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Abstract 

 

The behaviour of complex biological systems is determined by the orchestrated activity of many 

components interacting with each other, and can be investigated by networks. In particular, gene 

co-expression networks have been widely used in the past years thanks to the increasing availability 

of huge gene expression databases. Breast cancer is a heterogeneous disease usually classified 

either according to immunohistochemical features or by expression profiling, which identifies the 5 

subtypes luminal A, luminal B, basal-like, HER2-positive and normal-like. Basal-like tumours are the 

most aggressive subtype, for which so far no targeted therapy is available. 

Making use of the WGCNA clustering method to reconstruct breast cancer transcriptional 

networks from the METABRIC breast cancer dataset, we developed a platform to address specific 

questions related to breast cancer biology. In particular, we obtained gene modules significantly 

correlated with survival and age of onset, useful to understand how molecular features and gene 

expression patterns are organized in breast cancer. We next generated subtype-specific gene 

networks and in particular identified two modules that are significantly more connected in basal-

like breast cancer with respect to all other subtypes, suggesting relevant biological functions. We 

demonstrate that network centrality (kWithin) is a suitable measure to identify relevant genes, since 

we could show that it correlates with clinical features and that it provides a mean to select potential 

upstream regulators of a module with high reliability. Finally, we showed the feasibility of adding 

meaning to the networks by combining them with independently obtained data related to activated 

pathways. 

In conclusion, our platform allows to identify groups of genes highly relevant in breast cancer and 

possibly amenable to drug targeting, due to their ability to regulate survival-related gene networks. 

This approach could be successfully extended to other BC subtypes, and to all tumor types for which 

enough expression data are available. 
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Introduction 
The behaviour of complex systems emerges from the orchestrated activity of many components 

interacting with each other. Thus, networks are a valuable construct to investigate the property of 
biological systems (Barabási & Oltvai, 2004). In this context, networks are typically defined by 
genes as nodes and regulatory relationships, actual or potential, as edges. Network inference can 
be based on high-throughput data only, in which case it is completely unbiased, or rely on prior 
information (Chasman, Siahpirani, & Roy, 2016). Both methods have advantages and downsides. 
The unbiased method allows the exploration of the whole gene network in a plethora of conditions, 
while introducing specific experimentally-driven regulatory interactions, despite significantly 
increasing network information content and reliability, is limited to a few nodes, edges and 
contexts for which experimental data are available (Chasman et al., 2016).  As a consequence of 
the increasing number of available transcriptomic data, gene co-expression networks are amongst 
the most widely studied ones (Zhao et al., 2010). They are considered a proxy for gene regulatory 
networks, with the assumption that in most cases transcription factors and the genes they 
positively regulate are correlated at the transcriptional level. Nevertheless, there is no attempt to 
draw direct causal relationships among the genes in the network in the form of directed edges. 
Additionally, interactions in eukaryotes are difficult to infer, as relationships between the 
expression of regulators and targets are context-dependent due to the complex combinatorial 
nature of eukaryotic transcriptional regulation (Neph, Stergachis, Reynolds, Sandstrom, & 
Borenstein, 2012), suggesting that the most reliable network constructions can be obtained by 
separating the samples according to specific conditions/groups.  

Networks have been used to understand disease mechanisms (Emilsson et al., 2008; Feldman, 
Rzhetsky, & Vitkup, 2008; Furlong, 2013; Goh, Cusick, Valle, Childs, & Vidal, 2007; Malod-dognin et 
al., 2019), and define therapeutic drugs and their targets (Isik, Baldow, Cannistraci, & Schroeder, 
2015; L. Liu et al., 2018; Yamanishi, Araki, Gutteridge, Honda, & Kanehisa, 2008). In particular, since 
complex systems are very robust to component perturbations, network structure can inform on 
specific genes that are fundamental for network integrity (Albert, Jeong, & Barabási, 2000). In fact, 
the number of connections of a gene was shown to be correlated with its relevance in maintaining 
cell viability in S. cerevisiae (Jeong, Mason, Barabási, & Oltvai, 2001), and essential proteins have 
been found to be associated with hubs (i.e. highly connected genes) in human (Goh et al., 2007). 
This property is largely due to the scale-free topology of biological networks, meaning that most 
genes have low numbers of connections, while a few genes are highly connected (Albert et al., 
2000).  

Gene networks are likely to be organized in a modular fashion, with modules identifying groups 
of tightly topologically or functionally interconnected genes (Hartwell, Hopfield, Leibler, & Murray, 
1999). Several methods have been proposed for modules inference (Saelens, Cannoodt, & Saeys, 
2018), with clustering methods being particularly suited for global networks analyses and 
interpretation, despite not allowing the definition of finer grained modules with possibly 
overlapping genes. WGCNA (Weigthed Gene Coexpression Network Analysis) is a co-expression 
modules identification method based on clustering that assumes a scale-free topology and defines 
gene connectivity based on topological features (Langfelder & Horvath, 2008; B. Zhang & Horvath, 
2005). 

Breast cancer (BC) is one of the leading causes of mortality in women worldwide, for which no 
general efficacious treatment is available due to disease heterogeneity. BC is usually classified 
according to the immunohistochemical assessment of the expression of Progesterone and 
Estrogen Receptors (ER-positive BC), human epidermal growth factor receptor 2 (HER2-positive) 
and the proliferation marker Ki67 (Goldhirsch et al., 2009; Viale, 2012). Tumours negative for ER, 
PR and HER2 are defined as triple negative (TN). Alternatively, gene expression profiling of the 
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tumour (Prediction Analysis of Microarray or PAM 50 assay) allows the classification in five 
molecular subtypes, partially overlapping with histological characterization: luminal A, luminal B, 
basal-like, HER2-positive and normal-like. These are correlated with prognosis and response to 
treatments (Perou et al., 2000). In particular, the basal-like (BL) subtype, which mostly correspond 
to TNBC, does not usually respond to targeted treatments such as hormonal blockage or Herceptin, 
and shows poor outcome and high frequency of TP53 mutations (Perou et al., 2000). Moreover, 
basal-like tumours show hyperactivation of the STAT3 and Wnt/PCP pathways. The TF STAT3 
(Signal Tranducer and Activator of Transcription 3) is considered as an oncogene and correlates 
with poor prognosis. It is implicated in many functions fundamental for cancer progression such as 
proliferation, survival, invasiveness and metastasis (Avalle, Pensa, Regis, Novelli, & Poli, 2012; Yu, 
Lee, Herrmann, Buettner, & Jove, 2014). Survival of many basal-like cell lines was shown to require 
STAT3 activity (Muellner et al., 2015). Similarly, Wnt signalling has been implicated in malignant 
transformation (Logan & Nusse, 2004). Depending on the type of ligands involved, Wnt signalling 
has been classified as canonical or non-canonical, with the non-canonical Planar Cell Polarity (PCP) 
pathway being involved in defining cell shape and movement and inducing cancer progression 
(Klemm et al., 2011; Veeman, Axelrod, & Moon, 2003; Wang, 2009), particularly in basal-like BC. 

