis of schizophrenia, schizoaffective disorder, bipolar disorder, manic or 

psychotic episode within the past six months, or history of lifetime substance dependence 

requiring chemical replacement therapy were excluded from the study. 

 

2.1.2 Independent validation data: the NKI-RS longitudinal sample  
T1-weighted MRI scans from the Nathan Kline Institute - Rockland Sample (NKI-RS) (Nooner et 

al., 2012) child longitudinal study (http://rocklandsample.org/child-longitudinal-study) were used 

as our independent validation data. The child longitudinal study is an ongoing project aimed to 

generate and share a large-scale, community-ascertained longitudinal sample for understanding 

comprehensive growth curves of brain function and structure. Per study protocol, T1-weighted 

MPRAGE scans (TR = 1900; voxel size = 1mm isotropic) are collected for each participant at up 

to three time points. We had access to the baseline data of N = 210 participants (122 male, 88 

female, mean age = 12.31 ± 3.06, age range: 6.68 – 17.94 years; mean FSIQ: 105.00 ± 13.49; 

FSIQ range: 77 - 142). Recruitment of study participants was designed to maximize community 

representativeness. Among those with the baseline data, 120 subjects had retest imaging data 

obtained 3~4 weeks later, and 77 subjects had longitudinal follow-up scans (mean inter-scan 

interval 1.22 ± 0.29, range 0.31 – 1.92 years).    

 
2.2 Brain feature extraction and morphometry 
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2.2.1 MRI preprocessing  
MRI preprocessing entailed two complementary processes: standard MRI preprocessing by the 

FreeSurfer (Dale et al., 1999) software package (https://surfer.nmr.mgh.harvard.edu) with 

subsequent feature extraction and shape analysis by the Mindboggle software package (Klein et 

al., 2017) (https://mindboggle.info). Briefly, FreeSurfer’s recon-all pipeline (v.5.3.0) performed 

motion correction, intensity normalization, skull stripping, subcortical segmentation, tissue 

classification, and surface extraction. Preprocessing quality was assessed by a number of 

standard quality control measurements (Shehzad et al., 2015). MRI data failing quality control 

analyses were removed from further analysis. The preprocessed T1-weighted MRI data were 

then imported into Mindboggle to extract shape measures for further analysis. The technical 

details of Mindboggle have been described elsewhere (Klein et al., 2017). Mindboggle has been 

shown to improve brain region labeling and provides a variety of precise brain shape estimates.  

 

2.2.2 Brain shape measures  
We aimed to characterize covariations among different shape measures for cortical surface and 

subcortical regions. We focused on six measures, including cortical mean curvature, white 

matter volume, cortical thickness, surface area, gray matter volume, and travel depth for 62 

regions of interest (ROIs) (31 ROIs per hemisphere) per the Desikan–Killiany–Tourville (DKT) 

protocol (Klein and Tourville, 2012). For a given ROI, we used the median shape value across 

all vertices in that ROI. Additionally, we included gray matter volume estimates for 16 

subcortical ROIs. Thus, the shape measures in this study can be regarded as data from seven 

different sources.  

 
2.3 Data analysis 
2.3.1 Dimension reduction by Joint and Independent Variance Explained (JIVE) 
Investigating each brain shape individually might fail to identify important interrelationships 

among different shape measures. We hypothesized the existence of hidden covariation patterns 

shared across and/or specific to individual shape measures. We therefore used JIVE (Lock et 

al., 2013) to identify such hidden patterns that might be of biological interest. JIVE extends 

Principal Component Analysis to data from multiple sources (e.g., different shape measures) 

and was developed primarily for discovering shared covariation patterns (i.e., joint components) 

in different sets of measures, as well as systematic variations (i.e., individual components) 

specific to an individual data source. Specifically, we denote each shape measure by 

𝑋1, 𝑋2, … , 𝑋7, where 𝑋$, 𝑖 = 1, . . ,7 is a matrix with each row representing a shape measure for a 
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single ROI and each column representing a participant. Since different shape measures have 

different biological implications and they are at different scales, we regard those as data from 

different sources. Following Lock et al. (Lock et al., 2013), JIVE decomposes total variation in 

data into three major parts (joint components, individual components, and error terms):     

𝑋1 = 𝐽1𝑆 + 𝐴1𝑆1 + 𝜀1		

𝑋2 = 𝐽2𝑆 + 𝐴2𝑆2 + 𝜀2	

		⋮		

𝑋7 = 𝐽7𝑆 + 𝐴7𝑆7 + 𝜀7		

where 𝑆:	𝑟 × 𝑛 and 𝐽566 = 7𝐽18, 𝐽28, … , 𝐽789:	𝑝 × 𝑟 are the joint component scores and loading 

matrices that capture variations common across seven different shape measures; 𝑆$: 	𝑟$ × 𝑛 and 

𝐴$: 	𝑝$ × 	𝑟$ are the individual component scores and loadings suggesting variation specific to 

individual shape measures; and 𝜀$:	𝑝$ × 𝑛	are error terms. Here 𝑛 is the sample size, 𝑝 = ∑ 𝑝$7
$<1 , 

and 𝑝$ indicates the total number of ROIs assigned to each shape measure. For a given number 

of joint components 𝑟 and individual components	𝑟$, the component loadings are obtained by 

minimizing the overall sum of squared errors ∑ ‖𝜀$‖>?7
$<1 , where ‖. ‖>2  defines the Frobenius 

norm. The optimal number of joint components 𝑟 and the number of individual components	𝑟$𝑠 in 

this study were determined by a permutation test (Lock et al., 2013) with the significance level 

set to 0.0001 with 1,000 permutations. All procedures were implemented using the R package 

‘r.jive’.  

 

2.3.2 Age, sex and IQ prediction by ridge regression 
We used ridge regression models (Hoerl and Kennard, 1970) to assess whether the joint and/or 

individual components are predictive of age, sex, or FSIQ. Specifically, using JIVE joint and/or 

individual components as input data, ridge regression models were used to predict 

chronological age and FSIQ, while ridge logistic regression models were used to predict sex. As 

a control, we also considered the predictive power of total volumes of subcortical gray matter, 

intracranium, brain stem, and CSF, which are known to be related to age and sex. Therefore, 

the input predictors took seven different formats: total volumes only, joint components only, 

individual components only, total volumes + joint components, total volumes + individual 

components, joint components + individual components, and total volumes + joint components 

+ individual components.   
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Briefly, ridge regression models are linear models with ridge penalty which has been shown to 

offer good prediction performance with high dimensional correlated input data. In mathematic 

format, given a continuous response variable 𝑦$, and a set of predictors 𝑍$C, ridge regression 

estimates the parameters 𝛽C𝑠 by minimizing ∑ E𝑦$ − ∑ 𝛽C𝑍$CC G?H
$<I + 𝜆 ∑ 𝛽C?C . The tuning 

parameter 𝜆 controls the model’s complexity. If 𝜆 = 0, ridge regression becomes a traditional 

linear regression model. The optimal choice of the 𝜆 parameter in this study was based on 10-

fold cross validation. 

