Title: Activity-dependent long-term potentiation of electrical synapses in the mammalian thalamus

Running title:	LTP of electrical synapses
Summary:	Long-term potentiation results from spiking in one cell of an electrically coupled
	pair. Asymmetry of synapses increases following unidirectional activity. We
	suggest a calcium-based rule for electrical synapse plasticity.
Authors:	Brandon Fricker ¹ , Emily Heckman ^{1,2} , Patrick C. Cunningham ¹ , and Julie S.
	Haas ^{1,*}
Affiliations:	1. Department of Biological Sciences, Lehigh University
	111 Research Drive
	Bethlehem, PA 18015
	2. Present address: Institute of Neuroscience, Department of Biology,
	University of Oregon,
	1254 University of Oregon,
	Eugene, OR 97403
	*to whom correspondence should be addressed: julie.haas@lehigh.edu
Keywords:	activity dependent plasticity, electrical synapse, gap junction, LTP, asymmetry
Acknowledgements: Bruce Bean (Harvard) generously supplied TTA-A2. We thank C. E.	
	Landisman, R. M. Burger, T. Pham and all Haas lab members for input on drafts
	of this manuscript. Funding was provided by the NSF (IOS 1557474), the

Whitehall Foundation, and the Brain & Behavior Foundation.

2 Abstract

3 Activity-dependent changes of synapse strength have been extensively characterized at 4 chemical synapses, but the relationship between physiological forms of activity and strength at 5 electrical synapses remains poorly understood. For mammalian electrical synapses composed 6 of hexomers of connexin36, physiological forms of neuronal activity in coupled pairs has thus far 7 have only been linked to long-term depression; activity that results in strengthening of electrical 8 synapses has not yet been identified. The thalamic reticular nucleus (TRN), a central brain area 9 primarily connected by gap junctional (electrical) synapses, regulates cortical attention to the 10 sensory surround. Bidirectional plasticity of electrical synapses may be a key mechanism underlying these processes in both healthy and diseased states. Here we show in electrically 11 12 coupled TRN pairs that tonic spiking in one neuron results in long-term potentiation of electrical 13 synapses between coupled pairs of TRN neurons. Potentiation is expressed asymmetrically, 14 indicating that regulation of connectivity depends on the direction of use. Further, potentiation 15 depends on calcium flux, and we thus propose a calcium-based activity rule for bidirectional plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN 16 connectivity, these synapses and their modifications are key regulators of thalamic attention 17 circuitry. More broadly, bidirectional modifications of electrical synapses are likely to be a 18 19 widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry 20 across the brain.

22 Introduction

23 The thalamic reticular nucleus (TRN) is a central brain region exclusively comprising 24 inhibitory neurons that gate the bidirectional flow of information between thalamus and cortex, 25 and ultimately regulate the cognitive process of attention (Halassa et al., 2014; Kimura, 2014; 26 McAlonan et al., 2006; Sherman, 2016; Zikopoulos & Barbas, 2012). Like all thalamic neurons, 27 TRN neurons fire action potentials in two modes (Contreras et al., 1992). Bursts, which feature a slow calcium spike from a T-type calcium current (Huguenard & Prince, 1992) crowned by a 28 29 fast barrage of sodium spikes, dominate TRN activity during slow sleep rhythms (Crunelli et al., 2006; Destexhe et al., 1996; Huguenard & Prince, 1992; McCormick & Bal, 1997; Steriade et 30 al., 1993), are a feature of absence epilepsy (Fuentealba & Steriade, 2005), and are reduced in 31 schizophrenics (Ferrarelli & Tononi, 2011). Regular tonic spikes, in contrast, are prevalent 32 33 during attentive behaviors (Pinault, 2004). Because the main mode of intra-TRN communication 34 is its dense electrical synapses (Hou et al., 2016; Landisman et al., 2002), understanding how and when electrical synapses change in strength during these two modes of activity is key for 35 understanding attention processes and rhythm generation. 36

37 In the mature mammalian brain, electrical synapses are composed of paired hexomers 38 of connexin36 that pass ions and small molecules, and mainly couple inhibitory GABAergic 39 neurons (Bennett & Zukin, 2004; Connors & Long, 2004; Galarreta & Hestrin, 2001). Electrical synapses contribute to synchrony in coupled networks (Chow & Kopell, 2000; Destexhe, 1998; 40 Draguhn et al., 1998; Gutierrez et al., 2013; Haas & Landisman, 2012; Pernelle et al., 2018; 41 42 Pfeuty et al., 2005; Wang & Rinzel, 1993; Whittington & Traub, 2003) and regulate timing of 43 spikes in the neurons they couple (Haas, 2015; Pham & Haas, 2018, 2019). Despite their prevalence and function between spiking neurons across the brain, the effects of neuronal 44 activity on connection strength remain sparsely characterized. A line of work in non-mammalian 45 nervous systems has demonstrated the possibility for central electrical synapses to undergo 46

plasticity (McMahon et al., 1989; Pereda & Faber, 1996; Welzel & Schuster, 2018; Yang et al., 47 48 1990). In the mammalian brain, synaptic input has been shown to modulate mammalian electrical synapses in the inferior olive (Lefler et al., 2014) in an NMDA-dependent manner 49 (Mathy et al., 2014; Turecek et al., 2014), and tetanic glutamatergic input to coupled TRN 50 51 neurons results in long-term depression (LTD)(Landisman & Connors, 2005). The impact of 52 spiking in coupled neurons on electrical synapses is much less well understood. We previously 53 showed that LTD of electrical synapses in TRN also follows bursting activity of coupled neurons 54 (Haas et al., 2011) in a calcium-dependent manner (Sevetson et al., 2017), but a link between 55 activity in coupled neurons and strengthening of the synapse has remained elusive.

Here we demonstrate, using dual whole-cell patch recordings, that long-term potentiation (LTP) of electrical synapses in the TRN follows low-frequency spiking in one of the cells. LTP is specific to single-cell activity, and depends on calcium influx. We show that the increase in coupling strength is expressed in an asymmetrical manner that depends on the direction of synapse use. Combined with results of calcium imaging during activity, our work leads us to propose a calcium-based activity dependent plasticity rule for electrical synapses.