Network inference has been applied to the study of breast cancer for the identification of 
prognostic modules and centrally connected genes as potential therapeutic targets (Clarke et al., 
2013; Herschkowitz et al., 2010; X. Liu et al., 2007; Shi et al., 2017; Wolf, Lenburg, Yau, Boudreau, 
& Veer, 2014; Yang et al., 2014). Nevertheless, most published works are purely descriptive and do 
not exploit the wealth of information hidden in these networks for the definition and investigation 
of specific biological hypotheses. Additionally, the problem of differences in network structure 
across conditions has motivated the definition of differential co-expression analysis methods 
(Klein, Oualkacha, Lafond, & Bhatnagar, 2016; Yu, Zhao, Wang, Zhao, & Zhao, 2017; Zhu et al., 
2017), but network structure and connectivity have never been compared across breast cancer 
subtypes. However, this investigation could drive the generation of new hypotheses about the 
molecular features conferring aggressiveness to the basal-like subtype.  

Reconstructing breast cancer transcriptional networks, we developed a platform to address 
specific questions for BC in general and for specific BC subtypes: i) Which are the genes possibly 
driving clinical features? ii) Can we identify upstream regulators or downstream targets of specific 
signalling pathways? iii) Are there specific gene interactions explaining the phenotypic differences 
between cancer subtypes? Our platform represents a tool to address these and many other 
biological questions, identify key regulatory genes and drive experimentally-testable hypotheses. 
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Results 
 
Network construction 

We applied WGCNA (Weighted Gene Coexpression Network Analysis) (Langfelder & Horvath, 
2008; B. Zhang & Horvath, 2005) to a wide primary breast tumour transcriptome dataset 
(METABRIC) (Curtis et al., 2012), defining 21 modules of co-regulated genes across all patients 
(Suppl. Fig. 1). Modules’ names were assigned by analysing the Hallmarks sets defined by the 
Molecular Signature Database (http://software.broadinstitute.org/gsea/msigdb), choosing the 
gene set displaying the most significant enrichment among the module’s genes. NC denotes the 
modules for which no significant enrichment was found. These groups of genes were confirmed to 
be robust, being significantly co-regulated both in an independent primary breast tumour dataset 
(TCGA-BRCA) and in a panel of breast cancer cell lines (http://cancergenome.nih.gov/, Daemen et 
al., 2013, Suppl. Fig. 2). Moreover, the relationships between genes within each module were 
confirmed by their enrichment in interacting proteins, as obtained from STRING protein interaction 
database (Jensen et al., 2009) (not shown). Based on these networks we developed two lines of 
investigation, aimed at identifying genes most likely involved in i) determining clinical features and 
ii) being part of selected signalling pathways linked to cancer aggressiveness. 
 
Transcriptional networks are correlated with clinical features 

To identify transcriptional networks related with clinical features we calculated for each patient 
the correlation between modules’ expression and clinical features such as tumour grade and age at 
diagnosis, as a proxy of age at onset (Fig. 1A). As a measure of module’s expression we used the 
eigengene, i.e. the ideal gene that best represents the whole module (B. Zhang & Horvath, 2005). 

All but three modules showed a significant correlation, either positive or negative, with tumour 
grade (Fig. 1A), and an opposite trend with respect to age at diagnosis (Table I). In particular, 
E2F_targets and KRAS_dn1 were the top modules considering the combination of significance 
between positive correlation with grade and negative correlation with age at diagnosis (Fig. 1A). 
Thus, tumours with higher expression of either module have features of higher aggressiveness, since 
they develop earlier and with a higher grade than average (Brandt, Garne, Tengrup, & Manjer, 
2015). In contrast, the Estrogen_response module is negatively correlated with grade and positively 
correlated with age at diagnosis, indicating that its expression is representative of the least 
aggressive tumours.  

To further test the relationships with clinical features we calculated the correlation between 
module eigengenes and patients’ overall survival: both the KRAS_dn1 and E2F_targets modules 
were significantly associated with poor prognosis, confirming the association between their 
expression and cancer progression (Fig. 1B). In contrast, high expression of the Estrogen_reponse 
module was significantly associated with good prognosis. Several other modules were either 
positively or negatively correlated with survival (Table I, Suppl. Fig. 3,4). Finally, we examined 
whether modules’ expression was significantly different among breast cancer molecular subtypes 
(Suppl. Fig. 5), and found that the modules KRAS_dn1 and E2F_targets are the top overexpressed 
modules in the highly aggressive basal-like tumours (p-values <2.2*10-16), while the 
Estrogen_response module is overexpressed in both luminal subtypes (p-values <2.2*10-16) (Fig. 1C, 
Suppl. Fig. 5). Of note, the E2F_targets module is also overexpressed in the HER2 subtype when 
compared with all other breast cancer samples (p-value <2.2*10-16). 
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Figure 1. A) Correlation between modules’ expression, represented by module eigengene, and tumour grade and age at diagnosis. 
Each row corresponds to a different module, columns correspond to clinical features. Red indicates positive and blue negative 
correlations. For each combination of module-clinical feature, correlation and p-value are shown in the corresponding box. B) 
E2_targets, KRAS_dn1 and Estrogen_response modules correlate with disease outcome. Patients classified according to the 
expression levels of the E2_targets and KRAS_dn1 modules display significantly different survival probability, with higher modules 
expression correlating with poor prognosis. In contrast, Estrogen_response expression significantly correlates with good prognosis. 
C) E2F_targets, KRAS_dn1 and Estrogen_response modules’ expression across BC molecular subtypes. E2_targets and KRAS_dn1 are 
significantly up-regulated, while Estrogen_response is significantly down-regulated, in BL tumours. * p-value for the comparison 
between basal-like versus all other BCs, <2.2*10-16. 

