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Abstract  2 

Activity-dependent changes of synapse strength have been extensively characterized at 3 

chemical synapses, but the relationship between physiological forms of activity and strength at 4 

electrical synapses remains poorly understood. For mammalian electrical synapses composed 5 

of hexomers of connexin36, physiological forms of neuronal activity in coupled pairs has thus far 6 

have only been linked to long-term depression; activity that results in strengthening of electrical 7 

synapses has not yet been identified. The thalamic reticular nucleus (TRN), a central brain area 8 

primarily connected by gap junctional (electrical) synapses, regulates cortical attention to the 9 

sensory surround. Bidirectional plasticity of electrical synapses may be a key mechanism 10 

underlying these processes in both healthy and diseased states. Here we show in electrically 11 

coupled TRN pairs that tonic spiking in one neuron results in long-term potentiation of electrical 12 

synapses between coupled pairs of TRN neurons. Potentiation is expressed asymmetrically, 13 

indicating that regulation of connectivity depends on the direction of use. Further, potentiation 14 

depends on calcium flux, and we thus propose a calcium-based activity rule for bidirectional 15 

plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN 16 

connectivity, these synapses and their modifications are key regulators of thalamic attention 17 

circuitry. More broadly, bidirectional modifications of electrical synapses are likely to be a 18 

widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry 19 

across the brain. 20 

  21 
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Introduction 22 

The thalamic reticular nucleus (TRN) is a central brain region exclusively comprising 23 

inhibitory neurons that gate the bidirectional flow of information between thalamus and cortex, 24 

and ultimately regulate the cognitive process of attention (Halassa et al., 2014; Kimura, 2014; 25 

McAlonan et al., 2006; Sherman, 2016; Zikopoulos & Barbas, 2012). Like all thalamic neurons, 26 

TRN neurons fire action potentials in two modes (Contreras et al., 1992). Bursts, which feature 27 

a slow calcium spike from a T-type calcium current (Huguenard & Prince, 1992) crowned by a 28 

fast barrage of sodium spikes, dominate TRN activity during slow sleep rhythms (Crunelli et al., 29 

2006; Destexhe et al., 1996; Huguenard & Prince, 1992; McCormick & Bal, 1997; Steriade et 30 

al., 1993), are a feature of absence epilepsy (Fuentealba & Steriade, 2005), and are reduced in 31 

schizophrenics (Ferrarelli & Tononi, 2011). Regular tonic spikes, in contrast, are prevalent 32 

during attentive behaviors (Pinault, 2004). Because the main mode of intra-TRN communication 33 

is its dense electrical synapses (Hou et al., 2016; Landisman et al., 2002), understanding how 34 

and when electrical synapses change in strength during these two modes of activity is key for 35 

understanding attention processes and rhythm generation. 36 

In the mature mammalian brain, electrical synapses are composed of paired hexomers 37 

of connexin36 that pass ions and small molecules, and mainly couple inhibitory GABAergic 38 

neurons (Bennett & Zukin, 2004; Connors & Long, 2004; Galarreta & Hestrin, 2001). Electrical 39 

synapses contribute to synchrony in coupled networks (Chow & Kopell, 2000; Destexhe, 1998; 40 

Draguhn et al., 1998; Gutierrez et al., 2013; Haas & Landisman, 2012; Pernelle et al., 2018; 41 

Pfeuty et al., 2005; Wang & Rinzel, 1993; Whittington & Traub, 2003) and regulate timing of 42 

spikes in the neurons they couple (Haas, 2015; Pham & Haas, 2018, 2019). Despite their 43 

prevalence and function between spiking neurons across the brain, the effects of neuronal 44 

activity on connection strength remain sparsely characterized. A line of work in non-mammalian 45 

nervous systems has demonstrated the possibility for central electrical synapses to undergo 46 
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plasticity (McMahon et al., 1989; Pereda & Faber, 1996; Welzel & Schuster, 2018; Yang et al., 47 