62 Results

63 Thalamic neurons fire action potentials (APs) in two modes: from hyperpolarized resting 64 potentials, bursts of calcium spikes crowned by a quick sequence of sodium spikes; and from depolarized rests, regular (tonic) sodium spikes (Fig. 1A). Having previously established that 65 bursting in coupled TRN neurons leads to long-term depression of the electrical synapse 66 between them (Haas et al., 2011) as a result of large-conductance, T-channel mediated calcium 67 68 influx during bursts (Sevetson et al., 2017), we reasoned that tonic spikes and smaller calcium 69 influx might lead to potentiation of electrical synapse strength. In order to minimize activation of 70 the low voltage-activated T-type calcium current that underlies bursts, we added the specific 71 antagonist TTA-A2 (Kraus et al., 2010) (1 μ M) to the ACSF bath solution. We applied steady

72 current to raise the membrane potential of one cell of a coupled pair at or above -55 mV. again 73 to minimize the T current, while maintaining its coupled neighbor at -70 mV. We measured electrical coupling in each direction separately (Fig. 1B). We then applied small-amplitude, long 74 pulses of current to the depolarized cell to induce non-continuous tonic spiking for 5 minutes, 75 76 resulting in a spiking frequency of 5 - 10 Hz (Fig. 1C). After 5 minutes of tonic spiking activity in 77 one neuron, coupling conductance measured from the quiet cell into the active cell increased on average by $15.5\% \pm 2.3\%$ (pt = 0.004) and coupling coefficient in the same direction increased 78 79 by 13.6 \pm 2.2% (Fig. 1E–F; pt = 0.01, n = 12 pairs). Coupling measured by current injection into 80 the active cell, in contrast, did not change in conductance (-1.5 \pm 0.5%, pt = 0.78) while coefficients in this direction decreased by 7.6 \pm 0.5% (pt = 0.018). Input resistance in the quiet 81 82 cell decreased by $5.5 \pm 0.4\%$ (Fig. 1G; pt = 0.0005), while input resistance in the active cell was 83 unchanged (pt = 0.73; sign tests performed on changes in cc and Gc gave similar results). Input resistance and coupling coefficients are directly related; thus it is difficult to determine whether 84 85 the decrease in R_{in} caused the apparent decrease in cc or vice versa, but this dependence is minimized by the calculation of G_{C} , which demonstrated clear changes in only one direction in 86 87 this experiment. LTP was sustained for more than 25 minutes after induction.

LTP was specific to single-cell stimulation: paired activity in TTA did not significantly change synapse strength (Fig. 2A; $p_t > 0.05$ for both changes in cc and G_c , averaged over both directions for paired activity, n = 8 pairs), and paired tonic spiking in unmodified ACSF also failed to change synapse strength (Fig. 2B; $p_t > 0.05$ for both changes in cc and G_c , n = 6 pairs).

We hypothesized that the LTP we observed might be dependent on the smaller amounts of calcium influx from high-voltage activated channels (Budde et al., 1998). When we repeated single-cell tonic spiking in TTA with BAPTA in the pipettes to rapidly chelate all influxed calcium within both neurons, we observed no LTP (Fig. 2C; $p_t > 0.05$ for both directions of changes in cc or G_c, n = 7 pairs). Single-cell spiking in unmodified ACSF also failed to induce changes in 97 synaptic strength (Fig. 2D; $p_t > 0.05$ for both directions of changes in cc or G_c, n = 9 pairs). 98 Together, these results outline a calcium dependence of plasticity: minimal influx of calcium 99 during single-cell tonic spiking, possibly buffered by the quiet cell, leads to LTP, while larger 100 influx of calcium during paired tonic spiking activity exceeds that required for LTP, instead 101 activating the mechanisms leading to LTD (Sevetson et al., 2017).

102 Our hypothesis that the LTP we saw arose from the minimal amount of calcium influx revealed by TTA and depolarization of the active cell led us to further investigate differences in 103 104 calcium influx and transmission across the gap junction during the two different modes of 105 induced activity. We therefore performed imaging experiments of pairs with the calcium indicator OGB-1 included in the internal solution (Fig. $3A_1$). We drove one cell to spike either in bursts or 106 107 in tonic mode, while we held the quiet cell in held in voltage-clamp mode at -70 mV to minimize 108 calcium signals arising from voltage-activated channels. During the induced bursting in one cell 109 that leads to LTD (Haas et al., 2011), both peak and integrated calcium levels were higher in the active cell and in the quiet coupled neighbor than during induced tonic spiking (Fig. $3A_2$ -A₄). As 110 111 a negative control, we repeated the imaging in a non-coupled pair (Fig. 3B₁₋₄). Quantification of peak and integrated calcium signals in the quiet, coupled cells (Fig. 3C, D) both indicate that 112 113 less calcium flows across the gap junction during tonic spiking than during bursting (for AUC, - $25.2 \pm 10.6\%$, $p_s = 0.06$; for peak calcium, -56.6 $\pm 10.9\%$, $p_s = 0.03$, n = 6 pairs). 114

The LTP we observed that resulted from single-cell activity was expressed asymmetrically: coupling into the active cell increased, while coupling into the quiet cell decreased (Fig. 1). To examine whether this asymmetrical plasticity was consistent across pairs, we computed asymmetry as the ratio of coupling measured into the active cell, divided by coupling measured from the active cell. Those ratios consistently increased after LTP induction for both coupling coefficient (Fig. 4A; mean increase $24.3 \pm 6.2\%$, $p_t = 0.0015$, $p_s = 0.008$, n =12 pairs) and conductance (Fig. 4B: mean increase $22.4 \pm 8.2\%$, $p_t = 0.029$, $p_s = 0.008$). We noted that some pairs went from initially symmetrical, to finally asymmetric, and *vice versa*. Changes in coupling asymmetry were uncorrelated with changes in R_{in} ratios ($R^2 = 0.39$ for cc and 0.03 for G_c). These results are consistent with the asymmetrical changes we also observed for burst-induced LTD (Haas et al., 2011) in that both asymmetrical LTP and LTD required sodium spikes, and changes were larger for coupling measured into the active cell. These changes in asymmetry indicate that the unidirectional use of the electrical synapse, and perhaps unidirectional calcium flow, systematically alter the fundamental property of each synapse.

Together, our results lead us to propose a calcium rule for plasticity of electrical
synapses, whereby smaller amounts of calcium influx lead to LTP, and larger amounts lead to
LTD (Fig. 5). The proposed rule is similar in concept to those proposed (Bienenstock et al.,
1982; J. Lisman, 1989) (J. E. Lisman, 2001)and demonstrated (Dudek & Bear, 1992; Malenka &
Bear, 2004; Malenka et al., 1989) at glutamatergic synapses.