 
Table I. Relationships between module expression and prognosis (5-year disease-specific survival) 

Module Prognosis p-value 

E2F_targets Poor <2.2*10-16 

MYC_targets2 Poor 1.2*10-15 

KRAS_dn1 Poor 1*10-10 

NC6 Poor 2.2*10-09 

NC3 Poor 2*10-04 

NC5 Poor 0.0028 

Allograft_rejection Poor 0.0034 

Interpheron_alpha Poor 0.0058 

Oxidative_phosphorylation2 Poor 0.014 

NC4 Good <2.2*10-16 

Estrogen_response Good <2.2*10-16 

Oxidative_phosphorylation1 Good 1.1*10-10 

NC2 Good 1.2*10-08 

 

Having thus identified two gene networks of particular interest (E2F_targets and KRAS_dn1), we 
moved a step forward and defined the most central genes in each module, focusing our interest on 
transcription factors (TF) as potential candidates for regulating the expression of modules’ genes. 
As a measure of network centrality we used the intramodular connectivity (kWithin) that we show 
to be a valuable parameter to identify functionally relevant genes. In fact, the kWithin correlates 
with the significance of association with poor prognosis for genes in the E2F_targets module (Fig. 
2C).  
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Figure 2. A) Relationship between kWithin of genes in the E2F_targets module and their significance for correlation with poor 
prognosis. E2F_targets (B) and KRAS_dn1 (C) modules represented with Cytoscape. Each circle is a gene, edges are the strongest 
topological connections between genes. Red indicates genes correlated with poor prognosis, in green are genes correlated with 
favourable prognosis. Size of nodes is proportional to kWithin. D) PSAT1 expression across molecular subtypes. * p-value for the 
comparison between basal-like versus all other subtypes <2.2*10-16. E) Survival curves of patients divided according to PSAT1 
expression, showing that higher PSAT1 expression significantly correlates with poor prognosis. 

 

As shown in Fig. 2B, the E2F_targets module’s hubs are cell cycle-related genes, such as CDCA5, 
TPX2 and CENPA, while the most central TF is FOXM1, scoring as the 14th gene of the module based 
on the kWithin (Suppl. Table I). Indeed, this TF is well known to be involved in cancer progression 
and therapy resistance, in particular in BC (reviewed in Saba, Alsayed, Zacny, & Dudek, 2016). The 
most central genes in the E2F_targets module are overexpressed in basal-like tumours and 
associated with poor prognosis (Suppl. Fig. 6,7), confirming that they represent well module’s 
features. The first hub of the KRAS_dn1 module (Fig. 2B) is the FOXC1 TF, well-known to be involved 
in BC development and metastasis, overexpressed in basal-like breast cancer and associated with 
poor prognosis (reviewed in Han et al., 2017). The second and third hubs are ROPN1, a cancer-testis 
antigen involved in sperm motility, and its paralog ROPN1B. Little is known about ROPN1 in breast 
cancer, but it has been associated with a SOX10 signature shared with salivary adenoid cystic cancer 
(Ivanov et al., 2013). Interestingly, SOX10 scores as the 8th hub in the same KRAS_dn1 module, and 
has been reported to be a marker of TNBC (Peevey, Sumpter, Paintal, Laskin, & Sullivan, 2015) and 
involved both in stem cell activity and EMT in mammary epithelial cells  (States et al., 2015). Next is 
VGLL1, the 6th gene in the kWithin ranking in the KRAS_dn1 module (Suppl. Table I). It is a 
transcriptional co-activator that binds to several members of the TEAD family of TFs to modulate 
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the Hippo signalling pathway and it is involved in cell cycle regulation. Its association with basal-like 
BC has only been reported once (Castilla et al., 2014). As observed for the E2F_targets module, also 
in KRAS_dn1 module the most central genes are overexpressed in the basal-like subtype and often 
correlated with poor survival (Suppl. Fig. 6,7). Notably, the KRAS_dn1 module is split into two 
subnetworks connected by a single node, represented by the PSAT1 gene (Phosphoserine 
aminotransferase 1, involved in serine biosynthesis) (Fig. 2C). Interestingly, one of the two 
subnetworks is highly enriched in poor prognosis related genes (Suppl. table II), and PSAT1 
expression itself correlates with poor prognosis (p-value: 4.5*10-10, Fig. 2E), and is significantly 
enriched in basal-like BC (Fig. 2D). This gene is therefore a good candidate for shaping the KRAS_dn1 
module and to coordinate the expression of the module’s genes involved in aggressiveness. 

The Estrogen_response module, overexpressed in luminal tumours, has among its central nodes 
the TFs GATA3, ESR1 and FOXA1 (respectively 1st, 2nd and 7th in the kWIthin ranking, Suppl. Table I), 
known to be master regulators of ER-positive breast tumours, where they are overexpressed (Suppl. 
Fig. 6). GATA3 and FOXA1 have both been implicated in shaping the distribution of the ER TF on 
chromatin and in inhibiting the basal-like phenotype (Bernardo et al., 2012; Hisamatsu, Tokunaga, 
Yamashita, & Akiyoshi, 2015; Theodorou, Stark, Menon, & Carroll, 2013). Interestingly, amongst the 
most centrally connected genes are MLPH and P4HTM, whose possible role in BC is poorly 
characterized.  
 
ZNF532 is a potential common target of STAT3 and WNT/PCP pathways 

As a second approach, we investigated whether the BC networks we constructed could be used 
to define potential targets of specific pathways. The reasoning behind this idea was that if a gene is 
transcriptionally activated by a pathway, then it will be co-expressed with genes of the pathway. 
Therefore pathway genes and potential targets will be part of the same network. 
Here, we decided to search for potential common targets of the STAT3 and Wnt/PCP pathways, 
which display several overlapping functions and can interact in a feed-forward loop (Armanious, 
Gelebart, Mackey, Ma, & Lai, 2010; Gujral et al., 2014; Katoh & Katoh, 2007). The mostly non 
canonical Wnt5a and Wnt5b ligands are overexpressed in basal-like BC cell lines (Klemm et al., 
2011). Moreover, we recently showed that the two pathways converge on the activation of the 
common downstream target RhoU, promoting cell motility in basal-like human breast tumour cells 
(Monteleone et al., 2019). Hence, here we aimed at identifying potential additional common targets 
of the two pathways that could mediate their functions in determining cancer aggressiveness. 

