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Abstract: 20 

A metapopulation model linking local hydrology with transmission of the liver fluke 21 

Opisthorchis viverrini in a lake system in northeast Thailand was developed and 22 

parameterized using infection data from 2008-2016. A rainfall-runoff model and other 23 

hydrologic data were used to assess level of connectivity between villages and the 24 

influence of upstream communities on parasite distribution in the study area, while the 25 

disease transmission model was expanded from a single-village model for O. viverrini 26 

transmission. Connectivity between villages and hydrologic variables was assessed 27 

monthly and showed strong seasonality trends. The metapopulation model improved 28 

upon the single-village model in its fit to historical data patterns for the six village 29 

clusters with the introduction of the new time-variable parameters. Results suggest 30 

there are three unique hydrologic-epidemiologic regimes within the Lawa Lake system 31 

in response to upstream watersheds and risk of overland flooding that contribute to risk 32 

for O. viverrini infection. Similar approaches using a hydrologic submodel to inform a 33 

mechanistic disease transmission model could be applied across many water-related 34 

disease systems.  35 

 36 

Author Summary: 37 

While hydrology is intuitively understood to influence transmission dynamics of water-38 

related diseases, limited research exists that explicitly links hydrologic and infectious 39 

disease data. In this work, we use an approach that leverages a rainfall-runoff model to 40 

better understand water movement into, out of, and around Lawa Lake in northeast 41 

Thailand and how that affects fate and transport of the multiple waterborne life stages of 42 

Opisthorchis viverrini. To model disease transmission, we represent six village clusters 43 
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around the lake using known infection prevalence data of humans, cats and dogs, snails, 44 

and fish to parameterize and fit a metapopulation model. The connectivity between 45 

village clusters and external inputs of parasites are derived from the hydrology data and 46 

the rainfall-runoff model. Results suggest three unique hydrologic regimes that also 47 

reflect unique patterns in disease prevalence among the different hosts. Other water-48 

related disease systems can use similar approaches to assess the impacts of water on 49 

pathogen transmission dynamics. 50 

 51 

Introduction 52 

 Opisthorchiasis, infection with liver flukes of the genus Opisthorchis, is a disease 53 

whose transmission and distribution are largely determined by hydrology. The 54 

parasites’ egg and cercarial forms require sufficient water and transport to the next 55 

intermediate host for the transmission cycle to be sustained. Eggs are excreted in the 56 

feces of infected final hosts (humans, and reservoir cats, dogs, and other mammals to a 57 

limited extent); if not safely treated or contained, these eggs reach the amphibious 58 

habitat of intermediate host snails, which consume the eggs and enable maturation to 59 

the cercarial stage. The cercariae are then released back into water, where they swim 60 

and seek out the second intermediate host cyprinid fish. They encyst in the fish, which 61 

if then consumed raw or undercooked by humans or certain other mammals can 62 

migrate to the bile ducts and mature into adult worms. Water is a sustaining force for 63 

this parasitic life cycle, and its movement permits viable infection at each successive 64 

host stage. 65 

 66 

The major liver fluke of interest in Thailand is Opisthorchis viverrini. Given the 67 
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known disease burden in Thailand, O. viverrini has been a public health priority there, 68 

where it is transmitted to humans via the consumption of popular local raw and 69 

fermented fish dishes such as koi pla and pla som. The highest prevalence of 70 

opisthorchiasis and cholangiocarcinoma (CCA), the fatal bile duct cancer associated 71 

with O. viverrini infection, are found in northeast Thailand in the region surrounding 72 

Khon Kaen [1]. Historical hotspots of opisthorchiasis and CCA were in the villages 73 

around Lawa Lake. While much research has been conducted on the pathology of 74 

opisthorchiasis and CCA, there is limited literature addressing the ecological and 75 

hydrological aspects of parasite transmission in the environment [2,3].    76 

 77 

Lawa Lake is an approximately 4000-acre body of water that is highly vegetated 78 

and subject to significant hydrologic changes caused by seasonal variation in northeast 79 

Thailand. A peak in liver fluke infections is seen with lag following the rainy season in 80 

Thailand, as flooding facilitates the spread of fecal contamination and coincides with 81 

the rapid increase in snail populations [1]. Since several weeks are required for the 82 

parasite to mature through its life stages, high infection rates in fish are seen in the late 83 

rainy season and summer (July-January). Low infection risks occur in the dry season 84 

and summer (March-June). A primary industry on the lake is fishing, which contributes 85 

to the environment mediating ongoing liver fluke transmission in the local area [4]. The 86 

hydrology of the Lawa Lake region is exceedingly complex and disturbed, as significant 87 

changes have occurred in recent years due to construction of new irrigation canals and 88 

ditches, new culverts and spillways that are opened and closed in the flooding season, 89 

and fish ponds that have become increasingly popular as a source of food and revenue. 90 