134 Discussion

Here we show that long-term potentiation of electrical synapses results from tonic 135 spiking in a single cell of the electrically coupled pair. To our knowledge, this is the first 136 137 demonstration of LTP in mammalian electrical synapses that results from spiking activity within 138 coupled neurons and flow of ions across the synapse. Moreover, our results taken together 139 indicate a bidirectional calcium dependence of activity-dependent plasticity at electrical synapses, whereby high calcium influx and flow across the gap junction leads to LTD (Haas et 140 141 al., 2011; Sevetson et al., 2017) while minimal calcium influx and flow across the gap junction leads to LTP. The links established here between physiological patterns of spiking activity in 142 143 TRN neurons demonstrate that ongoing plasticity of electrical synapses is likely to occur in the active brain. As calcium rules are common for chemical synapses, we expect that calcium 144 dependent rules, possibly in different forms, will underlie plasticity of electrical synapses across 145 146 the brain.

147 The magnitude of LTP-induced changes in electrical synapse strength are similar in magnitude to our previous demonstration of LTD, less than 20% (GC or cc). These are modest 148 changes relative to those often demonstrated at chemical synapses driven by tetanic 149 150 stimulation. A direct comparison between synapse types and plasticity would need to account 151 for differences in subcellular localization differences and differences in function, for instance 152 spike efficacy. However, for LTD we showed that these changes were sufficient to silence a 153 synapse, from one that induces spikes in neighbors, to an ineffective synapse (Haas et al., 154 2011). Further, these numerically modest changes in synaptic strength yield 5-10 ms changes in 155 spike times in coupled neighbors (Haas, 2015). Computational models reinforce the effectiveness of changes in coupling in this range (Pham & Haas, 2018, 2019). Thus, even 156 seemingly modest changes in electrical synapse strength produce physiologically substantial 157 158 effects, and are poised to exert major influence on TRN synchrony and processing.

159 Our experiments required minimization of T currents by TTA in order to reveal conditions 160 favorable for LTP at electrical synapses. While this is not strictly a physiological condition, we 161 expect that together with depolarization of the active cell, these perturbations were necessary to counterbalance the artificial quiescence and hyperpolarization of the brain slice preparation, in 162 163 which almost any depolarization of thalamic neurons activates T currents and thereby LTD. We expect that LTP is more likely to occur in vivo during prolonged depolarizations when tonic 164 spiking dominates spiking patterns (Pinault, 2004). We further hypothesize that during tonic 165 166 spiking in one neuron, calcium influx into the active cell is buffered across the gap junction by 167 the quiet cell (Fig. 2, 3). Together, these results imply that LTP can be initiated by tonic spikes in 168 single neurons, and subsequently counterbalanced by LTD resulting from bursts; together, 169 these form a bidirectional basis for active neurons to modify the gain of their inputs.

170 Although functional asymmetry is not an expected property of gap junctions purely 171 composed of connexin36 hemichannels (Srinivas et al., 1999), it has been observed as a 172 widespread property of mammalian electrical synapses (Apostolides & Trussell, 2014; Devor & 173 Yarom, 2002; Otsuka & Kawaguchi, 2013; Sevetson & Haas, 2015; Snipas et al., 2017; Vervaeke et al., 2010; Zolnik & Connors, 2016). Our previous results demonstrated that 174 asymmetry systematically increases during LTD induced by asymmetrical bursting activity 175 176 (Haas et al., 2011). Asymmetry was also shown to increase following LTP produced by NMDA 177 application (Turecek et al., 2014) or by cerebellar input to coupled inferior olivary neurons (Lefler et al., 2014). Our results here add further evidence towards modifications of asymmetry 178 179 that occur during plasticity; both our previous LTD results and the present LTP results indicate 180 that sodium spikes are necessary for changes in asymmetry, and that changes are larger in the direction incoming to the active neuron. Together, these reports form a growing consensus that 181 asymmetry and asymmetrical changes are a fundamental property of electrical synapses that 182 183 potentially refine the function of each individual synapse within its neuronal circuit, allowing for 184 each neuron to adjust the relative proportion of input it sends and/or receive from coupled neighbors via electrical synapses. Differences in intracellular scaffolding proteins have been 185 shown to construct asymmetrical electrical synapses in zebrafish (Marsh et al., 2017). We 186 suggest that increased expression or open probability of more-asymmetrical non-connexin36 187 188 proteins (Zolnik & Connors, 2016) could also account for this activity-dependent increase in asymmetry. Alternatively, differential post-translational modification, such as asymmetrical 189 190 phosphorylation of cx36 hemichannels, or differences in ubiquitination-mediated endocytosis 191 (Lynn et al., 2018), or the hypothesized effects of gating properties of the channel (Snipas et al., 192 2017) remain possible. In TRN, calcium bursts are activated in dendrites independently of somatic compartments, which could further result in independent modifications of one side of 193 the gap junction. Asymmetry can strongly influence spike times in coupled pairs (Sevetson & 194 195 Haas, 2015) and thereby impact cortical discrimination through the thalamocortical circuit (Pham 196 & Haas, 2018). We suggest that it may also take part in directional signaling mediated by

electrical synapses, such as that found in direction-sensitive retinal ganglion cells (Yao et al.,2018).

Based on our previous and current work, we propose a calcium rule for bidirectional 199 200 activity-dependent plasticity at electrical synapses. This rule is 'inverse' to those described for 201 chemical synapses, where smaller calcium influx produces LTD while larger influxes lead to LTP 202 (Bienenstock et al., 1982; Dudek & Bear, 1992; Malenka et al., 1989). Notably, an inverse rule for chemical synapses also exists in the cerebellum (Coesmans et al., 2004). As previous 203 204 studies have found that LTD is induced by calcium-based pathways leading to phosphatase 205 activation (Sevetson et al., 2017), we expect that LTP may depend on a phosphorylation mechanism initiated by calcium. Retinal coupling depends on phosphorylation (Kothmann et al., 206 207 2007), and tetanus-induced forms of plasticity at mixed synapses onto Mauthner cells in goldfish 208 depend on NMDA-regulated calcium entry (Pereda & Faber, 1996; Yang et al., 1990). Recent 209 work has also shown that spiking-initiated calcium entry leads to potentiation for up to 10 min. at 210 an invertebrate electrical synapse (Welzel & Schuster, 2018). While not directly examined, our 211 results imply that the threshold between the concentration of calcium for LTP and LTD is rather low, as even paired tonic spiking fails to induce LTP, and the T current that underlies burst-212 213 induced LTD is active at rest potentials. This bias of plasticity towards LTD, however, could be specific to brain-slice conditions, as addressed above. We find it likely that electrical synapses 214 across the brain follow a calcium-based rule for plasticity, although non-bursting neuronal types 215 may alternatively follow a different rule. 216