1990). In the mammalian brain, synaptic input has been shown to modulate mammalian 48 

electrical synapses in the inferior olive (Lefler et al., 2014) in an NMDA-dependent manner 49 

(Mathy et al., 2014; Turecek et al., 2014), and tetanic glutamatergic input to coupled TRN 50 

neurons results in long-term depression (LTD)(Landisman & Connors, 2005). The impact of 51 

spiking in coupled neurons on electrical synapses is much less well understood. We previously 52 

showed that LTD of electrical synapses in TRN also follows bursting activity of coupled neurons 53 

(Haas et al., 2011) in a calcium-dependent manner (Sevetson et al., 2017), but a link between 54 

activity in coupled neurons and strengthening of the synapse has remained elusive. 55 

Here we demonstrate, using dual whole-cell patch recordings, that long-term potentiation 56 

(LTP) of electrical synapses in the TRN follows low-frequency spiking in one of the cells. LTP is 57 

specific to single-cell activity, and depends on calcium influx. We show that the increase in 58 

coupling strength is expressed in an asymmetrical manner that depends on the direction of 59 

synapse use. Combined with results of calcium imaging during activity, our work leads us to 60 

propose a calcium-based activity dependent plasticity rule for electrical synapses. 61 

Results 62 

Thalamic neurons fire action potentials (APs) in two modes: from hyperpolarized resting 63 

potentials, bursts of calcium spikes crowned by a quick sequence of sodium spikes; and from 64 

depolarized rests, regular (tonic) sodium spikes (Fig. 1A). Having previously established that 65 

bursting in coupled TRN neurons leads to long-term depression of the electrical synapse 66 

between them (Haas et al., 2011) as a result of large-conductance, T-channel mediated calcium 67 

influx during bursts (Sevetson et al., 2017), we reasoned that tonic spikes and smaller calcium 68 

influx might lead to potentiation of electrical synapse strength. In order to minimize activation of 69 

the low voltage-activated T-type calcium current that underlies bursts, we added the specific 70 

antagonist TTA-A2 (Kraus et al., 2010) (1 µM) to the ACSF bath solution. We applied steady 71 
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current to raise the membrane potential of one cell of a coupled pair at or above -55 mV, again 72 

to minimize the T current, while maintaining its coupled neighbor at -70 mV. We measured 73 

electrical coupling in each direction separately (Fig. 1B). We then applied small-amplitude, long 74 

pulses of current to the depolarized cell to induce non-continuous tonic spiking for 5 minutes, 75 

resulting in a spiking frequency of 5 - 10 Hz (Fig. 1C). After 5 minutes of tonic spiking activity in 76 

one neuron, coupling conductance measured from the quiet cell into the active cell increased on 77 

average by 15.5% ± 2.3% (pt = 0.004) and coupling coefficient in the same direction increased 78 

by 13.6 ± 2.2% (Fig. 1E–F; pt = 0.01, n = 12 pairs). Coupling measured by current injection into 79 

the active cell, in contrast, did not change in conductance (-1.5 ± 0.5%, pt = 0.78) while 80 

coefficients in this direction decreased by 7.6 ± 0.5% (pt = 0.018). Input resistance in the quiet 81 

cell decreased by 5.5 ± 0.4% (Fig. 1G; pt = 0.0005), while input resistance in the active cell was 82 

unchanged (pt = 0.73; sign tests performed on changes in cc and Gc gave similar results). Input 83 

resistance and coupling coefficients are directly related; thus it is difficult to determine whether 84 

the decrease in Rin caused the apparent decrease in cc or vice versa, but this dependence is 85 

minimized by the calculation of GC, which demonstrated clear changes in only one direction in 86 

this experiment. LTP was sustained for more than 25 minutes after induction.  87 

LTP was specific to single-cell stimulation: paired activity in TTA did not significantly 88 

change synapse strength (Fig. 2A; pt > 0.05 for both changes in cc and GC, averaged over both 89 

directions for paired activity, n = 8 pairs), and paired tonic spiking in unmodified ACSF also 90 

failed to change synapse strength (Fig. 2B; pt > 0.05 for both changes in cc and GC, n = 6 pairs).  91 