 

2.3.3 Assessment of prediction accuracy 
Age and FSIQ prediction accuracy were assessed using two criteria: Mean Absolute Error 

(MAE) and the coefficient of determination (R2), where R2 is the proportion of the variance in the 

dependent variable explained by the model. To determine whether adding additional predictors 

would improve model prediction accuracy, we report the adjusted R2 (i.e., R2 adjusted for the 

number of predictors in the model) for the training model based on HBN data. Sex prediction 

accuracy was assessed using area under receiver operating characteristic curve (AUC). To 

demonstrate how the models generalize to data from another study, we predicted age, FSIQ, 

and sex in the NKI-RS with models trained on HBN data. We report model prediction accuracy 

assessments from both HBN and NKI-RS data.  

 

3. Results 
 
3.1 Variance decompositions of shape measures across brain regions  
JIVE analysis of 388 brain features (6 cortical shape measures for each of 62 ROIs plus 16 

subcortical GM volumes) from the HBN data resulted in a total of 35 lower dimensional 

representations of brain features (i.e., components). These included 2 joint components, 7, 4, 6, 

5, 6, 2, and 3 individual components specific to mean curvature, WM volume, cortical thickness, 

surface area, GM volume, travel depth, and subcortical GM volumes, respectively. Figure 1 

shows the amount of shared and individual variations among the seven shape measures. 

Overall, joint components were responsible for more variation in cortical WM volume (48.3%), 

GM volume (52.1%), surface area (45.2%), and subcortical GM volume (41.6%) than in cortical 

thickness (31.7%), travel depth (15.1%), and mean curvature (11.2%). Covariation between 

cortical GM volume and surface area are expected as GM volume roughly equals the product of 

surface area and cortical thickness. In addition, each shape measure has a certain amount of 

structured variation (ranging from 9.8% to 33.0%) that is unrelated to other shape measures. It 
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should also be noted that we found considerable residual noise in travel depth (67.2%), mean 

curvature (56.4%), cortical thickness (47.6%), and surface area (42.3%).  
 

Of particular interest, we showed that the identified JIVE components were reproducible in an 

independent dataset. Figure 2 shows the pairwise correlation coefficients between the 

component loadings from HBN data and those from NKI-RS. The correlation coefficient 

represents the maximal correlation between an HBN component and its corresponding NKI-RS 

component. Among the 35 JIVE components, 20 (57.1%) components had correlation 

coefficients of at least 0.5 between HBN and NKI-RS loadings, and 27 (77.1%) had coefficients 

of 0.3 or higher. Remarkably, the two joint components along with two travel depth components 

(individual components specific to travel depth) had correlation coefficients of at least 0.95. 

Additionally, single individual components specific to WM volume (r=0.92), subcortical 

component (r=0.87), mean curvature (r=0.86), cortical thickness (r=0.85), surface area (r=0.78) 

and gray matter volume (r=0.78), respectively, had correlation coefficients above 0.8 or just 

below (0.78). Thus, a total of 10 JIVE components replicated well in the NKI-RS dataset. It 

should be noted that most of the individual components specific to cortical GM volume, cortical 

thickness, and surface area were less consistent between samples, as evidenced by their 

relatively weak correlations (r < 0.5) in loadings between HBN and NKI-RS components.  

 

To assess whether the 10 components that replicated in the NKI-RS dataset were related to 

age, sex, and FSIQ, we employed a linear regression model with each component as the only 

regressor to predict age, sex, and FSIQ, respectively, using the HBN data (Table 1). We found 

that half of the reproducible components were related to age, FSIQ, and/or sex. Specifically, 

joint component 2 and components specific to cortical thickness, subcortical GM volume, and 

mean curvature explained 29%, 18%, 8%, and 3% of total variation in age, respectively, while 

joint component 1 by itself explained 6% of total variation in FSIQ and predicted sex with good 

accuracy (AUC=0.79). These results were validated in the NKI-RS cross-sectional sample.   

 

3.2 Brain regions with large loadings in highly reproducible components  
To identify what shape measures in which regions could show similar variation patterns across 

all samples, we examined brain regions and their corresponding shape measures with loading 

magnitudes greater than 0.1 in the identified components. There are 388 loading estimates in 

each joint component representing covariation on all seven shape measures across various 

brain regions. Individual components related to shape measure for cortical and subcortical 
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regions had 62 and 16 loading estimates, respectively. Here, we focused on the two joint 

components and the component specific to cortical thickness due to their relevance to age, 

FSIQ, and sex prediction. 

 

A small number of loadings had large magnitudes (defined as loading magnitude greater than 

0.1) in both joint component 1 (24 out of 388 loadings, 6.2%) and joint component 2 (27 out of 

388 loadings, 7.0%). Specifically, both joint components had large loadings on left and right 

thalamus proper, ventral diencephalon, and superior frontal WM volumes. Shape measures in 

those regions predicted age (Radj
2 ranging from 4% to 16%), sex (AUC around 0.70), and FSIQ 

(Radj
2 ranging from 1% to 3%). Since joint component 1 was largely related to sex and FSIQ 

while joint component 2 was mostly related to age, brain shape measures with large loadings in 

both joint components are expected to be related to age, FSIQ, and sex. Regions with large 

loadings on joint component 1 only (Table 2) were mainly cortical GM volume, surface area, and 

WM volume in left and right rostral middle frontal and superior frontal, along with GM volume in 

subcortical regions (caudate, putamen, and hippocampus). Shape measures in those regions 

individually explained up to 5% of total variation in FSIQ and predicted sex with AUC ranging 

from 0.6 to 0.74. In contrast, regions with large loadings on joint component 2 only (Table 3) 

were mostly cortical thickness in the following regions: middle temporal, supramarginal, superior 

frontal, pars orbitalis, inferior and superior parietal in both hemispheres, left transverse 

temporal, right lateral orbitofrontal, right rostral anterior cingulate, right precuneus, and right 

superior temporal. Each shape measure in those regions predicted age (Radj
2 ranging from 3% 

to 20%).  Table 4 summarizes regions with large loadings in the component specific to cortical 

thickness that by itself explained 18% variation in age. It should be noted that cortical thickness 

in left and right rostral and caudal anterior cingulate individually explained a decent amount of 

variation in age (Radj
2 ranging from 5% to 15%).  

 

Our results (Tables 5 – 7) revealed that among all 388 shape measures, those that individually 

explained at least 10% of variation in age were mainly cortical thickness; those that individually 

explained at least 4% of variation in FSIQ were either gray matter volume or cortical surface 

area; and those predicted sex with AUC above 0.70 were a mix of white matter volume, gray 

matter volume, and surface area.  

 

3.3. Predicting age, sex, and FSIQ 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/570333doi: bioRxiv preprint 

https://doi.org/10.1101/570333
http://creativecommons.org/licenses/by/4.0/


11 
 

Next, we aimed to determine the optimal multi-feature prediction models for age, sex and FSIQ. 