As a first step, we collected a set of gene signatures of the two pathways (Alvarez et al., 2005; 
Azare et al., 2007; Bayerlová et al., 2017; Dauer et al., 2005; Labbe et al., 2007; Sandsmark et al., 
2017; Sonnenblick et al., 2015; R W Tell & Horvath, 2014; Willert, Epping, Pollack, Brown, & Nusse, 
2002; Ziegler et al., 2005) and we determined which, if any, of the BC modules we defined was 
enriched in at least one signature of both pathways. Not surprisingly, this analysis pointed to the 
EMT network, enriched for STAT3 and non-canonical WNT signatures with p-values of 0.001 and 
0.02, respectively (Azare et al., 2007; Sandsmark et al., 2017). Via the analysis of a BC ChIP-seq 
dataset (Mcdaniel et al., 2016), we determined that the EMT module is enriched for genes displaying 
STAT3 binding at their promoter in the basal-like BC cell lines HCC1143 and MDA-MB-157 (p-values: 
<0.004 and <3*10-12, respectively). Moreover, we analysed an RNA-seq dataset of the basal-like 
MDA-MB-231 cell line upon STAT3 knock-down, and another one of the luminal cell line MCF7 upon 
overexpression of the WNT/PCP ROR2 co-receptor (Bayerlová et al., 2017; Mcdaniel et al., 2016). 
We selected the genes representing the intersection between those down-regulated upon STAT3 
knock-down and up-regulated following ROR2 overexpression, hence positively correlated with 
both STAT3 and WNT/PCP signalling (Suppl. Table III). We then calculated the enrichment of our 
gene networks for these STAT3/ROR2 regulated genes, finding a significant enrichment for the EMT 
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module (25 genes, p-value=2.15*10-5, Suppl. Table IV), followed by the KRAS_dn1 module (p-
value=0.001). Therefore, we conclude that the EMT network includes a significant number of genes 
regulated by both pathways, confirming previous analyses.  
Three TFs (ZNF532, RUNX2 and MSX1) are included in these 25 genes (Suppl. Table IV). Interestingly, 
although the role of ZNF532 in cancer is not known, this factor is overexpressed in basal-like tumours 
(Fig. 3A), significantly correlating with early tumour onset (Pearson’s correlation=-0.17, p-
value=2*10-14) and with poor prognosis (p-value: 0.004) (Fig. 3B). This factor represents therefore 
an interesting candidate as a downstream mediator of the STAT3 and WNT/PCP pathways, 
potentially involved in regulating all or a subset of the other 24 common target genes identified 
above. 

 
Figure 3.  A) ZNF532 expression in basal-like vs luminal (A and B) tumours (* p-value<2.2*10-16). B) Survival curves of patients divided 
based on ZNF532 expression showing that higher ZNF532 expression significantly correlates with poor prognosis. 

 

Identification of basal-like specific networks 
The complexity of reconstructing functionally relevant regulatory networks is partly due to the 

fact that genes may play multiple functions and that their expression, interactions and significance 
can be strongly influenced by different conditions, such as, for example, gender or tumour subtype.  
These potential differences in network structure should be accounted for, and samples belonging 
to different classes should be separated prior to network reconstruction to avoid misleading 
inferences, as described in the Simpson Paradox (Simpson, 1951).  

To dissect the specificity of gene networks in established molecular subtypes of breast cancer, 
WGCNA was applied to each set of METABRIC samples classified as basal-like, luminal A, luminal B, 
HER2-positive. This approach has two advantages: i) having as input a more homogenous set of 
samples, WGCNA can more reliably identify gene networks based on gene interactions and not on 
differential gene expression between sets of samples (determined by different molecular subtypes, 
in this case); ii) it allows identifying differences between network structures across subtypes. 
20 gene modules were identified in basal-like tumours, 21 in luminal A, 19 in luminal B, 10 in HER2-
positive tumours (not shown). We then focused our interest on basal-like networks, searching for 
differences in network structure that could account for the higher aggressiveness of this specific 
subtype. Therefore we selected basal-like specific gene modules based on two criteria: i) at least 
40% of module genes fall in the “unconnected” module in other subtypes’ networks (Suppl. Fig. 8); 
ii) module genes’ intramodular connectivity (kWithin) is higher in basal-like than in other subtypes 
both in METABRIC, where networks have been defined, and in the independent dataset TCGA (Fig. 
4A,B). We did not use gene networks of normal-like tumours due to the low number of samples in 
TCGA (23) that does not allow a reliable network inference. With this approach we identified three 
gene modules more tightly co-regulated in basal-like tumours than in the other subtypes. These 
were named, according to the same criteria used for global modules, b (for basal-like)_E2F_targets, 
b_Estrogen_response and b_Estrogen_response_early. 
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Figure 4. Intramodular connectivity of b_E2F_targets, b_Estrogen_response, b_Estrogen_response_early across BC subtypes as 
obtained calculating the kWithin in Metabric (A) and in TCGA (B). (C) Expression of the three b_modules represented by Module 
Eigengene across BC subtypes.  
* p-value for the comparison of basal-like tumours and all the other subtypes pooled together < 2.2*10-16. 
 

Notably, expression of the b_E2F_targets module genes is up-regulated in basal-like tumours 
while that of the b_Estrogen_response module genes is down-regulated, implying that modules co-
regulation and expression levels are independent (Fig. 4C). The b_Estrogen_response module 
comprises genes specific of ER-positive tumours, such as ESR1 itself, FOXA1 and GATA3, which are 
known to act in the same network in ER-positive breast tumours (Kong, Li, Loh, Sung, & Liu, 2011). 
Indeed, the b_Estrogen_response module is enriched for the global Estrogen_response module 
genes (234/389 genes, Fisher test p-value<2.2*10-16), which are in turn up-regulated in luminal 
molecular subtypes, in agreement with the down-regulation in basal-like tumours (Fig. 4C). 
A possible interpretation of these results is that luminal specific genes are coherently down-
regulated in basal-like tumours, potentially through shared mechanisms, while spreading across 
different pathways upon activation, thus becoming less coherently regulated.  
 