We hypothesized that the LTP we observed might be dependent on the smaller amounts 92 

of calcium influx from high-voltage activated channels (Budde et al., 1998). When we repeated 93 

single-cell tonic spiking in TTA with BAPTA in the pipettes to rapidly chelate all influxed calcium 94 

within both neurons, we observed no LTP (Fig. 2C; pt > 0.05 for both directions of changes in cc 95 

or GC, n = 7 pairs). Single-cell spiking in unmodified ACSF also failed to induce changes in 96 
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synaptic strength (Fig. 2D; pt > 0.05 for both directions of changes in cc or GC, n = 9 pairs). 97 

Together, these results outline a calcium dependence of plasticity: minimal influx of calcium 98 

during single-cell tonic spiking, possibly buffered by the quiet cell, leads to LTP, while larger 99 

influx of calcium during paired tonic spiking activity exceeds that required for LTP, instead 100 

activating the mechanisms leading to LTD (Sevetson et al., 2017). 101 

Our hypothesis that the LTP we saw arose from the minimal amount of calcium influx 102 

revealed by TTA and depolarization of the active cell led us to further investigate differences in 103 

calcium influx and transmission across the gap junction during the two different modes of 104 

induced activity. We therefore performed imaging experiments of pairs with the calcium indicator 105 

OGB-1 included in the internal solution (Fig. 3A1). We drove one cell to spike either in bursts or 106 

in tonic mode, while we held the quiet cell in held in voltage-clamp mode at -70 mV to minimize 107 

calcium signals arising from voltage-activated channels. During the induced bursting in one cell 108 

that leads to LTD (Haas et al., 2011), both peak and integrated calcium levels were higher in the 109 

active cell and in the quiet coupled neighbor than during induced tonic spiking (Fig. 3A2-A4).  As 110 

a negative control, we repeated the imaging in a non-coupled pair (Fig. 3B1-4). Quantification of 111 

peak and integrated calcium signals in the quiet, coupled cells (Fig. 3C, D) both indicate that 112 

less calcium flows across the gap junction during tonic spiking than during bursting (for AUC, -113 

25.2 ± 10.6%, ps = 0.06; for peak calcium, -56.6 ± 10.9%, ps = 0.03, n = 6 pairs).  114 

The LTP we observed that resulted from single-cell activity was expressed 115 

asymmetrically: coupling into the active cell increased, while coupling into the quiet cell 116 

decreased (Fig. 1). To examine whether this asymmetrical plasticity was consistent across 117 

pairs, we computed asymmetry as the ratio of coupling measured into the active cell, divided by 118 

coupling measured from the active cell. Those ratios consistently increased after LTP induction 119 

for both coupling coefficient (Fig. 4A; mean increase 24.3 ± 6.2%, pt = 0.0015, ps = 0.008, n = 120 

12 pairs) and conductance (Fig. 4B: mean increase 22.4 ± 8.2%, pt = 0.029, ps = 0.008). We 121 
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noted that some pairs went from initially symmetrical, to finally asymmetric, and vice versa. 122 

Changes in coupling asymmetry were uncorrelated with changes in Rin ratios (R2 = 0.39 for cc 123 

and 0.03 for GC). These results are consistent with the asymmetrical changes we also observed 124 

for burst-induced LTD (Haas et al., 2011) in that both asymmetrical LTP and LTD required 125 

sodium spikes, and changes were larger for coupling measured into the active cell. These 126 

changes in asymmetry indicate that the unidirectional use of the electrical synapse, and perhaps 127 

unidirectional calcium flow, systematically alter the fundamental property of each synapse. 128 

Together, our results lead us to propose a calcium rule for plasticity of electrical 129 

synapses, whereby smaller amounts of calcium influx lead to LTP, and larger amounts lead to 130 

LTD (Fig. 5). The proposed rule is similar in concept to those proposed (Bienenstock et al., 131 