Analyses showed that the 35 joint and individual components which we had identified in HBN 

data could accurately predict age. Table 8 summarizes model prediction accuracy measures 

from all seven sets of input predictors. The model with total volumes and joint and individual 

components gave the best prediction accuracy in term of age (MAE=1.41 years, Radj
2=0.71) 

using the model trained by the HBN data and making prediction in the independent NKI-RS 

cross-sectional dataset. Prediction accuracy of the same model predicting the HBN data was 

nearly identical (MAE=1.42 years, Radj
2=0.70). We note that the joint components and the 

individual components each made unique contributions in predicting age. Thus, while the joint 

and independent components together explained 67% of total variation in age, models with the 

joint components only and with the individual components only explained 31% and 35% of total 

variation in age, respectively. Although the model with total volumes as the only predictors 

explained 34% of variation in age, total volumes explained only 3% of variation in age after 

controlling for the joint and individual components in the model. 

 

The model with the best prediction accuracy for sex (AUC=0.85) and FSIQ (MAE=12.85 points, 

Radj
2=0.10) in the HBN data was the one with joint and individual components plus total 

volumes, and the results were validated in the independent NKI-RS data for both sex 

(AUC=0.84) and FSIQ (MAE=11.70, R2=0.08). Similar to age prediction, the joint components 

and the individual components made separate contributions in predicting FSIQ. Interestingly, we 

observed that the age prediction residuals, defined as chronological age - predicted age, were 

negatively associated with FSIQ (𝑟 =	−0.11, p-value < 0.001).  

 

3.4. Validation by test-retest and longitudinal data 
 
Our model has excellent test-retest reliability. The joint and individual component scores based 

on the JIVE analysis of the HBN data were calculated for both test and retest data. The 

predicted brain age and FSIQ were obtained for both test and retest subjects using the 

prediction models from ridge regression analysis of the HBN data. The intraclass correlation 

coefficient for measuring agreement of the predicted values between test and retest subjects 

was 0.97 for age and 0.96 for FSIQ.  

 

Finally, for the longitudinal data available in NKI-RS, we noted that the longitudinal interval 

between scans was somewhat variable (mean = 1.22 year later ± 0.29). As such, we took the 
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opportunity to test the ability to detect differences in this interval across subjects. We found that 

the median and median absolute deviation of absolute differences between the real age 

difference and the predicted age difference were 0.53 and 0.47 years, respectively. A significant 

positive correlation (𝑟 = 	0.24, p-value =0.04) was observed between the real age difference and 

the predicted age difference.  

 

4. Discussion 
 
4.1 Integrative analysis of disparate data types  
A major challenge in the analysis of brain imaging studies is the integration of disparate data 

types, given the substantial covariation across different shape measures as well as within each 

shape measure. If such covariation in brain measurements cannot be effectively summarized 

into a lower dimensional representation of brain structure, then no satisfactory performance can 

be produced by existing statistical models (Bzdok and Yeo, 2017). This highlights the 

importance of dimension reduction in analysis of neuroimaging data (Cunningham and Yu, 

2014; Zhao and Castellanos, 2016).  

 

Motivated by this, we have extended a novel dimension reduction method, JIVE (Lock et al., 

2013), initially developed for integrative analysis of different genetic data types, to brain imaging 

data analysis. We selected JIVE for two main reasons: simultaneous detection of covariation 

among different data types, and its ability to extract interpretable brain features. To our 

knowledge, no prior work has attempted to systematically study covariation patterns and 

changes on such a comprehensive set of brain structure measures across early developmental 

ages. Extracting interpretable brain features is particularly important in brain imaging studies 

where imaging confounds or artifacts, such as scanner differences, can easily dominate the 

results. JIVE is an extension of Principal Component Analysis for extracting linear features (i.e., 

components) within data. Therefore, it has the advantage of mapping each component back to 

the original variables and thus making interpretation possible. Our study shows that JIVE can 

effectively identify meaningful and highly reproducible common and distinct variations across a 

number of brain cortical and subcortical structural measures that predict age, sex, and FSIQ.  

 

4.2 Highly reproducible common and distinct variations in brain shape measures 
Prior research on identifying structural covariation has been primarily focused on either a single 

structural measure (Mechelli et al., 2005), or on analyzing different structural measures 
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separately (Remer et al., 2017; Wierenga et al., 2014). Individual analyses might fail to capture 

the critical associations between different structural measures (Lock et al., 2013). In this study, 

we explored simultaneously the covariation patterns across a range of structural measures and 

all brain regions examined. We demonstrated covariation patterns that exist across different 

brain cortical and subcortical structure measures in various brain regions, as well as those that 

are specific to individual brain shape measures. Joint covariation patterns common to all shape 

measures and a subset of individual covariation patterns specific to travel depth, subcortical 

gray matter volume, mean curvature, and cortical thickness were remarkably consistent 

between HBN and NKI-RS datasets.  

 

A question of interest is whether the reproducible covariation patterns in the present 

investigation are of biological interest. Interpreting the extracted covariation patterns was 

challenging and not straight-forward. We may not be able to specify the functionality of each 

identified covariation pattern, which is partly due to the functionality of different brain cortical and 

subcortical regions not yet being fully characterized (Mechelli et al., 2005.) As a starting point, 

we focused on their relevance to age, sex, and FSIQ prediction. We found that joint component 

2 by itself explained 29% of total variation in age and that almost all its loadings with magnitude 

greater than 0.1 were cortical thickness measures mainly from frontal and temporal lobes. The 

component specific to cortical thickness by itself explained 18% of total variation in age. In 

addition, most of the shape measures in individual brain regions that explained at least 10% of 

total variation in age were cortical thickness (Table 5). Taken together, these results highlight 

the importance of cortical thickness as a sensitive index of brain development (Dosenbach et 

al., 2010; Khundrakpam et al., 2015). In contrast, joint component 1 was not related to age, but 

predicted sex with AUC of 0.79 by itself. Joint component 1 confirmed that sex differences are 

most extreme in subcortical volumes (Ritchie et al., 2018). It also revealed sex differences in 

three shape measures (white matter volume, gray matter volume, and surface area) in superior 

frontal and rostral middle frontal regions – two primary dorsolateral prefrontal cortex (dlPFC) 

regions. Lastly, joint component 1 explained about 6% of total variation in FSIQ. We observed 

that FSIQ correlated mostly with shape measures in the dlPFC regions and thalamus proper. 

Covariation between dlPFC regions and thalamus proper is consistent with the thalamus as a 

key subcortical relay underlying executive functions, in line with findings from a tractography 

study (Le Reste et al., 2016). Therefore, although the neurobiological properties for the cortical 

and subcortical covariation patterns we identified remain to be fully dissected, these 
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covariations can serve as a starting point for characterizing patterns related to brain maturation 

and cognitive development. 

 

The covariation patterns specific to GM volume, cortical thickness, and mean curvature were in 

general less consistent between HBN and NKI-RS datasets (Figure 2). One possible 

explanation is that developmental trajectories of those measures change across different stages 

of life and their covariation patterns might be heterogeneous and nonlinear. For example, 

various studies have shown that cortical thickness exhibits an inverted-U trajectory from 

childhood to adulthood, GM declines in a regionally heterogeneous pattern, and mean curvature 

follows a combination of linear, quadratic, and logarithmic trajectories (Brain Development 

Cooperative, 2012; Giedd et al., 1999; Remer et al., 2017; Shaw et al., 2008; Tamnes et al., 

2017; Wierenga et al., 2014). Therefore, JIVE, a method mainly used to identify linear 

covariation patterns, might fail to recognize nonlinear covariation patterns among shape 

measures. Furthermore, distinct genetic influences on surface area and thickness (Chen et al., 

2013; Panizzon et al., 2009) and different evolutionary processes (Geschwind and Rakic, 2013; 

Stiles and Jernigan, 2010) may introduce complex individual variability, making it difficult to 

characterize the covariation patterns of those shape measures. 