Centrally located transcription factors regulate the whole network 

We then searched for potential regulatory mechanisms in the identified interesting networks by 
selecting hubs within each module. Since the undirected networks we generated do not allow to 
reconstruct upstream and downstream genes in regulatory connections, genes with high kWithin 
could both be downstream targets of many module genes or upstream regulators. In order to 
enhance the likelihood of identifying upstream regulators, we specifically searched for 
transcriptional regulators (TRs), identified as TFs in gene ontology. Strikingly, of the top 25 TRs 
within the b_E2F_targets module, 75% are correlated with BC poor prognosis and 92% are 
overexpressed in basal-like tumours (Table II). 
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Table II. Top centrally located transcription factors in the b_E2F_targets module 

Gene 
survival (p-

value) 
OE in BL (p-

value) 
Expression datasets 

FOXM1 <2.2*10-16 <2.2*10-16 
GSE222, GSE55204, 

GSE25741 

PTTG1 <2.2*10-16 <2.2*10-16 GSE48928 (luminal only) 

TEAD4 1.4*10-8 <2.2*10-16   

EZH2 2.1*10-7 <2.2*10-16 
GSE103242, GSE48979, 

GSE36939 

E2F3 2.8*10-11 <2.2*10-16   

FOXC1 0.098 <2.2*10-16 GSE73234 

PARP1 0.0085 6.3*10-15 GSE34817 

TFDP1 0.015 <2.2*10-16   

CEBPG 8.1*10-6 <2.2*10-16   

CHCHD3 1.3*10-6 <2.2*10-16   

NOLC1 0.00058 <2.2*10-16   

HMGA1 2*10-15 <2.2*10-16 GSE35525 

UHRF1 1.5*10-10 <2.2*10-16   

TAF5 0.0031 <2.2*10-16   

SOX9 0.15 <2.2*10-16   

BOLA1 0.4 1   

TCF7L1 0.054 <2.2*10-16 GSE38893 

SSRP1 0.00017 <2.2*10-16 GSE92281 

ZNF232 0.2 5.4*10-14   

ZNF165 0.28 0.005   

ELF5 0.005 <2.2*10-16 GSE30405 

RCOR2 1.4*10-7 <2.2*10-16   

NR2C2 2.5*10-6 <2.2*10-16   

ZBTB5 0.038 <2.2*10-16   

DNMT1 0.03 <2.2*10-16   

 
We hypothesized that TR hubs of the b_E2F_targets module could be central players in up-

regulating the expression of the genes belonging to the network, and might perhaps even be 
involved in down-regulating the expression of genes belonging to the b_Estrogen_response module 
in basal-like tumours. To test this hypothesis we searched for published experiments reporting gene 
expression datasets obtained in BC cell lines upon modulating selected b_E2F_targets TF hubs, in 
order to assess hubs correlation with global regulation of module’s genes. We found 19 datasets 
collectively studying 9 different TFs. In 16/19 cases, indeed, genes positively correlated with the 
selected TFs showed a significant enrichment (p-value<0.001) for genes in the b_E2F_targets 
module (Fig. 5), validating our hypothesis. The only exception was EZH2, for which contrasting 
results were obtained in different datasets. Nevertheless, our hypothesis was validated for FOXM1, 
PTTG1, FOXC1, PARP1, HMGA1, TCF7L1, SSRP1 and ELF5, analysed across several BC cell lines and 
giving consistent results upon down- and/or up-regulation (Fig. 5).  For example, ELF5 knock-down 
in the basal-like BC cell line HCC1937 leads to the specific down-regulation of b_E2F_targets module 
genes, while its overexpression in luminal BC cell lines (MCF7, T47D) induces the up-regulation of 
the same b_E2F_targets module genes. Moreover, we observed that down-regulation of the PTTG1 
TF hub induced a set of genes enriched in the b_Estrogen_response module (not shown), suggesting 
that PTTG1 could be responsible at the same time for b_E2F_targets genes activation and 
b_Estrogen_response genes repression, thus co-regulating the two networks. 
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In the light of these results, we expect that additional TFs in a central position within the 
b_E2F_targets module could orchestrate the expression of the same basal-like specific gene 
module, therefore likely playing a role in defining the phenotypic features of this subtype. 
The most central TFs not fully studied in BLBC, all of which correlate with poor prognosis, are PTTG1, 
TEAD4, E2F3, TFDP1, CEBPG, in bold in Table II (Fig. 6). 

 

 
Figure 5. TF hubs in the b_E2F_targets module regulate genes in their same network. Heatmap showing the significance of the 
enrichment (Fisher test) of differentially expressed genes upon hubs modulation (in the same direction of hubs expression) in 
modules’ genes. Values are –log10 of p-values, scaled by row. Each row corresponds to a different dataset where a TF has been down- 
or up-regulated in a BC cell line, as indicated in row names (OE= overexpression). Columns corresponds to different basal modules. 

 

 
Figure 6. Kaplan-Meier survival curves showing that patients with higher expression of PTTG1, TEAD4, E2F3, TFDP1 or CEBPG display 
shorter survival. 
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Discussion 
Co-expression networks provide a description of gene expression profiles that can be useful to 

identify sets of functionally related genes. Among the principal aims of network analysis is moreover 
that of identifying potential regulators of the networks and, consequently, important nodes whose 
alteration has the potential to disrupt the whole network. Indeed, the number of connections of a 
gene within a gene expression network was shown to be predictive of its phenotypic relevance in S. 
cerevisiae (Jeong et al., 2001). 

Here, we demonstrate that network centrality (kWithin) is a suitable measure to identify relevant 
genes. In fact, we could show that the kWithin correlates with clinical features such as disease-free 
survival, and, most importantly, that it provides a mean to select potential upstream regulators of 
a module with high reliability. As a proof of principle, we combined network measures with the 
results of independent experiments analyzing gene expression changes induced by altering the 
expression of selected TF hubs. Strikingly, in 16 out of 19 cases we could show that interference 
with hub expression induced coherent changes in the expression of their downstream module, 
demonstrating that indeed our network-based analysis, via the use of modules’ kWithin, provides a 
valid tool to study biological features of cancer subtypes. In turn this allows to identify potential 
candidates for networks’ regulation, likely drivers of cancer biological features and useful 
therapeutic targets. We therefore used the kWithin to prioritize genes and select potential novel 
candidates for further experimental studies. 

We applied our approach to three different issues in breast cancer biology, namely the 
identification of i) the drivers of basal-like BC aggressiveness; ii) the common targets and potential 
effectors of the metastasis-related STAT3 and WNT/PCP pathways, and iii) the molecular features 
distinguishing basal-like BC from the other subtypes.  