1982; J. Lisman, 1989) (J. E. Lisman, 2001)and demonstrated (Dudek & Bear, 1992; Malenka & 132 

Bear, 2004; Malenka et al., 1989) at glutamatergic synapses.   133 

Discussion 134 

Here we show that long-term potentiation of electrical synapses results from tonic 135 

spiking in a single cell of the electrically coupled pair. To our knowledge, this is the first 136 

demonstration of LTP in mammalian electrical synapses that results from spiking activity within 137 

coupled neurons and flow of ions across the synapse. Moreover, our results taken together 138 

indicate a bidirectional calcium dependence of activity-dependent plasticity at electrical 139 

synapses, whereby high calcium influx and flow across the gap junction leads to LTD (Haas et 140 

al., 2011; Sevetson et al., 2017) while minimal calcium influx and flow across the gap junction 141 

leads to LTP. The links established here between physiological patterns of spiking activity in 142 

TRN neurons demonstrate that ongoing plasticity of electrical synapses is likely to occur in the 143 

active brain. As calcium rules are common for chemical synapses, we expect that calcium 144 

dependent rules, possibly in different forms, will underlie plasticity of electrical synapses across 145 

the brain. 146 
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The magnitude of LTP-induced changes in electrical synapse strength are similar in 147 

magnitude to our previous demonstration of LTD, less than 20% (GC or cc).  These are modest 148 

changes relative to those often demonstrated at chemical synapses driven by tetanic 149 

stimulation. A direct comparison between synapse types and plasticity would need to account 150 

for differences in subcellular localization differences and differences in function, for instance 151 

spike efficacy. However, for LTD we showed that these changes were sufficient to silence a 152 

synapse, from one that induces spikes in neighbors, to an ineffective synapse (Haas et al., 153 

2011). Further, these numerically modest changes in synaptic strength yield 5-10 ms changes in 154 

spike times in coupled neighbors (Haas, 2015).  Computational models reinforce the 155 

effectiveness of changes in coupling in this range (Pham & Haas, 2018, 2019). Thus, even 156 

seemingly modest changes in electrical synapse strength produce physiologically substantial 157 

effects, and are poised to exert major influence on TRN synchrony and processing.  158 

Our experiments required minimization of T currents by TTA in order to reveal conditions 159 

favorable for LTP at electrical synapses. While this is not strictly a physiological condition, we 160 

expect that together with depolarization of the active cell, these perturbations were necessary to 161 

counterbalance the artificial quiescence and hyperpolarization of the brain slice preparation, in 162 

which almost any depolarization of thalamic neurons activates T currents and thereby LTD.  We 163 

expect that LTP is more likely to occur in vivo during prolonged depolarizations when tonic 164 

spiking dominates spiking patterns (Pinault, 2004).  We further hypothesize that during tonic 165 

spiking in one neuron, calcium influx into the active cell is buffered across the gap junction by 166 

the quiet cell (Fig. 2, 3). Together, these results imply that LTP can be initiated by tonic spikes in 167 

single neurons, and subsequently counterbalanced by LTD resulting from bursts; together, 168 

these form a bidirectional basis for active neurons to modify the gain of their inputs. 169 

Although functional asymmetry is not an expected property of gap junctions purely 170 

composed of connexin36 hemichannels (Srinivas et al., 1999), it has been observed as a 171 
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widespread property of mammalian electrical synapses (Apostolides & Trussell, 2014; Devor & 172 

Yarom, 2002; Otsuka & Kawaguchi, 2013; Sevetson & Haas, 2015; Snipas et al., 2017; 173 

Vervaeke et al., 2010; Zolnik & Connors, 2016). Our previous results demonstrated that 174 

asymmetry systematically increases during LTD induced by asymmetrical bursting activity 175 

(Haas et al., 2011). Asymmetry was also shown to increase following LTP produced by NMDA 176 

application (Turecek et al., 2014) or by cerebellar input to coupled inferior olivary neurons 177 