 
4.3 Age, sex and FSIQ prediction  
One of the aims of the current study was to test whether common structural covariations and 

those which are specific within each shape measure can predict biological factors such as age, 

sex, and FSIQ. Ridge regression models with the identified brain covariation patterns as 

predictors accurately predicted age. The model with JIVE joint and individual components along 

with total volumes produced a mean absolute age prediction error of 1.41 years and explained 

71% of total variation in age, making it one of the best age prediction models in the recent 

literature (Brown et al., 2012; Erus et al., 2015; Franke et al., 2012; Khundrakpam et al., 2015; 

Lewis et al., 2018). We also found that the JIVE joint and individual components together 

predicted sex with high accuracy (AUC=0.85) and explained 10% of total variation in FSIQ, 

achieving better prediction results than a recent study using T1 white/gray contrast to predict 

FSIQ (Lewis et al., 2018). To test the validity of the model’s predictive performance, we applied 

it to an independent dataset (NKI-RS) and the results showed that the model generalized to the 

new dataset, has excellent test-retest reliability, and was able to capture longitudinal changes.   
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Finally, there is a growing interest in relating individual differences in brain maturation to 

cognition (Burgaleta et al., 2014; Erus et al., 2015; Lewis et al., 2018; Shaw et al., 2006). For 

example, (Erus et al., 2015) and (Lewis et al., 2018) both used a residual-based approach to 

investigate the relationship between brain development and cognition, where brain development 

was approximated by the age prediction residuals. Both studies showed a significant 

relationship between brain development and cognition, but the direction of this relationship was 

opposite in the two studies. Interestingly, we also found a significant negative correlation 

between the age prediction residuals and FSIQ, indicating that individuals with brain-based age 

younger than their chronological age had lower FSIQ. This aligns well with the finding of Erus et 

al. (Erus et al., 2015), although they assessed cognitive test performance in several domains 

rather than FSIQ. Nevertheless, we note that prediction residuals explained only 1.3% of total 

variation in FSIQ, so the statistically significant association between age prediction residuals 

and FSIQ we observed are not yet clinically important. In addition, interpretation of these 

associations should be made with caution, as conditions such as diabetes, schizophrenia, and 

traumatic brain injury have been linked to faster brain aging (Cole et al., 2015; Franke et al., 

2013). Still, the directionality of our finding has face validity and it warrants further investigation.   

 

4.4. Reproducibility 
An important aspect of the present work is the high bar employed for examining reproducibility. 

The JIVE components and prediction models were estimated using a sample that was entirely 

distinct from that used for testing. This is in contrast to combining the samples and using a less 

stringent cross-validation strategy or developing unique estimates for each sample. The two 

samples differed with respect to recruitment strategy, study design, the scanners and imaging 

protocols used; similarities included the principal investigator. We believe future work would 

merit from raising the bar for reproducibility to such standards as large-scale samples emerge. 

 

4.5 Limitations 
Studies have reported that cortical structure development is characterized in general by a mix of 

linear, curvilinear, and quadratic trajectories with region-specific developmental variations 

(Remer et al., 2017; Tamnes et al., 2017; Wierenga et al., 2014). However, JIVE is limited to 

detecting linear covariation patterns. Therefore, we were not able to detect nonlinear covariation 

patterns that may be common and distinct across cortical shape measures.  
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A second limitation is the cross-sectional nature of most of the data we examined. Covariation 

patterns captured by JIVE analysis do not account for within-participant variation. Brain 

structure changes dynamically throughout the lifespan and the rate of change varies by brain 

structure measures and brain regions (Storsve et al., 2014). Future explorations should include 

applying this analytical framework to longitudinal studies, evaluating how changes in various 

brain structure measures covary and whether the covariation patterns are related to 

developmental behaviors. 

 

Third, there are concerns about the representativeness of the datasets employed. While the 

NKI-RS is a community-ascertained sample, with 42.4% having mental health disorders, the 

HBN is a self-referred community sample, with 81.5% of individuals having one or more mental 

health or learning diagnoses. Given the relatively large difference in effect sizes observed 

between age effects and those of psychiatric disorders, it is not surprising that performance was 

high despite the phenotypic variation in the HBN samples. Nonetheless, the heterogeneity may 

have hindered our ability to optimally detect small effects, such as IQ. As large-scale, 

representative samples such as NIH ABCD emerge, we expect that there will be opportunities to 

develop more optimized, representative models.   

 

Lastly, the brain parcellation map used in this study was based on the Desikan–Killiany–

Tourville labeling protocol (Klein and Tourville, 2012) which consists of 62 regions. 

Khundrakpam et al. (Khundrakpam et al., 2015) reported that the spatial scale of brain 

parcellation increases the accuracy of age prediction by cortical thickness, with the best 

estimations obtained for spatial resolutions consisting of 2,560 and 10,240 brain parcels. It is 

likely that JIVE analysis based on data from brain labels at finer resolutions such as HCP-MMP 

(Glasser et al., 2016) might improve the model prediction accuracy and produce structural 

covariation patterns with increased biological interpretability. 

 

In summary, we used JIVE to identify the consistent covariation patterns common across as 

well as specific to different cortical and subcortical shape measures. These covariation patterns 

can accurately predict age and sex, and they also provide better prediction for FSIQ than the 

existing literature, while retaining neurobiological interpretability. Most importantly, we validated 

our results in an independent dataset, suggesting the generalizability of our approach in brain 

imaging studies.  
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Table 1: Predicting age, sex, and FSIQ by individual reproducible component 
 

Component 
HBN NKI-RS 

Age FSIQ Sex Age FSIQ Sex 
MAE Radj

2 MAE Radj
2 AUC MAE Radj

2 MAE Radj
2 AUC 

Joint           
Comp 1 2.70 0.01 12.60 0.06 0.79 2.87 0.00 11.69 0.05 0.80 
Comp 2 2.27 0.29 13.16 0.01 0.50 3.18 0.28 11.52 0.01 0.62 

Specific to travel depth           
Comp 1 2.70 0.01 13.18 0.00 0.52 2.87 0.01 11.83 0.01 0.53 
Comp 2 2.71 0.00 13.06 0.01 0.53 2.85 0.00 11.77 0.04 0.50 

Specific to           
White matter volume 2.68 0.02 13.15 0.00 0.53 2.91 0.00 11.78 0.03 0.59 

Cortical thickness 2.43 0.18 13.17 0.00 0.55 2.70 0.24 11.81 0.00 0.55 
Gray matter volume 2.70 0.01 13.17 0.00 0.51 2.79 0.04 11.89 0.01 0.54 

Mean curvature 2.67 0.03 13.14 0.00 0.51 2.88 0.03 11.86 0.01 0.54 
Surface area 2.70 0.01 13.15 0.00 0.50 2.83 0.02 11.88 0.00 0.51 

Subcortical gray matter volume 2.59 0.08 13.15 0.00 0.52 2.51 0.08 12.37 0.01 0.50 
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Table 2: Brain regions with loading magnitudes greater than 0.1 in joint component 1. 
 