Our analysis led to the definition of clinically relevant gene modules, such as the E2F_targets and 
KRAS_dn1 modules, which correlate with BC high grade, early onset, and poor prognosis. Centrally 
located within these modules are well-known genes involved in BC progression and metastasis such 
as FOXM1 and FOXC1 (Han et al., 2017; Saba et al., 2016), but also novel uncharacterized genes like 
ROPN1, involved in sperm motility and whose role in BC has not been studied despite its being 
associated with the TNBC marker SOX10 (Ivanov et al., 2013; Peevey et al., 2015; States et al., 2015), 
one of the most central nodes in the same module. 

Striking was the observation that the KRAS_dn1 module is divided in two subnetworks, with the 
PSAT1 gene linking the subnetwork containing the most central hubs (FOXC1, ROPN1) to the 
subnetwork enriched in poor prognosis-related genes. PSAT1 is the second enzyme in the serine 
biosynthesis pathway, important for the generation of many cell building blocks (Antonov, Agostini, 
Morello, & Minieri, 2014; Deberardinis, 2011; Possemato et al., 2011). Several enzymes involved in 
serine biosynthesis, such as SHMT2 and PHGDH, have been correlated with negative prognosis in 
BC (Antonov et al., 2014), and PSAT1 itself has been shown to induce proliferation in basal-like BC 
cell lines (Gao et al., 2017; Marchi et al., 2017). Interestingly, the PSAT1 gene appears to be 
regulated by FOXC1, a central hub of the same KRAS_dn1 module and associated with BC 
development (GSE73234, Han et al., 2017).  Our data suggest that the correlation of PSAT1 with 
survival in BC may at least partly be due to its central role in shaping the KRAS_dn1 module. 

As a second application, we used our BC networks to define potential targets of specific 
pathways, and searched for potential common targets of the STAT3 and WNT/PCP pathways. We 
found evidence of the involvement of the EMT module in STAT3 and WNT/PCP signaling, since 
this module is significantly enriched in i) both STAT3 and non-canonical WNT signatures; ii) genes 
whose promoters are bound by STAT3 in several BC cell lines, and iii) genes down-regulated upon 
STAT3 knock-down in the basal-like cell line MDA-MB-231, and up-regulated upon ROR2 
overexpression in the luminal MCF7 cell line. Within the EMT module, the ZNF532 gene, encoding 
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for a TF correlated with poor prognosis in BC (Fig. 3B), appears to be a target of both pathways. We 
can therefore hypothesize that ZNF532 is a novel common target of the two pathways, and likely a 
central regulator of the EMT module. This hypothesis can be readily assessed experimentally, and 
may lead to the identification of a novel target with therapeutic potential, particularly in basal-like 
BC.  

Finally, we dissected the differences in network connectivity across different breast cancer 
subtypes, comparing the networks obtained with samples of each subtype separately. This analysis 
is of particular importance when considering that, especially in multicellular organisms, gene 
networks are context-dependent. Thus, pooling together samples belonging to different groups 
could result in misleading inferences or hide biologically meaningful signals. We focused on the 
features distinguishing basal-like networks from networks derived from other subtypes, aiming at 
identifying molecular mechanisms conferring basal-like BC its aggressiveness and resistance to 
therapy. Specifically, we defined three modules with stronger intramodular connectivity in the 
basal-like subtype (Figure 6), two of which show a pattern of differential expression across subtypes, 
with the b_E2F_targets module being overexpressed in basal-like tumors, and the 
b_Estrogen_response module being down-regulated in the same subtype. Strikingly, kWithin-based 
hubs identification and analysis of published gene expression data following their experimental 
modulation in BC cell lines showed that the most central TFs act indeed as upstream regulators of 
the module’s genes. This observation represents an empirical validation of the reliability of the 
kWithin as a selection criterion for hubs that have a high potential of being central regulators of the 
network structure, and therefore possessing phenotypic relevance. Importantly, among the most 
central TFs in the b_E2F_targets module are also poor prognosis-related genes for which no 
experimental studies in BC are available. We thus hypothesize that these represent interesting 
candidates for phenotypic studies, whose disruption may lead to the dysregulation of the whole 
basal-like specific module b_E2F_targets, and thus to the inhibition of aggressiveness features of 
basal-like BC. With these criteria, the genes not yet fully characterized among the top-ranked ones 
are PTTG1, TEAD4, E2F3, TFDP1, and CEBPG. While PTTG1, TEAD4, E2F3, TFDP1 have been studied 
to different degrees in BC, C/EBPG was mainly characterized in myeloid tumors (Huggins et al., 2016; 
Melchor et al., 2009; Vimala, Sundarraj, Sujitha, & Kannan, 2012; Wang et al., 2015; Yoon et al., 
2012).  

In conclusion, our platform allows to identify groups of genes with a high potential to play a 
crucial role in basal-like BC and possibly amenable to drug targeting, not only for their specific 
functions but also for their ability to regulate survival-related gene networks. Finally, our approach 
could be successfully extended to other BC subtypes, and potentially to all tumor types for which 
enough expression data are available, allowing to address many additional biological questions. 

 

METHODS 
All analyses were performed using R 3.5.1 and packages obtained from Bioconductor and CRAN 

(Gentleman et al., 2004; https://cran.r-project.org). Plots were generated with R base graphics, 
ggplot2 (Wickham, 2017), WGCNA (Langfelder & Horvath, 2008) and pheatmap. 
 
Network construction 

Gene co-expression networks were constructed with WGCNA function blockwiseModules 
(Langfelder & Horvath, 2008), using as parameters: power= 6, corType="pearson", networkType = 
"signed", minModuleSize = 30, reassignThreshold = 0, mergeCutHeight = 0.25. METABRIC gene 
expression data and metadata were obtained from www.synapse.org (syn2133318, syn2133322, 
syn2133500). Probe names were converted in Gene Symbols and, for gene symbols corresponding 
to multiple probes, the most expressed probe across all samples was considered. 
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Preservation was obtained with the function modulePreservation in WGCNA using, independently, 
breast primary tumors data and BC cell lines data (http://cancergenome.nih.gov/, Daemen et al., 
2013). STRING was analysed with the package STRINGdb. 
 