 91 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569913doi: bioRxiv preprint 

https://doi.org/10.1101/569913
http://creativecommons.org/licenses/by/4.0/


Metapopulation modeling is commonly used to better understand the 92 

connectivity and influence of discrete human populations and environmental patches 93 

on each other. Metapopulation modeling is especially powerful in understanding 94 

pathogen transmission in complex, interrelated environments, where contiguous areas 95 

and their inhabitants influence each other. Connectedness between these environmental 96 

and host patches can occur in multiple ways, including migration of humans between 97 

villages and movement of a waterborne pathogen from a section of river or lake 98 

adjacent to one population to another section adjacent to a separate population. The 99 

second example demonstrates hydrological influence on a disease transmission system, 100 

as waterborne diseases as diverse as cholera and schistosomiasis rely on advective 101 

transport to expose new susceptible individuals with pathogens excreted or shed by 102 

infected individuals. Hydrologic patterns are time-varying and markedly local in 103 

nature. Given this environmental complexity, hydrologic fate and transport of 104 

pathogens are difficult to study. In addition, motile waterborne parasitic forms, such as 105 

liver flukes and schistosome cercariae, have independent mobility behaviors, making 106 

hydrologic flows not entirely representative of how these parasites are dispersed [5,6]. 107 

 108 

 Research connecting hydrology with waterborne disease transmission is an 109 

emerging field with recent work on cholera and schistosomiasis [7,8,9]. Tracing the 110 

spread of pathogens in the environment is challenging, and countervailing forces make 111 

it difficult to ascribe an increase or decrease in human infection to trends in 112 

meteorology and climate or consequent hydrology. Long-term studies of climatic 113 

changes in rainfall patterns or the influence of dams allow more definitive statements 114 

about impacts on disease transmission, though these are also complicated by shifts in 115 
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host and vector habitat and in seasonal patterns that may disrupt or exacerbate host and 116 

vector growth and reproduction [10,11]. 117 

 118 

In this work, a metapopulation disease transmission model is developed and 119 

parameterized to assess hydrologic connectivity and O. viverrini parasite movement 120 

between six village clusters around Lawa Lake in Khon Kaen Province, Thailand, and 121 

how that is reflected by opisthorchiasis prevalence in hosts. Understanding liver fluke 122 

transmission in this seasonal, hydrologically connected environment with modeling can 123 

help define the scale of transmission processes and thereby optimize environmental 124 

control and treatment to have maximum impact on reducing disease transmission in 125 

this setting and others. 126 

 127 

Methods 128 

 The model structure is an extension of the modeling framework presented in 129 

[12]. The six village clusters studied are now connected in a metapopulation framework 130 

to account for exchange of parasites and hosts between village clusters and their 131 

associated environments. This enables the model to include the influence of population-132 

level factors, spatial heterogeneity, and degrees of connectedness between patches.  This 133 

metapopulation model leverages information about hydrologic connectivity between 134 

village and host clusters to understand the movement of the liver fluke parasite’s 135 

various forms in the environment as mediated by water. To consider local hydrologic 136 

impacts on the liver fluke transmission cycle, five main factors are included: 1) egg 137 

inputs into the system from upstream watersheds; 2) egg inputs into the system from 138 

overland flooding; 3) snail and fish mobility due to hydrologic connectivity; 4) snail and 139 

fish available habitat; and 5) hotspots where infectious snails come into contact with 140 
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susceptible fish. These factors are modeled monthly with seasonality to account for 141 

changing patterns throughout the year. 142 

 143 

 The metapopulation model connects the six villages or geographically proximate 144 

village clusters shown in Fig 1 around Lawa Lake in Khon Kaen Province of northeast 145 

Thailand. The villages or village clusters described here are CCK, Lawa, BT (cluster of 5 146 

villages), NNK, KSR, and DPD (cluster of 2 villages), which were chosen and clustered 147 

based on geographical location and how historical human infection survey data was 148 

collected. The six clusters further sort into three groups based on impact or lack thereof 149 

of flooding and upstream watersheds. The two upstream watersheds (Fig 2) flow into 150 

Lawa Lake at locations adjacent to NNK and BT and contribute to egg input there. 151 

Villages CCK and Lawa are in proximity to the Chi River and are most susceptible to 152 

seasonal overland flooding. KSR and DPD are the villages most “downstream” and are 153 

relatively isolated from major flooding or upstream drainage impacts. Villages within 154 

the upstream watershed have not had as significant treatment and control programs as 155 

the villages around Lawa Lake, and reports suggest that upstream villages still have 156 

high infection prevalence values over 30%. 157 

 158 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569913doi: bioRxiv preprint 

https://doi.org/10.1101/569913
http://creativecommons.org/licenses/by/4.0/


 159 

Fig 1: Connectivity between six village clusters around 
Lawa Lake (Map data: Landsat, USGS). 