Shape ROI Hemi 
Loadings 

HBN NKI-RS 
Age FSIQ Sex Age FSIQ Sex 

Comp1 Comp2 MAE Radj2 MAE Radj2 AUC MAE Radj2 MAE Radj2 AUC 
SC Vol ventral diencephalon R 0.10 -0.11 2.47 0.16 13.12 0.01 0.70 2.61 0.13 11.69 0.04 0.68 
SC Vol ventral diencephalon L 0.10 -0.10 2.48 0.15 13.11 0.01 0.69 2.80 0.06 11.74 0.04 0.67 
gvol inferior parietal R 0.12 0.07 2.60 0.07 12.77 0.05 0.71 2.84 0.05 11.79 0.03 0.71 
gvol rostral middle frontal R 0.13 0.07 2.60 0.06 12.84 0.03 0.74 2.91 0.03 11.83 0.01 0.72 
gvol rostral middle frontal L 0.13 0.06 2.63 0.05 12.79 0.05 0.71 2.87 0.02 11.94 0.01 0.72 
SC Vol thalamus proper L 0.23 -0.11 2.65 0.05 12.94 0.03 0.70 2.54 0.10 11.09 0.04 0.72 
SC Vol thalamus proper R 0.21 -0.10 2.64 0.05 13.02 0.02 0.70 2.59 0.10 11.27 0.03 0.75 
wm superior frontal R 0.15 -0.10 2.65 0.05 13.05 0.02 0.70 2.75 0.05 11.78 0.01 0.68 
area inferior parietal R 0.12 0.01 2.65 0.04 12.78 0.05 0.71 2.80 0.03 12.10 0.03 0.72 
wm superior frontal L 0.15 -0.11 2.67 0.04 13.09 0.01 0.70 2.75 0.06 11.78 0.00 0.71 
travel transverse temporal L 0.10 0.08 2.67 0.03 13.15 0.01 0.67 2.90 0.00 11.76 0.01 0.64 
SC Vol hippocampus R 0.10 -0.02 2.68 0.02 13.14 0.00 0.70 2.68 0.04 11.61 0.00 0.71 
gvol superior frontal L 0.15 0.09 2.69 0.02 12.89 0.03 0.70 2.89 0.02 11.64 0.01 0.65 
area superior frontal L 0.14 0.00 2.69 0.02 12.88 0.03 0.71 2.86 0.01 11.87 0.01 0.68 
gvol superior frontal R 0.15 0.09 2.70 0.02 12.85 0.04 0.70 2.89 0.01 11.56 0.02 0.64 
area rostral middle frontal R 0.14 0.03 2.69 0.01 12.87 0.03 0.73 2.87 0.00 11.92 0.01 0.75 
area rostral middle frontal L 0.14 0.02 2.69 0.01 12.81 0.05 0.71 2.86 0.00 11.97 0.02 0.75 
wm rostral middle frontal L 0.12 -0.07 2.71 0.01 13.03 0.02 0.73 2.81 0.05 11.85 0.01 0.77 
area superior frontal R 0.15 0.00 2.71 0.01 12.84 0.03 0.72 2.85 0.01 11.77 0.03 0.66 
SC Vol putamen L 0.12 -0.07 2.71 0.01 13.03 0.03 0.69 2.87 0.01 12.21 0.01 0.69 
wm rostral middle frontal R 0.12 -0.06 2.72 0.00 13.04 0.01 0.73 2.83 0.02 11.87 0.00 0.75 
SC Vol putamen R 0.13 -0.04 2.71 0.00 13.05 0.02 0.71 2.85 0.01 11.93 0.01 0.71 
SC Vol caudate L 0.11 -0.02 2.72 0.00 12.98 0.03 0.61 2.87 0.00 12.20 0.01 0.69 
SC Vol caudate R 0.11 -0.02 2.71 0.00 13.00 0.03 0.60 2.85 0.00 12.52 0.00 0.69 

 
* SC Vol: Subcortical Gray Matter Volume; gvol: Gray Matter Volume; area: surface area; wm: white matter volume; travel: Travel Depth; Hemi: 
Hemisphere; L: Left; R: Right 
* Radj

2 is the adjusted percentage of variation in Age or FSIQ explained by a linear model with the corresponding brain shape measure as the only 
predictor using HBN as training and NKI-RS as testing data. MAE is the mean absolute error of prediction, and AUC is the area under the ROC 
curve.  
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Table 3 Version 2: Brain regions with loading magnitudes greater than 0.1 in joint component 2. 
 