A role for plasticity of electrical synapses has been proposed for switches in attentional state (Coulon & Landisman, 2017). Taken together, our results demonstrate that the strength of electrical synapses can be modified positively or negatively in strength as a result of physiological activity in the TRN, and with neuron-specific directionality. For single cells, activitydependent plasticity of electrical synapses could modulate that cell's input sensitivity between 222 modes in which intra-TRN input is strongest and dominates its responses, to modes in which corticothalamic or thalamocortical chemical input is given preference over electrically networked 223 224 signals. This high degree of acuity and adjustability of connectivity within coupled networks 225 forms a basis for shifts of sensory attention regulated by the TRN. TRN neurons can toggle 226 thalamic neurons between firing modes in order to maintain cortical sleep rhythms and the 227 associated behaviors of that state (Sorokin et al., 2017), and the activity and synchrony of TRN 228 neurons required for that toggle may be supplied by its electrical synapses. Sensory processing of selective features (Soto-Sanchez et al., 2017) is also likely to depend on acutely refined TRN 229 connectivity in a similar manner. Beyond the TRN and its functions, our work shows that 230 electrically coupled networks are potentially under a high degree of regulation of function 231 throughout the mammalian brain. 232

- 233
- 234

235 Methods

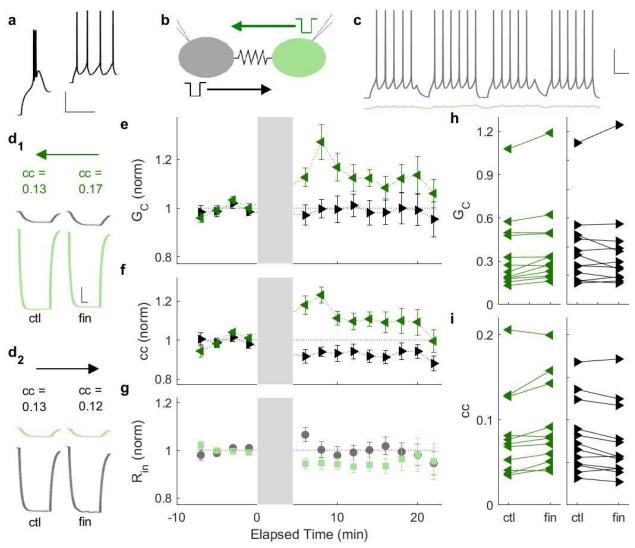
236 Electrophysiology

237 All experiments were performed in accordance with federal and Lehigh University IACUC animal welfare guidelines. Sprague-Dawley rats of both sexes aged postnatal day 11-15 were 238 anesthetized by inhaled isoflurane (5 mL of isoflurane applied to fabric, within a 1 L chamber) 239 240 and sacrificed via decapitation. Horizontal brain slices 300-400 µm thick were cut and incubated in sucrose solution (in mM): 72 sucrose, 83 NaCl, 2.5KCl, 1 NaPO₄, 3.3 MgSO₄, 26.2 NaHCO₃, 241 242 22 dextrose, 0.5 CaCl₂. Slices were incubated at 37°C for 20 min following cutting and returned 243 to room temperature until recording. The bath for solution during recording contained (in mM): 244 126 NaCl, 3 KCl, 1.25 NaH₂PO₄, 2 MgSO₄, 26 NaHCO₃, 10 dextrose and 2 CaCl₂, 300–305 mOsm L⁻¹, saturated with 95% O₂/5% CO₂. The submersion recording chamber was held at 245

246	34°C (TC-324B, Warner Instruments). Micropipettes were filled with (in mM): 135 potassium
247	gluconate, 2 KCI, 4 NaCI, 10 Hepes, 0.2 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, and 10
248	phosphocreatine-Tris (pH 7.25, 295 mOsm L^{-1}). 1 M KOH was used to adjust pH of the internal
249	solution. Internal containing 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid
250	(BAPTA) had concentrations of 10 μ M. The approximate bath flowrate was 2 ml min ⁻¹ and the
251	recording chamber held approximately 5 ml solution. The specific T-channel antagonist TTA-A2,
252	generously provided by Dr Bruce Bean (Harvard University) or TTA-P2 (Alamone) were made
253	into stock aliquots of 3 mM in DMSO; final concentration was 1 μ M. 6-Cyano-7-nitroquinoxaline-
254	2,3-dione (CNQX) at 2.5 μM was obtained from Sigma (St. Louis, MO, USA), and diluted into
255	high-concentration stock solutions in DMSO or water before final dilution. Final DMSO
256	concentration was always <0.2%.

257

258 The TRN was visualized under 5x magnification, and pairs of TRN cells were identified and 259 patched under 40x IR-DIC optics (SliceScope, Scientifica, Uckfield, UK). Voltage signals were amplified and low-pass filtered at 8 kHz (MultiClamp, Axon Instruments, Molecular Devices, 260 261 Sunnyvale, CA, USA), digitized at 20 kHz (custom Matlab routines controlling a National 262 Instruments (Austin, TX, USA) USB6221 DAQ board), and data were stored for offline analysis 263 in Matlab (Mathworks, R2017a, Natick, MA, USA). Recordings were made in whole-cell currentclamp mode. Values V_{rest} ranged from -50 to -70 mV. 500-ms pulses of negative injections of 264 265 current were used to measure coupling, with amplitudes of injected current minimized in order to minimize T current activation in the injected cell, with a goal of 0.5 - 1 mV deflection in the 266 267 coupled cell. Pipette resistances were 5-9 MΩ before bridge balance, which was removed if exceeding 25 M Ω . Voltages are reported uncorrected for the liquid junction potential. 268


269 Calcium imaging

To visualize calcium flux into and within coupled and uncoupled cells, 200 µM Oregon Green
488 BAPTA-1 (OGB-1) was added to the internal solution. An LED with wavelength 472 nm was
delivered through the objective to excite the OGB-1. Images were captured at 30 fps through
40X IR-DIC optics (SliceScope, Scientifica, Uckfield, UK) and stored for offline analysis with
Matlab. Regions of interest (ROIs) were chosen in the center of each recorded neuron, and
changes in fluorescence normalized to baseline and background fluorescence were computed
for each ROI.