(Lefler et al., 2014). Our results here add further evidence towards modifications of asymmetry 178 

that occur during plasticity; both our previous LTD results and the present LTP results indicate 179 

that sodium spikes are necessary for changes in asymmetry, and that changes are larger in the 180 

direction incoming to the active neuron. Together, these reports form a growing consensus that 181 

asymmetry and asymmetrical changes are a fundamental property of electrical synapses that 182 

potentially refine the function of each individual synapse within its neuronal circuit, allowing for 183 

each neuron to adjust the relative proportion of input it sends and/or receive from coupled 184 

neighbors via electrical synapses. Differences in intracellular scaffolding proteins have been 185 

shown to construct asymmetrical electrical synapses in zebrafish (Marsh et al., 2017). We 186 

suggest that increased expression or open probability of more-asymmetrical non-connexin36 187 

proteins (Zolnik & Connors, 2016) could also account for this activity-dependent increase in 188 

asymmetry. Alternatively, differential post-translational modification, such as asymmetrical 189 

phosphorylation of cx36 hemichannels, or differences in ubiquitination-mediated endocytosis 190 

(Lynn et al., 2018), or the hypothesized effects of gating properties of the channel (Snipas et al., 191 

2017) remain possible. In TRN, calcium bursts are activated in dendrites independently of 192 

somatic compartments, which could further result in independent modifications of one side of 193 

the gap junction. Asymmetry can strongly influence spike times in coupled pairs (Sevetson & 194 

Haas, 2015) and thereby impact cortical discrimination through the thalamocortical circuit (Pham 195 

& Haas, 2018). We suggest that it may also take part in directional signaling mediated by 196 
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electrical synapses, such as that found in direction-sensitive retinal ganglion cells (Yao et al., 197 

2018). 198 

Based on our previous and current work, we propose a calcium rule for bidirectional 199 

activity-dependent plasticity at electrical synapses. This rule is ‘inverse’ to those described for 200 

chemical synapses, where smaller calcium influx produces LTD while larger influxes lead to LTP 201 

(Bienenstock et al., 1982; Dudek & Bear, 1992; Malenka et al., 1989). Notably, an inverse rule 202 

for chemical synapses also exists in the cerebellum (Coesmans et al., 2004). As previous 203 

studies have found that LTD is induced by calcium-based pathways leading to phosphatase 204 

activation (Sevetson et al., 2017), we expect that LTP may depend on a phosphorylation 205 

mechanism initiated by calcium.  Retinal coupling depends on phosphorylation (Kothmann et al., 206 

2007), and tetanus-induced forms of plasticity at mixed synapses onto Mauthner cells in goldfish 207 

depend on NMDA-regulated calcium entry (Pereda & Faber, 1996; Yang et al., 1990). Recent 208 

work has also shown that spiking-initiated calcium entry leads to potentiation for up to 10 min. at 209 

an invertebrate electrical synapse (Welzel & Schuster, 2018).  While not directly examined, our 210 

results imply that the threshold between the concentration of calcium for LTP and LTD is rather 211 

low, as even paired tonic spiking fails to induce LTP, and the T current that underlies burst-212 

induced LTD is active at rest potentials. This bias of plasticity towards LTD, however, could be 213 

specific to brain-slice conditions, as addressed above. We find it likely that electrical synapses 214 

across the brain follow a calcium-based rule for plasticity, although non-bursting neuronal types 215 

may alternatively follow a different rule.  216 

A role for plasticity of electrical synapses has been proposed for switches in attentional 217 

state (Coulon & Landisman, 2017). Taken together, our results demonstrate that the strength of 218 

electrical synapses can be modified positively or negatively in strength as a result of 219 

physiological activity in the TRN, and with neuron-specific directionality. For single cells, activity-220 

dependent plasticity of electrical synapses could modulate that cell’s input sensitivity between 221 
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modes in which intra-TRN input is strongest and dominates its responses, to modes in which 222 