Shape ROI Hemi 
Loadings 

HBN NKI-RS 
Age FSIQ Sex Age FSIQ Sex 

Comp1 Comp2 MAE Radj2 MAE Radj2 AUC MAE Radj2 MAE Radj2 AUC 
thick precuneus R 0.01 0.10 2.41 0.20 13.17 0.00 0.53 2.94 0.25 11.71 0.01 0.57 
SC Vol ventral diencephalon R 0.10 -0.11 2.47 0.16 13.12 0.01 0.70 2.61 0.13 11.69 0.04 0.68 
thick lateral orbitofrontal R 0.00 0.10 2.48 0.15 13.18 0.00 0.49 3.24 0.11 11.70 0.00 0.59 
SC Vol ventral diencephalon L 0.10 -0.10 2.48 0.15 13.11 0.01 0.69 2.80 0.06 11.74 0.04 0.67 
thick rostral anterior cingulate R -0.02 0.10 2.48 0.15 13.17 0.00 0.52 3.02 0.22 11.94 0.00 0.58 
gvol superior parietal R 0.09 0.10 2.54 0.11 12.69 0.06 0.64 2.82 0.06 11.57 0.05 0.64 
gvol superior parietal L 0.09 0.11 2.56 0.11 12.81 0.05 0.66 2.80 0.08 11.51 0.05 0.62 
thick inferior parietal R 0.00 0.11 2.55 0.10 13.17 0.00 0.51 3.04 0.08 11.70 0.01 0.58 
wm precentral L 0.08 -0.10 2.55 0.10 13.10 0.01 0.66 2.57 0.15 11.68 0.01 0.69 
thick superior parietal R 0.01 0.10 2.56 0.10 13.15 0.00 0.51 2.91 0.07 11.73 0.01 0.60 
wm precentral R 0.09 -0.10 2.56 0.10 13.15 0.00 0.66 2.60 0.13 11.79 0.00 0.71 
thick pars orbitalis L 0.00 0.11 2.58 0.10 13.17 0.00 0.50 3.01 0.11 11.74 0.01 0.59 
thick inferior parietal L 0.01 0.11 2.57 0.09 13.17 0.00 0.51 2.96 0.15 11.66 0.01 0.60 
thick pars orbitalis R -0.01 0.10 2.59 0.09 13.17 0.00 0.52 3.11 0.09 11.88 0.00 0.58 
thick superior parietal L 0.01 0.10 2.60 0.09 13.14 0.00 0.51 2.93 0.08 11.72 0.01 0.61 
thick superior frontal R 0.00 0.11 2.64 0.06 13.18 0.00 0.53 3.04 0.03 11.81 0.00 0.62 
thick transverse temporal L 0.01 0.11 2.65 0.05 13.10 0.00 0.54 2.78 0.05 11.95 0.00 0.59 
SC Vol thalamus proper L 0.23 -0.11 2.65 0.05 12.94 0.03 0.70 2.54 0.10 11.09 0.04 0.72 
SC Vol thalamus proper R 0.21 -0.10 2.64 0.05 13.02 0.02 0.70 2.59 0.10 11.27 0.03 0.75 
wm superior frontal R 0.15 -0.10 2.65 0.05 13.05 0.02 0.70 2.75 0.05 11.78 0.01 0.68 
thick middle temporal R 0.01 0.10 2.64 0.05 13.16 0.00 0.52 3.03 0.05 11.64 0.00 0.56 
thick supramarginal L 0.00 0.11 2.65 0.04 13.18 0.00 0.52 2.94 0.05 11.78 0.01 0.60 
thick supramarginal R 0.00 0.11 2.65 0.04 13.18 0.00 0.53 2.95 0.02 11.80 0.00 0.58 
thick superior frontal L 0.00 0.11 2.68 0.04 13.17 0.00 0.53 2.96 0.05 11.85 0.00 0.62 
thick middle temporal L 0.01 0.10 2.66 0.04 13.15 0.00 0.52 3.02 0.06 11.60 0.00 0.54 
wm superior frontal L 0.15 -0.11 2.67 0.04 13.09 0.01 0.70 2.75 0.06 11.78 0.00 0.71 
thick superior temporal R 0.01 0.10 2.68 0.03 13.15 0.00 0.50 2.90 0.07 11.73 0.00 0.55 

 
* SC Vol: Subcortical Gray Matter Volume; gvol: Gray Matter Volume; WM: white matter volume; Thick: Cortical Thickness; Hemi: Hemisphere; ; L: 
Left; R: Right 
* Radj

2 is the adjusted percentage of variation in Age or FSIQ explained by a linear model with the corresponding brain shape measure as the only 
predictor using HBN as training and NKI-RS as testing data. MAE is the mean absolute error of prediction, and AUC is the area under the ROC 
curve.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/570333doi: bioRxiv preprint 

https://doi.org/10.1101/570333
http://creativecommons.org/licenses/by/4.0/


 
Table 4: Brain regions with loading magnitudes greater than 0.1 in component specific to cortical thickness. 
 

ROI Hemi Loadings 
HBN NKI-RS 

Age FSIQ Sex Age FSIQ Sex 
MAE Radj2 MAE Radj2 AUC MAE Radj2 MAE Radj2 AUC 

rostral anterior cingulate R 0.16 2.48 0.15 13.17 0.00 0.52 3.02 0.22 11.94 0.00 0.58 
rostral anterior cingulate L 0.14 2.52 0.13 13.17 0.00 0.52 2.88 0.30 11.90 0.00 0.65 
caudal anterior cingulate R 0.17 2.57 0.11 13.17 0.00 0.52 2.94 0.14 11.70 0.00 0.58 
inferior parietal L -0.10 2.57 0.09 13.17 0.00 0.51 2.96 0.15 11.66 0.01 0.60 
pars orbitalis R -0.11 2.59 0.09 13.17 0.00 0.52 3.11 0.09 11.88 0.00 0.58 
transverse temporal L -0.14 2.65 0.05 13.10 0.00 0.54 2.78 0.05 11.95 0.00 0.59 
caudal anterior cingulate L 0.15 2.66 0.05 13.18 0.00 0.51 2.84 0.19 11.78 0.00 0.55 
transverse temporal R -0.15 2.64 0.05 13.12 0.01 0.54 2.70 0.15 12.01 0.01 0.57 
supramarginal L -0.14 2.65 0.04 13.18 0.00 0.52 2.94 0.05 11.78 0.01 0.60 
supramarginal R -0.14 2.65 0.04 13.18 0.00 0.53 2.95 0.02 11.80 0.00 0.58 
superior frontal L -0.14 2.68 0.04 13.17 0.00 0.53 2.96 0.05 11.85 0.00 0.62 
middle temporal L -0.12 2.66 0.04 13.15 0.00 0.52 3.02 0.06 11.60 0.00 0.54 
superior temporal R -0.14 2.68 0.03 13.15 0.00 0.50 2.90 0.07 11.73 0.00 0.55 
precentral L -0.18 2.66 0.03 13.17 0.00 0.55 2.77 0.03 11.91 0.01 0.58 
postcentral R -0.13 2.67 0.03 13.12 0.01 0.55 2.90 0.00 11.86 0.00 0.58 
superior temporal L -0.18 2.70 0.02 13.17 0.00 0.51 2.92 0.01 11.81 0.00 0.56 
precentral R -0.16 2.68 0.02 13.18 0.00 0.55 2.80 0.02 11.78 0.02 0.56 
postcentral L -0.15 2.70 0.01 13.13 0.00 0.56 2.84 0.01 11.91 0.00 0.65 
entorhinal L -0.44 2.70 0.01 13.17 0.00 0.52 2.83 0.04 11.85 0.00 0.52 
entorhinal R -0.49 2.71 0.01 13.17 0.00 0.50 2.83 0.05 11.87 0.00 0.55 
caudal middle frontal R -0.11 2.72 0.00 13.16 0.00 0.55 2.88 0.01 11.94 0.02 0.58 
caudal middle frontal L -0.14 2.72 0.00 13.17 0.00 0.54 2.86 0.00 11.85 0.00 0.56 

 
*Hemi: Hemisphere ; L: Left; R: Right 
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Table 5 Brain regions predicting age  
 