Correlation with clinical features 

Module eigengene calculated on the whole dataset (Langfelder & Horvath, 2008) was used as a 
measure modules’ expression in each sample. Pearson’s correlation between module eigengene 
and either grade or age at diagnosis was calculated and p-values were obtained with the function 
corPvalueFisher (Fisher's asymptotic p-value). P-values were adjusted using the Holm method in 
the function p.adjust. 
Differences in gene or modules’ expression across subtypes were assessed via a two-sided t-test 
on z-scores (for individual genes) or on module eigengenes (for modules). Expression in one 
subtype was compared with the expression in all other subtypes pooled together. 
 
Correlation with survival 

The correlation between the expression level of a gene or a module was calculated dividing the 
patients in two groups based on the gene or module’s expression median. The function survdiff of 
the survival package (Mohamed, Abdelaal, Hossam, & Ahmed, 2015), implementing a log-rank 
statistic, was used and Kaplan-Meier curves were plotted with the ggsurvplot function in the 
survminer package. 
 
STAT3 and WNT signatures 

A set of STAT3 and WNT signatures was collected (Alvarez et al., 2005; Azare et al., 2007; 
Bayerlová, Klemm, Kramer, & Pukrop, 2015; Dauer et al., 2005; Labbe et al., 2007; Sandsmark et 
al., 2017; Sonnenblick et al., 2015; Robert W Tell & Horvath, 2014; Willert et al., 2002; Ziegler et 
al., 2005) and individual enrichments of modules for each signature were calculated with a Fisher’s 
exact test using as using as background the list of genes not falling in the “unconnected” 
compartment. P-values were adjusted with the p.adjust function and the Holm method 
considering all the tests performed. 
Differentially expressed genes upon STAT3 down-regulation in MDA-MB-231 were defined from 
Mcdaniel et al., 2016 using DESeq2 (Love, Huber, & Anders, 2014) and a p-value cutoff of 0.05. 
Differentially expressed genes upon ROR2 overexpression in MCF7 were obtained from Bayerlová 
et al., 2017 with p-value<0.05.The enrichment of modules for genes in the intersection of these 
lists of differentially expressed genes was calculated with a Fisher’s exact test. 
 
ChIP-seq data analysis 

ChIP-seq data (Mcdaniel et al., 2016) were mapped to the H. sapiens hg19 genome build with 
bowtie 1.2.1 (parameters: -p 3 –best –strata –m1 –S, Langmead, Trapnell, Pop, & Salzberg, 2009). 
Peaks were defined with MACS 1.4.2 (Y. Zhang et al., 2008) and the closest genes to peaks were 
annotated with the function closestBed (BEDTools suite, Quinlan & Hall, 2010). Peaks with score ≥ 
200 were retained, and those in the range between -1000bp and 0bp from the transcription start 
site were considered indicative of binding at the promoter. The enrichment for genes in each 
module was calculated with Fisher’s exact test. 
 
Subtype-specific modules 

Subtype-specific networks were constructed on basal-like, luminal A, luminal B and HER2-
positive tumour samples separately using WGCNA with the same parameters used for the global 
network. Comparisons of intramodular connectivity (kWithin) were performed as follows: kWithin 
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were calculated on all combinations of subtype-specific networks and assignments of genes to 
modules to determine the connectivity of genes of a module, as defined in a subtype, in the other 
subtypes; distributions of kWithin of genes of a module were compared across subtypes using a t-
test. 
 
Analysis of TF datasets 

Pre-processed gene expression data were downloaded from Gene Expression Omnibus 
(GSE2222, GSE55204, GSE25741, GSE48928, GSE103242, GSE48979, GSE36939, GSE73234, 
GSE34817, GSE35525, GSE38893, GSE92281, GSE30405). Lists of differentially expressed genes 
were obtained with a t-test (function t.test) and a p-value cutoff of 0.05. Enrichment of 
differentially expressed genes for modules’ genes were calculated with a Fisher’s exact test using 
as background the list of genes not falling in the “unconnected” compartment in basal-like tumors 
and which expression could be retrieved based on the specific array used in the dataset. 
 
Networks representations 

The most strongly connected nodes (Topological Overlap ≥ 0.02) were retained for individual 
modules’ visualization in Cytoscape 3.7.0 (Shannon et al., 2003). The whole network was filtered 
for connections with Topological Overlap ≥ 0.05 and represented with Gephi 0.9.2 (Bastian & 
Heymann, 2009).  

 

ACKNOWLEDGMENTS  

This work was supported by the Italian Cancer Research Association (AIRC IG16930 to V.P.) and 
the Truus and Gerrit van Riemsdijk Foundation, Liechtenstein, donation to V.P.  
 

References 
 
Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 

406, 378. https://doi.org/10.1038/35019019 
Alvarez, J. V, Febbo, P. G., Ramaswamy, S., Loda, M., Richardson, A., & Frank, D. A. (2005). Identification 

of a Genetic Signature of Activated Signal Transducer and Activator of Transcription 3 in Human Tumors. 
Cancer Research, 65(12), 5054–5063. 

Antonov, A., Agostini, M., Morello, M., & Minieri, M. (2014). Bioinformatics analysis of the serine and 
glycine pathway in cancer cells. Oncotarget, 5(22). 

Armanious, H., Gelebart, P., Mackey, J., Ma, Y., & Lai, R. (2010). STAT3 upregulates the protein 
expression and transcriptional activity of β-catenin in breast cancer. International Journal of Clinical 
Experimental Pathology, 3(7), 654–664. 

Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., & Bromberg, J. (2007). 
Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells 
through integrin beta 6. Molecular and Cellular Biology, 27(12), 4444–4453. 
https://doi.org/10.1128/MCB.02404-06 

Barabási, A., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. 
Nature Reviews Genetics, 5. https://doi.org/10.1038/nrg1272 

Bastian, M., & Heymann, S. (2009). Gephi : An Open Source Software for Exploring and Manipulating 
Networks. AAAI. 