277 Numerical Analysis

278 All numerical analysis was performed in Matlab (R2017). Input resistances (R_{in}) for each cell 279 and coupling between cells were quantified by injecting 25-100 pA of hyperpolarizing current into one cell of a coupled pair and measuring the voltage deflection in that cell (ΔV) and in the 280 281 couple neighbor (δV). Coupling coefficient (cc) is computed as $\delta V/\Delta V$ and are reported as 282 averages of a set of 10 measurements, repeated every 2 min. Coupling conductances G_c were estimated separately for each direction (Fortier, 2010; Sevetson & Haas, 2015). Experiments 283 were discarded if input resistance R_{in} of either cell deviated from its initial value by more than 284 20%. Changes in coupling were evaluated as the average over the first 20 minutes following 285 286 activity, compared to the normalized baseline values, and are reported as means ± SEM. We 287 report Student's t-tests as two-tailed paired comparisons of pre- and post-stimulus averages 288 and report the results as pt. Two-sided Wilcoxon signed rank tests were also carried out on the 289 sets of change in coupling for each condition and are reported as p_s. No multiple comparisons 290 were performed.

291

293

294 Figure 1. Long-term potentiation results from tonic firing in one cell of a coupled pair. A) 295 TRN neurons fire bursts from hyperpolarized potentials (left; V_m = -82 mV) and tonic spikes from 296 depolarized potentials (right; V_m = -55 mV). Scale bar 20 mV, 200 ms. B) Schematic of coupling measurement from an active cell (grey) and its electrically coupled neighbor (sage). C) Regular 297 tonic spiking was driven by current injection into one cell (grey; $V_m = -54 \text{ mV}$), while the coupled 298 299 cell (sage) rests at -70 mV without stimulation. Experiments were performed with TTA in the 300 bath. Scale bar 25 mV, 250 ms. D) Coupling coefficients (cc) for a pair before (left) and after 301 (right) tonic spiking as shown in C. cc from the quiet cell into the active cell (green arrows) is

302	shown in the top panel, and \boldsymbol{cc} in the reverse direction on bottom. E) Coupling conductance G_{C}
303	shown for each direction, before and after stimulated spiking, normalized to pre-activity values
304	(for G_C quiet \rightarrow active, ΔG_C = 15.5 ± 2.4%, p_t = 0.004; for G_C active \rightarrow quiet, ΔG_C = -1.5 ± 0.5%,
305	$p_t = 0.78$; n = 12 pairs). F) cc for each direction (for quiet \rightarrow active, $\Delta cc = 13.6 \pm 2.2\%$, $p_t = 0.01$,
306	n = 12; for active \rightarrow quiet, Δcc = 7.6 ± 0.5%, pt = 0.018; n = 12 pairs). G) Input resistance for
307	both cells during the experiments. H) G_C for each pair used in D (for G_C quiet \rightarrow active, p_s =
308	0.0009; for active \rightarrow quiet, p _s = 0.76). I) cc for each pair used in E (for cc quiet \rightarrow active, p _s =
309	0.01; for active \rightarrow quiet, p _s = 0.019). p _t indicates 2-tailed, paired Student's t-test, and p _s is a
310	Wilcoxon sign test.

bioRxiv preprint doi: https://doi.org/10.1101/570101; this version posted March 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

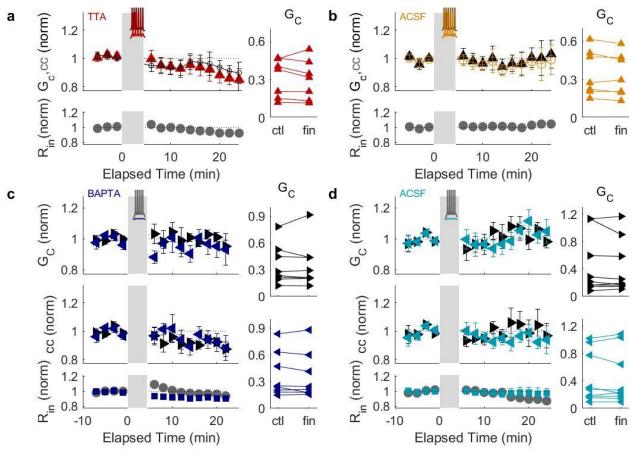


Figure 2. LTP is specific to single-cell stimulation and depends on calcium influx. A) cc 312 and Gc before and after paired tonic spiking in TTA (averaged over both directions; for Δcc , $p_t =$ 313 314 0.13, $p_s = 0.12$; for ΔG_c , $p_t = 0.3$, $p_s = 0.2$; n = 8 pairs). B) cc and Gc before and after paired tonic spiking in unmodified ACSF (averaged over both directions; for Δcc , $p_t = 0.37$, $p_s = 0.46$; 315 316 for ΔG_c , $p_t = 0.08$, $p_s = 0.07$; n = 6 pairs). C) cc and Gc before and after single-cell spiking with calcium chelated by BAPTA in the internal. For ΔG_c active \rightarrow quiet, $p_t = 0.89$, $p_s = 0.84$; for ΔG_c 317 quiet \rightarrow active, $p_t = 0.34$, $p_s = 0.46$; for \triangle cc active \rightarrow quiet, $p_t = 0.09$, $p_s = 0.07$; for \triangle cc quiet \rightarrow 318 active, $p_t = 0.66$, $p_s = 0.95$ (n = 7 pairs). D) cc and Gc before and after single-cell tonic spiking in 319 320 unmodified ACSF. For ΔG_C active \rightarrow quiet, $p_t = 0.38$, $p_s = 0.57$; for ΔG_C quiet \rightarrow active, $p_t =$ 0.78, $p_s = 0.82$; for Δcc active \rightarrow quiet, $p_t = 0.4$, $p_s = 0.73$; for Δcc quiet \rightarrow active, $p_t = 0.16$, $p_s =$ 321 322 0.25 (n = 9 pairs).

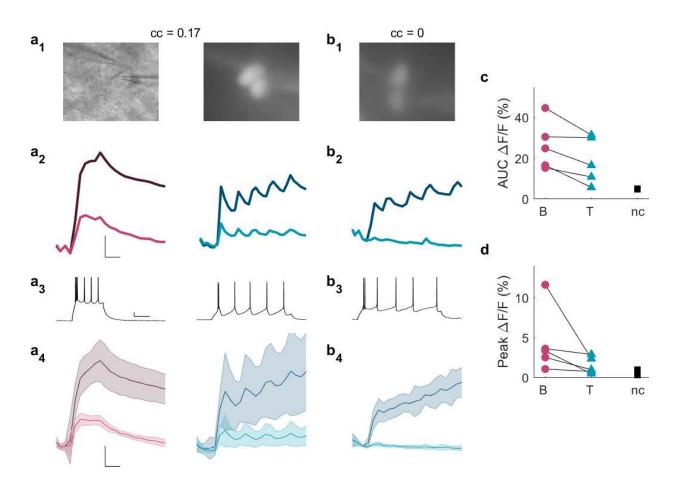
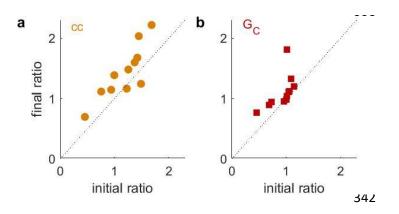
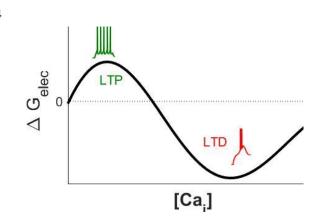