Shape ROI Hemi 
HBN NKI-RS 

Age FSIQ Sex Age FSIQ Sex 
MAE Radj2 MAE Radj2 AUC MAE Radj2 MAE Radj2 AUC 

thick medial orbitofrontal R 2.29 0.26 13.19 0.00 0.52 2.76 0.22 11.86 0.01 0.39 
thick lingual R 2.34 0.24 13.09 0.01 0.55 2.35 0.15 12.47 0.00 0.55 
thick lingual L 2.40 0.22 13.06 0.01 0.55 2.31 0.16 12.63 0.00 0.54 
thick precuneus L 2.40 0.21 13.15 0.00 0.53 2.95 0.25 11.73 0.00 0.46 
thick precuneus R 2.41 0.20 13.17 0.00 0.53 2.94 0.25 11.71 0.01 0.43 
thick posterior cingulate R 2.39 0.20 13.18 0.00 0.53 3.09 0.20 11.79 0.00 0.40 
thick cuneus R 2.40 0.20 12.95 0.03 0.55 2.52 0.17 12.23 0.00 0.48 
thick cuneus L 2.44 0.19 13.06 0.02 0.56 2.44 0.18 12.38 0.00 0.50 
thick rostral middle frontal R 2.39 0.19 13.18 0.00 0.52 3.03 0.15 11.80 0.00 0.43 
thick medial orbitofrontal L 2.44 0.18 13.17 0.00 0.56 2.66 0.16 11.83 0.02 0.45 
thick posterior cingulate L 2.43 0.18 13.17 0.00 0.55 2.86 0.23 11.61 0.00 0.45 
thick pars triangularis R 2.48 0.16 13.18 0.00 0.53 3.00 0.22 11.78 0.00 0.44 
thick lateral orbitofrontal L 2.47 0.16 13.15 0.00 0.55 2.91 0.17 11.67 0.00 0.49 
SC Vol ventral diencephalon R 2.47 0.16 13.12 0.01 0.70 2.61 0.13 11.69 0.04 0.68 
thick insula L 2.46 0.16 13.18 0.00 0.53 3.16 0.13 11.67 0.01 0.43 
thick lateral orbitofrontal R 2.48 0.15 13.18 0.00 0.51 3.24 0.11 11.70 0.00 0.41 
thick rostral anterior cingulate R 2.48 0.15 13.17 0.00 0.52 3.02 0.22 11.94 0.00 0.58 
thick rostral middle frontal L 2.49 0.15 13.18 0.00 0.51 3.00 0.11 11.79 0.00 0.40 
thick isthmus cingulate R 2.49 0.14 13.16 0.00 0.52 3.04 0.12 11.72 0.00 0.45 
thick rostral anterior cingulate L 2.52 0.13 13.17 0.00 0.52 2.88 0.30 11.90 0.00 0.65 
mcurv medial orbitofrontal R 2.51 0.13 13.19 0.00 0.51 2.85 0.17 11.82 0.01 0.40 
thick isthmus cingulate L 2.53 0.12 13.18 0.00 0.51 2.99 0.14 11.79 0.00 0.47 
thick pars triangularis L 2.55 0.12 13.17 0.00 0.52 2.87 0.15 11.84 0.01 0.46 
mcurv paracentral L 2.54 0.11 13.15 0.00 0.51 2.78 0.15 11.81 0.00 0.41 
mcurv superior parietal R 2.52 0.11 13.17 0.00 0.50 2.90 0.10 11.77 0.00 0.54 
thick caudal anterior cingulate R 2.57 0.11 13.17 0.00 0.52 2.94 0.14 11.70 0.00 0.58 
mcurv rostral middle frontal R 2.53 0.10 13.19 0.00 0.54 2.97 0.11 11.77 0.00 0.46 
wm precentral L 2.55 0.10 13.10 0.01 0.66 2.57 0.15 11.68 0.01 0.69 
mcurv superiorparietal L 2.56 0.10 13.13 0.00 0.52 2.95 0.12 11.77 0.00 0.39 
thick paracentral L 2.57 0.10 13.13 0.01 0.52 2.86 0.22 11.54 0.00 0.58 
wm precentral R 2.56 0.10 13.15 0.00 0.66 2.60 0.13 11.79 0.00 0.71 
thick pars orbitalis L 2.58 0.10 13.17 0.00 0.50 3.01 0.11 11.74 0.01 0.41 
mcurv isthmus cingulate L 2.56 0.10 13.17 0.00 0.58 2.84 0.14 11.72 0.00 0.53 

 

* thick: Cortical Thickness; wm: white matter volume; SC Vol: Subcortical Gray Matter Volume; mcurv: mean curvature; Hemi: Hemisphere; L: Left; R: 
Right. Radj2 is the adjusted percentage of variation in Age or FSIQ explained by a linear model with the corresponding brain shape measure as the only 
predictor using HBN as training and NKI-RS as testing data. MAE is the mean absolute error of prediction, and AUC is the area under the ROC curve.  
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Table 6 Brain regions predicting FSIQ  
 

Shape ROI Hemi 
HBN NKI-RS 

Age FSIQ Sex Age FSIQ Sex 

MAE Radj2 MAE Radj2 AUC MAE Radj2 MAE Radj2 AUC 
gvol superior parietal R 2.54 0.11 12.69 0.06 0.64 2.82 0.06 11.57 0.05 0.64 
area superior parietal R 2.59 0.07 12.69 0.06 0.66 2.81 0.03 11.82 0.05 0.70 
gvol precuneus R 2.53 0.11 12.75 0.06 0.68 2.79 0.09 11.65 0.05 0.62 
gvol precuneus L 2.54 0.10 12.71 0.06 0.70 2.80 0.08 11.60 0.06 0.66 
gvol middle temporal R 2.69 0.02 12.69 0.05 0.71 2.90 0.00 11.52 0.05 0.71 
area precuneus L 2.63 0.04 12.75 0.05 0.69 2.81 0.02 11.90 0.05 0.67 
area precuneus R 2.60 0.06 12.82 0.05 0.69 2.78 0.04 12.00 0.04 0.63 
gvol superior parietal L 2.56 0.11 12.81 0.05 0.66 2.80 0.08 11.51 0.05 0.62 
gvol inferior parietal R 2.60 0.07 12.77 0.05 0.71 2.84 0.05 11.79 0.03 0.71 
area superior parietal L 2.60 0.06 12.81 0.05 0.67 2.79 0.03 11.66 0.06 0.65 
gvol postcentral R 2.60 0.07 12.77 0.05 0.64 2.90 0.03 11.37 0.04 0.61 
area inferior parietal R 2.65 0.04 12.78 0.05 0.71 2.80 0.03 12.10 0.03 0.72 
gvol inferior temporal R 2.71 0.00 12.78 0.04 0.69 2.87 0.00 11.70 0.03 0.75 
area superior temporal L 2.69 0.02 12.85 0.04 0.71 2.87 0.00 11.98 0.03 0.70 
area middle temporal R 2.71 0.00 12.82 0.04 0.71 2.87 0.00 11.73 0.05 0.71 
area postcentral R 2.61 0.06 12.82 0.04 0.69 2.88 0.03 11.42 0.04 0.64 
area precentral R 2.70 0.01 12.80 0.04 0.72 2.86 0.01 11.86 0.03 0.72 
gvol cuneus R 2.59 0.07 12.84 0.04 0.68 2.80 0.01 12.05 0.04 0.71 
gvol medial orbitofrontal R 2.58 0.08 12.78 0.04 0.68 2.90 0.02 11.85 0.03 0.67 
gvol lateral occipital L 2.65 0.04 12.83 0.04 0.72 2.89 0.00 11.50 0.04 0.71 
area lateral occipital R 2.69 0.02 12.88 0.04 0.74 2.91 0.01 11.49 0.07 0.75 
gvol middle temporal L 2.71 0.01 12.82 0.04 0.69 2.86 0.02 11.79 0.03 0.73 
gvol precentral R 2.71 0.00 12.85 0.04 0.68 2.87 0.00 11.51 0.05 0.68 
area lateral occipital L 2.69 0.02 12.84 0.04 0.72 2.87 0.00 11.48 0.05 0.74 
gvol fusiform L 2.69 0.01 12.82 0.04 0.70 2.92 0.00 11.45 0.05 0.73 
area inferior temporal R 2.71 0.00 12.88 0.04 0.68 2.83 0.02 11.75 0.03 0.74 
gvol lateral occipital R 2.67 0.03 12.89 0.04 0.73 2.93 0.00 11.41 0.06 0.73 