corticothalamic or thalamocortical chemical input is given preference over electrically networked 223 

signals. This high degree of acuity and adjustability of connectivity within coupled networks 224 

forms a basis for shifts of sensory attention regulated by the TRN. TRN neurons can toggle 225 

thalamic neurons between firing modes in order to maintain cortical sleep rhythms and the 226 

associated behaviors of that state (Sorokin et al., 2017), and the activity and synchrony of TRN 227 

neurons required for that toggle may be supplied by its electrical synapses. Sensory processing 228 

of selective features (Soto-Sanchez et al., 2017) is also likely to depend on acutely refined TRN 229 

connectivity in a similar manner.  Beyond the TRN and its functions, our work shows that 230 

electrically coupled networks are potentially under a high degree of regulation of function 231 

throughout the mammalian brain. 232 

 233 

 234 

Methods 235 

Electrophysiology 236 

All experiments were performed in accordance with federal and Lehigh University IACUC animal 237 

welfare guidelines. Sprague-Dawley rats of both sexes aged postnatal day 11-15 were 238 

anesthetized by inhaled isoflurane (5 mL of isoflurane applied to fabric, within a 1 L chamber) 239 

and sacrificed via decapitation. Horizontal brain slices 300-400 µm thick were cut and incubated 240 

in sucrose solution (in mM): 72 sucrose, 83 NaCl, 2.5KCl, 1 NaPO4, 3.3 MgSO4, 26.2 NaHCO3, 241 

22 dextrose, 0.5 CaCl2. Slices were incubated at 37°C for 20 min following cutting and returned 242 

to room temperature until recording. The bath for solution during recording contained (in mM): 243 

126 NaCl, 3 KCl, 1.25 NaH2PO4, 2 MgSO4, 26 NaHCO3, 10 dextrose and 2 CaCl2, 300–305 244 

mOsm L−1, saturated with 95% O2/5% CO2. The submersion recording chamber was held at 245 
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34°C (TC-324B, Warner Instruments). Micropipettes were filled with (in mM): 135 potassium 246 

gluconate, 2 KCl, 4 NaCl, 10 Hepes, 0.2 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, and 10 247 

phosphocreatine-Tris (pH 7.25, 295 mOsm L−1). 1 M KOH was used to adjust pH of the internal 248 

solution. Internal containing 1,2-bis(2-aminophenoxy)ethane-N,N,N’, N’-tetraacetic acid 249 

(BAPTA) had concentrations of 10 µM. The approximate bath flowrate was 2 ml min−1 and the 250 

recording chamber held approximately 5 ml solution. The specific T-channel antagonist TTA-A2, 251 

generously provided by Dr Bruce Bean (Harvard University) or TTA-P2 (Alamone) were made 252 

into stock aliquots of 3 mM in DMSO; final concentration was 1 µM. 6-Cyano-7-nitroquinoxaline-253 

2,3-dione (CNQX) at 2.5 µM was obtained from Sigma (St. Louis, MO, USA), and diluted into 254 

high-concentration stock solutions in DMSO or water before final dilution. Final DMSO 255 

concentration was always <0.2%. 256 

 257 

The TRN was visualized under 5x magnification, and pairs of TRN cells were identified and 258 

patched under 40× IR-DIC optics (SliceScope, Scientifica, Uckfield, UK). Voltage signals were 259 

amplified and low-pass filtered at 8 kHz (MultiClamp, Axon Instruments, Molecular Devices, 260 

Sunnyvale, CA,USA), digitized at 20 kHz (custom Matlab routines controlling a National 261 

Instruments (Austin, TX, USA) USB6221 DAQ board), and data were stored for offline analysis 262 

in Matlab (Mathworks, R2017a, Natick, MA, USA). Recordings were made in whole-cell current-263 

clamp mode. Values Vrest ranged from −50 to −70 mV. 500-ms pulses of negative injections of 264 

current were used to measure coupling, with amplitudes of injected current minimized in order to 265 

minimize T current activation in the injected cell, with a goal of 0.5 - 1 mV deflection in the 266 

coupled cell. Pipette resistances were 5-9 MΩ before bridge balance, which was removed if 267 

exceeding 25 MΩ. Voltages are reported uncorrected for the liquid junction potential.  268 