Figure 3. Calcium flows across the gap junction during spiking. A₁) IR-DIC and GFP 324 images of a coupled pair (cc = 0.17). A₂) Calcium signals ($\Delta F/F$) in a cell directly stimulated to 325 326 burst (dark red) or spike tonically (dark blue), and calcium signals in the quiet cell (lighter shades) of a coupled pair. Scale bar 2.5%, 100 ms. A₃) Bursting (left) or tonic spikes (center) 327 328 that drove responses in A₂. Scale bar 10 mV, 100 ms. A₄) Average calcium signals during 329 bursting (reds) and tonic spiking (blues) in this coupled pair. B₁) GFP image of an uncoupled 330 pair. Scale bar 2.5%, 100 ms. B₂) Calcium signals ($\Delta F/F$) in a cell directly stimulated spike tonically (dark blue), and in the guiet uncoupled cell (light blue). B₃) Tonic spikes that drove 331 332 responses in B₂. B₄) Average calcium signals during tonic spiking in uncoupled pairs (n = 2 pairs). C) Total (area under curve) $\Delta F/F$ in the quiet cell during bursting (B, red) and tonic spikes 333 (T, blue) within each pair (mean difference $-25.2 \pm 10.6\%$, $p_s = 0.06$, n = 6 pairs), and for 334

- uncoupled pairs (black, nc; n = 2 pairs). D) Peak Δ F/F in the quiet cell during bursting (B, red)
- and tonic spikes (T, blue) within each pair (mean difference -56.6 \pm 10.9%, p_s = 0.03, n = 6
- pairs), and for uncoupled pairs (black, nc; n = 2 pairs).




Figure 4. LTP is expressed asymmetrically. A) Asymmetry of coupling (cc into active cell / cc from active cell) increased consistently across pairs following activity-induced LTP, plotted here against initial values (mean change 24.3 \pm 6.2%, pt = 0.0015, ps = 0.008, n = 12 pairs). B) Asymmetry of coupling conductance (G_c into active cell / G_c from active cell) increased consistently across pairs following activity-induced LTP, plotted against initial values (mean change 22.4 \pm 8.2%, pt = 0.029, ps = 0.008).

545

350

351

352

- 359 Figure 5. Proposed calcium-based activity rule for electrical synapses. Smaller influx of
- 360 calcium during tonic spiking (green) leads to LTP, while larger influx during bursting (red) leads
- 361 to LTD.

362 References

364	Apostolides, P. F., & Trussell, L. O. (2014). Control of Interneuron Firing by Subthreshold Synaptic
365	Potentials in Principal Cells of the Dorsal Cochlear Nucleus. Neuron. Retrieved from
366	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
367	_uids=25002229
368	Bennett, M. V., & Zukin, R. S. (2004). Electrical coupling and neuronal synchronization in the Mammalian
369	brain. Neuron, 41(4), 495-511. Retrieved from
370	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
371	_uids=14980200
372	Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron
373	selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci, 2(1), 32-
374	48. Retrieved from
375	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
376	_uids=7054394
377	Budde, T., Munsch, T., & Pape, H. C. (1998). Distribution of L-type calcium channels in rat thalamic
378	neurones. <i>Eur J Neurosci, 10</i> (2), 586-597. Retrieved from
379	http://www.ncbi.nlm.nih.gov/pubmed/9749721
380	Chow, C. C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. <i>Neural Comput,</i>
381	12(7), 1643-1678. Retrieved from
382	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
383	_uids=10935921_
384	Coesmans, M., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in
385	the cerebellum under climbing fiber control. <i>Neuron, 44</i> (4), 691-700.
386	doi:10.1016/j.neuron.2004.10.031
387	Connors, B. W., & Long, M. A. (2004). Electrical synapses in the mammalian brain. Annu Rev Neurosci,
388	27, 393-418. Retrieved from
389	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
390	<u>uids=15217338</u>
391	Contreras, D., Curro Dossi, R., & Steriade, M. (1992). Bursting and tonic discharges in two classes of
392	reticular thalamic neurons. J Neurophysiol, 68(3), 973-977. Retrieved from
393	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
394	_uids=1432063
395	Coulon, P., & Landisman, C. E. (2017). The Potential Role of Gap Junctional Plasticity in the Regulation of
396	State. Neuron, 93(6), 1275-1295. doi:10.1016/j.neuron.2017.02.041
397	Crunelli, V., Cope, D. W., & Hughes, S. W. (2006). Thalamic T-type Ca2+ channels and NREM sleep. Cell
398	Calcium, 40(2), 175-190. doi:10.1016/j.ceca.2006.04.022
399	Destexhe, A. (1998). Spike-and-wave oscillations based on the properties of GABAB receptors. J
400	Neurosci, 18(21), 9099-9111. Retrieved from
401	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
402	uids=9787013
403	Destexhe, A., Bal, T., McCormick, D. A., & Sejnowski, T. J. (1996). Ionic mechanisms underlying
404	synchronized oscillations and propagating waves in a model of ferret thalamic slices. J
405	Neurophysiol, 76(3), 2049-2070. Retrieved from
406	http://www.ncbi.nlm.nih.gov/pubmed/8890314