 
* gvol: Gray Matter Volume; area: surface area; Hemi: Hemisphere; L: Left; R: Right. Radj

2 is the adjusted percentage of variation in Age or FSIQ 
explained by a linear model with the corresponding brain shape measure as the only predictor using HBN as training and NKI-RS as testing data. 
MAE is the mean absolute error of prediction, and AUC is the area under the ROC curve.  
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Table 7 Brain regions predicting sex  
 

Shape ROI Hemi 
HBN NKI-RS 

Age FSIQ Sex Age FSIQ Sex 
MAE Radj2 MAE Radj2 AUC MAE Radj2 MAE Radj2 AUC 

gvol insula R 2.71 0.00 12.86 0.03 0.74 2.85 0.00 11.58 0.01 0.75 
area lateral occipital R 2.69 0.02 12.88 0.04 0.74 2.91 0.01 11.49 0.07 0.75 
gvol fusiform R 2.71 0.00 12.93 0.03 0.74 2.88 0.00 11.66 0.03 0.73 
gvol rostral middle frontal R 2.60 0.06 12.84 0.03 0.74 2.91 0.03 11.83 0.01 0.72 
wm rostral middle frontal R 2.72 0.00 13.04 0.01 0.73 2.83 0.02 11.87 0.00 0.75 
wm inferior temporal R 2.71 0.01 12.88 0.03 0.73 2.79 0.06 11.52 0.04 0.76 
area rostral middle frontal R 2.69 0.01 12.87 0.03 0.73 2.87 0.00 11.92 0.01 0.75 
gvol lateral occipital R 2.67 0.03 12.89 0.04 0.73 2.93 0.00 11.41 0.06 0.73 
area fusiform R 2.72 0.00 13.01 0.02 0.73 2.85 0.02 11.71 0.03 0.73 
wm rostral middle frontal L 2.71 0.01 13.03 0.02 0.73 2.81 0.05 11.85 0.01 0.77 
gvol insula L 2.71 0.00 12.86 0.04 0.73 2.91 0.00 11.52 0.01 0.70 
area precentral L 2.69 0.01 12.79 0.04 0.73 2.88 0.01 11.71 0.02 0.70 
wm superior temporal L 2.71 0.01 13.05 0.01 0.73 2.80 0.05 11.79 0.01 0.73 
area lateral occipital L 2.69 0.02 12.84 0.04 0.72 2.87 0.00 11.48 0.05 0.74 
wm supra marginal L 2.71 0.00 12.98 0.02 0.72 2.82 0.05 11.79 0.01 0.77 
area precentral R 2.70 0.01 12.80 0.04 0.72 2.86 0.01 11.86 0.03 0.72 
gvol lateral occipital L 2.65 0.04 12.83 0.04 0.72 2.89 0.00 11.50 0.04 0.71 
gvol rostral middle frontal L 2.63 0.05 12.79 0.05 0.71 2.87 0.02 11.94 0.01 0.72 
wm lateral occipital R 2.68 0.03 13.14 0.00 0.71 2.64 0.15 11.67 0.02 0.74 
wm precuneus L 2.71 0.01 12.93 0.03 0.71 2.78 0.06 11.65 0.03 0.75 
area rostral middle frontal L 2.69 0.01 12.81 0.05 0.71 2.86 0.00 11.97 0.02 0.75 
wm inferior parietal R 2.71 0.01 13.00 0.02 0.71 2.83 0.03 11.86 0.03 0.77 
wm pars triangularis L 2.71 0.00 13.06 0.01 0.71 2.82 0.02 11.60 0.01 0.72 
gvol isthmus cingulate L 2.64 0.04 12.99 0.02 0.71 2.86 0.00 11.91 0.01 0.74 
wm lateral orbitofrontal R 2.68 0.02 13.05 0.01 0.71 2.71 0.08 11.48 0.04 0.70 
area supramarginal L 2.65 0.04 12.83 0.03 0.71 2.84 0.00 11.98 0.02 0.70 
area middle temporal R 2.71 0.00 12.82 0.04 0.71 2.87 0.00 11.73 0.05 0.71 
gvol inferior parietal R 2.60 0.07 12.77 0.05 0.71 2.84 0.05 11.79 0.03 0.71 
wm inferior temporal L 2.69 0.02 12.96 0.02 0.71 2.77 0.04 11.44 0.05 0.78 
area superior temporal L 2.69 0.02 12.85 0.04 0.71 2.87 0.00 11.98 0.03 0.70 
area inferior parietal R 2.65 0.04 12.78 0.05 0.71 2.80 0.03 12.10 0.03 0.72 
SC Vol putamen R 2.71 0.00 13.05 0.02 0.71 2.85 0.01 11.93 0.01 0.71 
wm lateral orbitofrontal L 2.65 0.05 13.06 0.01 0.71 2.63 0.12 11.53 0.02 0.73 
gvol middle temporal R 2.69 0.02 12.69 0.05 0.71 2.90 0.00 11.52 0.05 0.71 

 
* wm: white matter volume; gvol: Gray Matter Volume; area: surface area; SC Vol: Subcortical Gray Matter Volume; Hemi: Hemisphere; L: Left; R: Right. 
Radj2 is the adjusted percentage of variation in Age or FSIQ explained by a linear model with the corresponding brain shape measure as the predictor using 
HBN as training and NKI-RS as testing data. MAE is the mean absolute error of prediction, and AUC is the area under the ROC curve.  
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Table 8: Model prediction accuracy by Ridge Regression using HBN as the training data and NKI-RS as the testing data. Models with best 
prediction accuracy are in bold.   
 

Set of predictors 
HBN NKI-RS 

Age FSIQ Sex Age FSIQ Sex 
MAE Radj2 MAE Radj2 AUC MAE R2 MAE R2 AUC 

Global 2.17 0.34 13.09 0.04 0.75 2.10 0.32 11.61 0.02 0.82 
Joint 2.27 0.31 12.82 0.07 0.79 3.03 0.28 11.25 0.06 0.79 
Individual 2.17 0.35 12.98 0.04 0.68 2.02 0.36 12.09 0.02 0.59 
Global+Joint 1.77 0.55 12.78 0.07 0.78 2.04 0.55 11.35 0.05 0.82 
Global+Individual 1.95 0.47 13.17 0.06 0.85 1.74 0.52 11.66 0.05 0.82 
Joint+Individual 1.49 0.67 12.89 0.09 0.85 1.58 0.66 11.70 0.08 0.79 
Global+Joint+Individual 1.42 0.70 12.85 0.10 0.85 1.41 0.71 11.70 0.08 0.84 

 
Figure 1: Proportion of variance explained by JIVE components 
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Figure 2: Pairwise correlation coefficients of JIVE component loadings between HBN and NKI-RS  
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