Bayerlová, M., Klemm, F., Kramer, F., & Pukrop, T. (2015). Newly Constructed Network Models of 
Different WNT Signaling Cascades Applied to Breast Cancer Expression Data. PLoS ONE, 10(12), 1–19. 
https://doi.org/10.1371/journal.pone.0144014 

Bayerlová, M., Menck, K., Klemm, F., Wolff, A., Pukrop, T., Gutenberg-universität, J., … Beißbarth, T. 
(2017). Ror2 Signaling and Its Relevance in Breast Cancer Progression. Frontiers in Oncology, 7, 1–16. 
https://doi.org/10.3389/fonc.2017.00135 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/570051doi: bioRxiv preprint 

https://doi.org/10.1101/570051


 17 

Bernardo, G. M., Bebek, G., Ginther, C. L., Sizemore, S. T., Lozada, K. L., Miedler, J. D., … Abdul-karim, F. 
W. (2012). FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene, 32(5), 554–
563. https://doi.org/10.1038/onc.2012.62 

Brandt, J., Garne, J. P., Tengrup, I., & Manjer, J. (2015). Age at diagnosis in relation to survival following 
breast cancer : a cohort study. World Journal of Surgical Oncology, 13(33), 1–11. 
https://doi.org/10.1186/s12957-014-0429-x 

Chasman, D., Siahpirani, A. F., & Roy, S. (2016). ScienceDirect Network-based approaches for analysis of 
complex biological systems. Current Opinion in Biotechnology, 39, 157–166. 
https://doi.org/10.1016/j.copbio.2016.04.007 

Clarke, C., Madden, S. F., Doolan, P., Aherne, S. T., Joyce, H., Driscoll, L. O., … Clynes, M. (2013). 
Correlating transcriptional networks to breast cancer survival : a large-scale coexpression analysis. 
Carcinogenesis, 34(10), 2300–2308. https://doi.org/10.1093/carcin/bgt208 

Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning, M. J., … Aparicio, S. (2012). The 
genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486, 
346. http://dx.doi.org/10.1038/nature10983 

Dauer, D. J., Ferraro, B., Song, L., Yu, B., Mora, L., Buettner, R., … Haura, E. B. (2005). Stat3 regulates 
genes common to both wound healing and cancer. Oncogene, 24, 3397–3408. 
https://doi.org/10.1038/sj.onc.1208469 

Deberardinis, R. J. (2011). Previews Serine Metabolism : Some Tumors Take the Road Less Traveled. Cell 
Metabolism, 14(3), 285–286. https://doi.org/10.1016/j.cmet.2011.08.004 

Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A. S., Zink, F., Zhu, J., … Stefansson, K. (2008). 
Genetics of gene expression and its effect on disease. Nature, 452, 423. 
https://doi.org/10.1038/nature06758 

Feldman, I., Rzhetsky, A., & Vitkup, D. (2008). Network properties of genes harboring inherited disease 
mutations. Proceedings of the National Academy of Sciences, 105(11). 

Furlong, L. I. (2013). Human diseases through the lens of network biology. Trends in Genetics, 29(3), 
150–159. https://doi.org/10.1016/j.tig.2012.11.004 

Gao, S., Ge, A., Xu, S., You, Z., Ning, S., Zhao, Y., & Pang, D. (2017). PSAT1 is regulated by ATF4 and 
enhances cell proliferation via the GSK3 β / β-catenin / cyclin D1 signaling pathway in ER-negative breast 
cancer. Journal of Experimental & Clinical Cancer Research, 36(179), 1–13. https://doi.org/10.1186/s13046-
017-0648-4 

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., … Zhang, J. (2004). 
Bioconductor : open software development for computational biology and bioinformatics. Genome Biology, 
5(10). 

Goh, K., Cusick, M. E., Valle, D., Childs, B., & Vidal, M. (2007). The human disease network. Proceedings 
of the National Academy of Sciences, 104(21), 8685–8690. 

Gujral, T. S., Chan, M., Peshkin, L., Sorger, P. K., Kirschner, M. W., & Macbeath, G. (2014). Article A 
Noncanonical Frizzled2 Pathway Regulates Epithelial-Mesenchymal Transition and Metastasis. Cell, 159(4), 
844–856. https://doi.org/10.1016/j.cell.2014.10.032 

Han, B., Bhowmick, N., Qu, Y., Chung, S., Giuliano, A. E., & Cui, X. (2017). FOXC1: an emerging marker 
and therapeutic target for cancer. Oncogene, 36, 3957–3963. https://doi.org/10.1038/onc.2017.48 

Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell 
biology. Nature, 402, C47. https://doi.org/10.1038/35011540 

Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., Hartwell, K., … Yang, J. (2010). Core 
epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low 
and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences, 107(44), 19132. 
https://doi.org/10.1073/pnas.1015095107 

Hisamatsu, Y., Tokunaga, E., Yamashita, N., & Akiyoshi, S. (2015). Impact of GATA-3 and FOXA1 
expression in patients with hormone receptor-positive/HER2-negative breast cancer. Breast Cancer, 22(5), 
520–528. https://doi.org/10.1007/s12282-013-0515-x 

Huggins, C. J., Mayekar, M. K., Martin, N., Saylor, K. L., Gonit, M., Jailwala, P., … Johnson, F. (2016). 
C/EBPg Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4. 
Molecular and Cellular Biology, 36(5), 693–713. https://doi.org/10.1128/MCB.00911-15.Address 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/570051doi: bioRxiv preprint 

https://doi.org/10.1101/570051


 18 

Isik, Z., Baldow, C., Cannistraci, C. V., & Schroeder, M. (2015). Drug target prioritization by perturbed 
gene expression and network information. Scientific Reports, 5, 1–13. https://doi.org/10.1038/srep17417 

Ivanov, S. V, Panaccione, A., Nonaka, D., Prasad, M. L., Boyd, K. L., Brown, B., … Yarbrough, W. G. (2013). 
Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. British Journal 
of Cancer, 109(2), 444–51. https://doi.org/10.1038/bjc.2013.326 

Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., … von Mering, C. (2009). STRING 8--
a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 
37(Database issue), D412–D416. https://doi.org/10.1093/nar/gkn760 

Jeong, H., Mason, S. P., Barabási, A.-L., & Oltvai, Z. N. (2001). Lethality and centrality in protein 
networks. Nature, 411, 41. https://doi.org/10.1038/35075138 

Katoh, M., & Katoh, M. (2007). STAT3-induced WNT5A signaling loop in embryonic stem cells, adult 
normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer. International Journal of 
Molecular Medicine, 19(2), 273–278. 

Klein, K. O., Oualkacha, K., Lafond, M., & Bhatnagar, S. (2016). Gene Coexpression Analyses Differentiate 
Networks Associated with Diverse Cancers Harboring TP53 Missense or Null Mutations. Frontiers in 
Genetics, 7, 1–14. https://doi.org/10.3389/fgene.2016.00137 

Klemm, F., Bleckmann, A., Siam, L., Chuang, H. N., Rietkẗter, E., Behme, D., … Pukrop, T. (2011). β-
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