407	Devor, A., & Yarom, Y. (2002). Electrotonic coupling in the inferior olivary nucleus revealed by
408	simultaneous double patch recordings. J Neurophysiol, 87(6), 3048-3058. Retrieved from
409	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
410	_uids=12037207
411	Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-
412	frequency oscillations in the hippocampus in vitro. <i>Nature, 394</i> (6689), 189-192. Retrieved from
413	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
414	<u>uids=9671303</u>
415	Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and
416	effects of N-methyl-D-aspartate receptor blockade. <i>Proc Natl Acad Sci U S A, 89</i> (10), 4363-4367.
417	Retrieved from
418	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
419 420	<u>uids=1350090</u> Ferrarelli, F., & Tononi, G. (2011). The thalamic reticular nucleus and schizophrenia. <i>Schizophr Bull,</i>
420 421	<i>37</i> (2), 306-315. Retrieved from
421	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
422	uids=21131368
424	Fortier, P. A. (2010). Detecting and estimating rectification of gap junction conductance based on
425	simulations of dual-cell recordings from a pair and a network of coupled cells. J Theor Biol,
426	265(2), 104-114. Retrieved from
427	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
428	uids=20385146
429	Fuentealba, P., & Steriade, M. (2005). The reticular nucleus revisited: intrinsic and network properties of
430	a thalamic pacemaker. Progress in Neurobiology, 75(2), 125-141. Retrieved from
431	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
432	<u>uids=15784303</u>
433	Galarreta, M., & Hestrin, S. (2001). Electrical synapses between GABA-releasing interneurons. Nat Rev
434	Neurosci, 2(6), 425-433. Retrieved from
435	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
436	_uids=11389476
437	Gutierrez, G. J., O'Leary, T., & Marder, E. (2013). Multiple mechanisms switch an electrically coupled,
438	synaptically inhibited neuron between competing rhythmic oscillators. <i>Neuron, 77</i> (5), 845-858.
439	doi:10.1016/j.neuron.2013.01.016
440	Haas, J. S. (2015). A new measure for the strength of electrical synapses. <i>Front Cell Neurosci, 9</i> , 378.
441	Retrieved from
442	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
443 444	<u>uids=26441546</u> Haas, J. S., & Landisman, C. E. (2012). State-dependent modulation of gap junction signaling by the
444 445	persistent sodium current. Front Cell Neurosci, 5, 31. Retrieved from
446	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
447	uids=22319469
448	Haas, J. S., Zavala, B., & Landisman, C. E. (2011). Activity-dependent long-term depression of electrical
449	synapses. Science, 334(6054), 389-393. Retrieved from
450	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
451	_uids=22021860
452	Halassa, M. M., Chen, Z., Wimmer, R. D., Brunetti, P. M., Zhao, S., Zikopoulos, B., Wilson, M. A.
453	(2014). State-dependent architecture of thalamic reticular subnetworks. <i>Cell, 158</i> (4), 808-821.
454	Retrieved from

455	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
456	uids=25126786
457	Hou, G., Smith, A. G., & Zhang, Z. W. (2016). Lack of Intrinsic GABAergic Connections in the Thalamic
458	Reticular Nucleus of the Mouse. J Neurosci, 36(27), 7246-7252. doi:10.1523/JNEUROSCI.0607-
459	16.2016
460	Huguenard, J. R., & Prince, D. A. (1992). A novel T-type current underlies prolonged Ca(2+)-dependent
461	burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci, 12(10), 3804-
462	3817. Retrieved from
463	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
464	uids=1403085
465	Kimura, A. (2014). Diverse subthreshold cross-modal sensory interactions in the thalamic reticular
466	nucleus: implications for new pathways of cross-modal attentional gating function. Eur J
467	<i>Neurosci, 39</i> (9), 1405-1418. Retrieved from
468	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
469	uids=24646412
470	Kothmann, W. W., Li, X., Burr, G. S., & O'Brien, J. (2007). Connexin 35/36 is phosphorylated at regulatory
471	sites in the retina. Vis Neurosci, 24(3), 363-375. doi:10.1017/S095252380707037X
472	Kraus, R. L., Li, Y., Gregan, Y., Gotter, A. L., Uebele, V. N., Fox, S. V., Renger, J. J. (2010). In vitro
473	characterization of T-type calcium channel antagonist TTA-A2 and in vivo effects on arousal in
474	mice. J Pharmacol Exp Ther, 335(2), 409-417. doi:10.1124/jpet.110.171058
475	Landisman, C. E., & Connors, B. W. (2005). Long-term modulation of electrical synapses in the
476	mammalian thalamus. Science, 310(5755), 1809-1813. Retrieved from
477	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
478	_uids=16357260
479	Landisman, C. E., Long, M. A., Beierlein, M., Deans, M. R., Paul, D. L., & Connors, B. W. (2002). Electrical
480	synapses in the thalamic reticular nucleus. J Neurosci, 22(3), 1002-1009. Retrieved from
481	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
482	_uids=11826128
483	Lefler, Y., Yarom, Y., & Uusisaari, M. Y. (2014). Cerebellar inhibitory input to the inferior olive decreases
484	electrical coupling and blocks subthreshold oscillations. Neuron, 81(6), 1389-1400. Retrieved
485	from
486	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
487	_uids=24656256
488	Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and
489	memory. Proc Natl Acad Sci U S A, 86(23), 9574-9578. Retrieved from
490	http://www.ncbi.nlm.nih.gov/pubmed/2556718
491	Lisman, J. E. (2001). Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no
492	man's land. <i>J Physiol, 532</i> (Pt 2), 285. Retrieved from
493	http://www.ncbi.nlm.nih.gov/pubmed/11306649
494	Lynn, B. D., Li, X., Hormuzdi, S. G., Griffiths, E. K., McGlade, C. J., & Nagy, J. I. (2018). E3 ubiquitin ligases
495	LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and
496	molecularly interact with connexin36. <i>Eur J Neurosci</i> . doi:10.1111/ejn.14198
497	Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. <i>Neuron, 44</i> (1), 5-21.
498	Retrieved from
499	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
500	<u>uids=15450156</u>
501	Malenka, R. C., Kauer, J. A., Perkel, D. J., & Nicoll, R. A. (1989). The impact of postsynaptic calcium on
502	synaptic transmissionits role in long-term potentiation. Trends Neurosci, 12(11), 444-450.