Calcium imaging 269 
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To visualize calcium flux into and within coupled and uncoupled cells, 200 µM Oregon Green 270 

488 BAPTA-1 (OGB-1) was added to the internal solution. An LED with wavelength 472 nm was 271 

delivered through the objective to excite the OGB-1. Images were captured at 30 fps through 272 

40X IR-DIC optics (SliceScope, Scientifica, Uckfield, UK) and stored for offline analysis with 273 

Matlab. Regions of interest (ROIs) were chosen in the center of each recorded neuron, and 274 

changes in fluorescence normalized to baseline and background fluorescence were computed 275 

for each ROI. 276 

Numerical Analysis 277 

All numerical analysis was performed in Matlab (R2017). Input resistances (Rin) for each cell 278 

and coupling between cells were quantified by injecting 25-100 pA of hyperpolarizing current 279 

into one cell of a coupled pair and measuring the voltage deflection in that cell (ΔV) and in the 280 

couple neighbor (δV). Coupling coefficient (cc) is computed as δV/ΔV and are reported as 281 

averages of a set of 10 measurements, repeated every 2 min. Coupling conductances GC were 282 

estimated separately for each direction (Fortier, 2010; Sevetson & Haas, 2015). Experiments 283 

were discarded if input resistance Rin of either cell deviated from its initial value by more than 284 

20%. Changes in coupling were evaluated as the average over the first 20 minutes following 285 

activity, compared to the normalized baseline values, and are reported as means ± SEM. We 286 

report Student’s t-tests as two-tailed paired comparisons of pre- and post-stimulus averages 287 

and report the results as pt. Two-sided Wilcoxon signed rank tests were also carried out on the 288 

sets of change in coupling for each condition and are reported as ps. No multiple comparisons 289 

were performed. 290 

 291 

  292 
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 293 

Figure 1. Long-term potentiation results from tonic firing in one cell of a coupled pair. A) 294 

TRN neurons fire bursts from hyperpolarized potentials (left; Vm = -82 mV) and tonic spikes from 295 

depolarized potentials (right; Vm = -55 mV). Scale bar 20 mV, 200 ms. B) Schematic of coupling 296 

measurement from an active cell (grey) and its electrically coupled neighbor (sage). C) Regular 297 

tonic spiking was driven by current injection into one cell (grey; Vm = -54 mV), while the coupled 298 

cell (sage) rests at -70 mV without stimulation. Experiments were performed with TTA in the 299 

bath. Scale bar 25 mV, 250 ms. D) Coupling coefficients (cc) for a pair before (left) and after 300 

(right) tonic spiking as shown in C. cc from the quiet cell into the active cell (green arrows) is 301 
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shown in the top panel, and cc in the reverse direction on bottom. E) Coupling conductance GC 302 

shown for each direction, before and after stimulated spiking, normalized to pre-activity values 303 

(for GC quiet→ active, ΔGC = 15.5 ± 2.4%, pt = 0.004; for GC active→ quiet, ΔGC = -1.5 ± 0.5%, 304 

pt = 0.78; n = 12 pairs). F) cc for each direction (for quiet→ active, Δcc = 13.6 ± 2.2%, pt = 0.01, 305 

n = 12; for active → quiet, Δcc = 7.6 ± 0.5%, pt = 0.018; n = 12 pairs). G) Input resistance for 306 

both cells during the experiments. H) GC for each pair used in D (for GC quiet→ active, ps = 307 

0.0009; for active → quiet, ps = 0.76). I) cc for each pair used in E (for cc quiet→ active, ps = 308 

0.01; for active → quiet, ps = 0.019). pt indicates 2-tailed, paired Student’s t-test, and ps is a 309 

Wilcoxon sign test.  310 
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 311 