503		Retrieved from
504		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
505		uids=2479146
506	Marsh,	A. J., Michel, J. C., Adke, A. P., Heckman, E. L., & Miller, A. C. (2017). Asymmetry of an
507		Intracellular Scaffold at Vertebrate Electrical Synapses. Curr Biol, 27(22), 3561-3567 e3564.
508		doi:10.1016/j.cub.2017.10.011
509	Mathy,	A., Clark, B. A., & Hausser, M. (2014). Synaptically induced long-term modulation of electrical
510		coupling in the inferior olive. <i>Neuron, 81</i> (6), 1290-1296. Retrieved from
511		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
512		_uids=24656251
513	McAlor	han, K., Cavanaugh, J., & Wurtz, R. H. (2006). Attentional modulation of thalamic reticular
514		neurons. <i>J Neurosci, 26</i> (16), 4444-4450. Retrieved from
515		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
516	MaCarr	<u>uids=16624964</u>
517 519	NICCOT	nick, D. A., & Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. <i>Annu Rev Neurosci,</i>
518 519	McMak	<i>20</i> , 185-215. doi:10.1146/annurev.neuro.20.1.185 ion, D. G., Knapp, A. G., & Dowling, J. E. (1989). Horizontal cell gap junctions: single-channel
520	IVICIVIAI	conductance and modulation by dopamine. <i>Proc Natl Acad Sci U S A, 86</i> (19), 7639-7643.
521		Retrieved from
522		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
523		uids=2477845
524	Otsuka	T., & Kawaguchi, Y. (2013). Common excitatory synaptic inputs to electrically connected cortical
525		fast-spiking cell networks. J Neurophysiol, 110(4), 795-806. doi:10.1152/jn.00071.2013
526	Pereda	, A. E., & Faber, D. S. (1996). Activity-dependent short-term enhancement of intercellular
527		coupling. J Neurosci, 16(3), 983-992. Retrieved from
528		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
529		_uids=8558267
530	Pernell	e, G., Nicola, W., & Clopath, C. (2018). Gap junction plasticity as a mechanism to regulate
531		network-wide oscillations. PLoS Comput Biol, 14(3), e1006025.
532		doi:10.1371/journal.pcbi.1006025
533	Pfeuty,	B., Mato, G., Golomb, D., & Hansel, D. (2005). The combined effects of inhibitory and electrical
534		synapses in synchrony. <i>Neural Comput, 17</i> (3), 633-670. Retrieved from
535		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
536	Dhama -	uids=15802009
537	Pham,	Γ., & Haas, J. S. (2018). Electrical synapses between inhibitory neurons shape the responses of
538 539		principal neurons to transient inputs in the thalamus: a modeling study. <i>Sci Rep, 8</i> (1), 7763. doi:10.1038/s41598-018-25956-x
539 540	Dham -	Γ., & Haas, J. S. (2019). Electrical synapses regulate both subthreshold integration and population
540 541	r nann,	activity of principal cells in response to transient inputs within canonical feedforward circuits.
541		<i>PLoS Comput Biol, 15</i> (2), e1006440. doi:10.1371/journal.pcbi.1006440
543	Pinault	, D. (2004). The thalamic reticular nucleus: structure, function and concept. <i>Brain Res Brain Res</i>
544	i maare,	<i>Rev, 46</i> (1), 1-31. doi:10.1016/j.brainresrev.2004.04.008
545	Sevetso	on, J., Fittro, S., Heckman, E., & Haas, J. S. (2017). A calcium-dependent pathway underlies
546		activity-dependent plasticity of electrical synapses in the thalamic reticular nucleus. J Physiol,
547		<i>595</i> (13), 4417-4430. doi:10.1113/JP274049
548	Sevetso	on, J., & Haas, J. S. (2015). Asymmetry and modulation of spike timing in electrically coupled
549		neurons. J Neurophysiol, jn 00843 02014. Retrieved from

550	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
551	<u>uids=25540226</u>
552 553	Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. <i>Nat Neurosci, 19</i> (4), 533-541. doi:10.1038/nn.4269
554	Snipas, M., Rimkute, L., Kraujalis, T., Maciunas, K., & Bukauskas, F. F. (2017). Functional asymmetry and
555	plasticity of electrical synapses interconnecting neurons through a 36-state model of gap
556	junction channel gating. PLoS Comput Biol, 13(4), e1005464. doi:10.1371/journal.pcbi.1005464
557	Sorokin, J. M., Davidson, T. J., Frechette, E., Abramian, A. M., Deisseroth, K., Huguenard, J. R., & Paz, J. T.
558	(2017). Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of
559	Firing Mode. <i>Neuron, 93</i> (1), 194-210. doi:10.1016/j.neuron.2016.11.026
560	Soto-Sanchez, C., Wang, X., Vaingankar, V., Sommer, F. T., & Hirsch, J. A. (2017). Spatial scale of
561	receptive fields in the visual sector of the cat thalamic reticular nucleus. Nat Commun, 8(1), 800.
562	doi:10.1038/s41467-017-00762-7
563	Srinivas, M., Rozental, R., Kojima, T., Dermietzel, R., Mehler, M., Condorelli, D. F., Spray, D. C. (1999).
564	Functional properties of channels formed by the neuronal gap junction protein connexin36. J
565	Neurosci, 19(22), 9848-9855. Retrieved from
566	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
567	_uids=10559394
568	Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and
569	aroused brain. Science, 262(5134), 679-685. Retrieved from
570	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
571	uids=8235588
572	Turecek, J., Yuen, G. S., Han, V. Z., Zeng, X. H., Bayer, K. U., & Welsh, J. P. (2014). NMDA receptor
573	activation strengthens weak electrical coupling in mammalian brain. <i>Neuron, 81</i> (6), 1375-1388.
574	Retrieved from
575 576	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
576 577	<u>uids=24656255</u> Vervaeke, K., Lorincz, A., Gleeson, P., Farinella, M., Nusser, Z., & Silver, R. A. (2010). Rapid
578	desynchronization of an electrically coupled interneuron network with sparse excitatory
578	synaptic input. <i>Neuron, 67</i> (3), 435-451. Retrieved from
580	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
581	uids=20696381
582	Wang, X. J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalami nucleus: synchronization
583	among mutually inhibitory neurons. <i>Neuroscience</i> , 53(4), 899-904. Retrieved from
584	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
585	uids=8389430
586	Welzel, G., & Schuster, S. (2018). Long-term potentiation in an innexin-based electrical synapse.
587	Scientific Reports, 8. doi:ARTN 12579
588	10.1038/s41598-018-30966-w
589	Whittington, M. A., & Traub, R. D. (2003). Interneuron diversity series: inhibitory interneurons and
590	network oscillations in vitro. Trends Neurosci, 26(12), 676-682. Retrieved from
591	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
592	_uids=14624852
593	Yang, X. D., Korn, H., & Faber, D. S. (1990). Long-term potentiation of electrotonic coupling at mixed
594	synapses. <i>Nature, 348</i> (6301), 542-545. Retrieved from
595	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list
596	_uids=2174130

- Yao, X., Cafaro, J., McLaughlin, A. J., Postma, F. R., Paul, D. L., Awatramani, G., & Field, G. D. (2018). Gap
 Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion
- 599 Cells. *Neuron, 100*(1), 216-228 e216. doi:10.1016/j.neuron.2018.08.021
- Zikopoulos, B., & Barbas, H. (2012). Pathways for emotions and attention converge on the thalamic
 reticular nucleus in primates. *J Neurosci, 32*(15), 5338-5350. Retrieved from
- 602http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list603_uids=22496579
- 604Zolnik, T. A., & Connors, B. W. (2016). Electrical synapses and the development of inhibitory circuits in605the thalamus. J Physiol, 594(10), 2579-2592. doi:10.1113/JP271880