Figure 2. LTP is specific to single-cell stimulation and depends on calcium influx. A) cc 312 

and Gc before and after paired tonic spiking in TTA (averaged over both directions; for Δcc, pt = 313 

0.13, ps = 0.12; for ΔGC, pt = 0.3, ps = 0.2; n = 8 pairs). B) cc and Gc before and after paired 314 

tonic spiking in unmodified ACSF (averaged over both directions; for Δcc, pt = 0.37, ps = 0.46; 315 

for ΔGC, pt = 0.08, ps = 0.07; n = 6 pairs). C) cc and Gc before and after single-cell spiking with 316 

calcium chelated by BAPTA in the internal. For ΔGC active → quiet, pt = 0.89, ps = 0.84; for ΔGC 317 

quiet → active, pt = 0.34, ps = 0.46; for Δcc active → quiet, pt = 0.09, ps = 0.07; for Δcc quiet → 318 

active, pt = 0.66, ps = 0.95 (n = 7 pairs). D) cc and Gc before and after single-cell tonic spiking in 319 

unmodified ACSF. For ΔGC active → quiet, pt = 0.38, ps = 0.57; for ΔGC quiet → active, pt = 320 

0.78, ps = 0.82; for Δcc active → quiet, pt = 0.4, ps = 0.73; for Δcc quiet → active, pt = 0.16, ps = 321 

0.25 (n = 9 pairs).  322 
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 323 

Figure 3. Calcium flows across the gap junction during spiking. A1) IR-DIC and GFP 324 

images of a coupled pair (cc = 0.17). A2) Calcium signals (ΔF/F) in a cell directly stimulated to 325 

burst (dark red) or spike tonically (dark blue), and calcium signals in the quiet cell (lighter 326 

shades) of a coupled pair. Scale bar 2.5%, 100 ms. A3) Bursting (left) or tonic spikes (center) 327 

that drove responses in A2. Scale bar 10 mV, 100 ms. A4) Average calcium signals during 328 

bursting (reds) and tonic spiking (blues) in this coupled pair. B1) GFP image of an uncoupled 329 

pair. Scale bar 2.5%, 100 ms. B2) Calcium signals (ΔF/F) in a cell directly stimulated spike 330 

tonically (dark blue), and in the quiet uncoupled cell (light blue). B3) Tonic spikes that drove 331 

responses in B2. B4) Average calcium signals during tonic spiking in uncoupled pairs (n = 2 332 

pairs). C) Total (area under curve) ΔF/F in the quiet cell during bursting (B, red) and tonic spikes 333 

(T, blue) within each pair (mean difference -25.2 ± 10.6%, ps = 0.06, n = 6 pairs), and for 334 
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uncoupled pairs (black, nc; n = 2 pairs). D) Peak ΔF/F in the quiet cell during bursting (B, red) 335 

and tonic spikes (T, blue) within each pair (mean difference -56.6 ± 10.9%, ps = 0.03, n = 6 336 

pairs), and for uncoupled pairs (black, nc; n = 2 pairs).  337 
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 338 

 339 

 340 

 341 

 342 

Figure 4. LTP is expressed asymmetrically. A) Asymmetry of coupling (cc into active cell / cc 343 

from active cell) increased consistently across pairs following activity-induced LTP, plotted here 344 

against initial values (mean change 24.3 ± 6.2%, pt = 0.0015, ps = 0.008, n = 12 pairs). B) 345 

Asymmetry of coupling conductance (GC into active cell / GC from active cell) increased 346 

consistently across pairs following activity-induced LTP, plotted against initial values (mean 347 

change 22.4 ± 8.2%, pt = 0.029, ps = 0.008).  348 

 349 

 350 

 351 

 352 

 353 
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 354 

 355 

 356 

 357 

 358 

Figure 5.  Proposed calcium-based activity rule for electrical synapses. Smaller influx of 359 

calcium during tonic spiking (green) leads to LTP, while larger influx during bursting (red) leads 360 

to LTD.  361 
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