 

Fig 2: Two upstream sub-basins flow into Lawa Lake 
near NNK and BT, respectively (QGIS). 
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 These hydrologic impacts seem to mirror trends in epidemiological patterns. 160 

Previous research highlighted the north-to-south gradient of nitrogen and salinity in the 161 

water that predicted higher snail abundance [13]. NNK, the southernmost village 162 

cluster, had the highest infection prevalence at the time points when it was studied 163 

(Table 1). KSR and DPD, the northernmost villages and the farthest from the Chi River, 164 

had the lowest baseline prevalence of O. viverrini infection before the control program 165 

started. In the single-village model, varying transmission parameters by village did not 166 

fully capture the different patterns that occurred in the six village clusters when 167 

connectivity was not included. Therefore, the role of hydrology and connectivity 168 

between villages needs to be considered in the disease transmission model to better 169 

account for the patterns observed. 170 

 171 

To understand the effects of complex hydrologic factors on snail habitat, fish 172 

access to these habitats, and the pathways of parasite transmission, a hydrologic model 173 

of the Lawa Lake system was utilized to simulate flow patterns and changes in water 174 

levels over time.  This model is a rainfall/runoff model common in hydrology that 175 

Village Cluster 2008 2010 2011 2012 2014 2015 

CCK 54.9% (593)  33.0%* 44.3% (139)   

Lawa 67.1% (501) 63.1% (108) 19.0%* (16)  8.7%* 

BT 61.9% (346) 37.2% (131)  35.0% (136) 9.0%* 14.2%* 

NNK 74.1% (499)   50.0% (61)   

KSR 16.4% (101)      

DPD 22.1% (112) 36.5% (82)    14.6%* 

Table 1: Infection prevalence (%) and mean intensity in positive individuals (EPG) for 
six village clusters around Lawa Lake. * indicates less sensitive diagnostic method 
(Kato-Katz or Kato thick smear). 
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considers the transport of water through a system originating from upstream in the 176 

catchment basin or from precipitation. It uses the Soil & Water Assessment Tool 177 

(SWAT) model to generate runoff for the PCSWMM hydraulic model to determine 178 

hydraulic parameters of Lawa Lake such as flood depth and extent, flow velocity, and 179 

travel time [14]. The inputs for the SWAT model include meteorological data (rainfall, 180 

temperature, relative humidity, and windspeed) from the Thai Meteorological 181 

Department, soil type, land use, and a digital elevation model (DEM) generated from 182 

satellite imagery. For the hydraulic model, hydrologic structures and key parts of Lawa 183 

Lake were surveyed for elevation at 1m x 1m resolution using drone data, and a 2D 184 

model integrating runoff, the improved DEM, and meteorological data from 2008 to 185 

2016 was developed using PCSWMM. Outputs include water level and flow vectors for 186 

the time points modeled between 2008 and 2016. Calibration was conducted with 187 

available precipitation and gauge data in the area from the Bureau of Water 188 

Management and Hydrology, Royal Irrigation Department, in Thailand.  Fig 3 189 

demonstrates an example of the variation in flows predicted by the model over the 190 

course of a calendar year encompassing the rainy and dry seasons; arrow direction and 191 

thickness represent the relative change in flow vectors. While all of the villages are 192 

adjacent to Lawa Lake, inflows and outflows as well as the relevant snail and fish 193 

populations are not static, homogeneously distributed, or relevant to each village. The 194 

rainy season is characterized by high and active flows that generally peak in October 195 

with flooding from the Chi River varying from year to year. The dry season has 196 

relatively little hydrologic activity establishing connectivity between village clusters. 197 

 198 

 199 
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Because gauge data was not available for the sub-basins upstream of Lawa Lake, 200 

a Soil and Water Assessment Tool – Calibration and Uncertainty Procedures (SWAT-201 

CUP) model was used to calibrate and validate runoff into the Lawa Lake system from 202 

these sources generated by the SWAT model. Inputs for the upstream sub-basins 203 

included a 30m x 30m DEM, land use data, and soil type data from the Land 204 

Development Department of Thailand. To map the hydrologic features of Lawa Lake 205 

and finer scale structures, a drone was used to chart these areas in greater detail and 206 

determine elevations where water was flowing into or out of Lawa Lake. Sub-basin 207 

calibration and validation graphs are shown in Fig 4; 2006-2010 data was used for 208 

calibration, and 2011-2013 data was used for validation. The R2 values range from 0.61 to 209 

0.81; both the calibration and validation models miss late peaks in their runs. In the case 210 

of calibration, fitting the less extreme peaks may have disadvantaged the model from 211 

predicting the major discharge in 2010. In the case of validation, the 2011 peak 212 

discharge was better modeled, but 2013 was missed by a large margin for reasons that 213 

are not entirely clear but may be related to the different timing of precipitation-driven 214 

flooding in 2013 compared with other years. 215 

 216 

Fig 3: Hydrologic flows change dynamically throughout the year (semiquantitative 
interpretation of hydrology model results for an annual cycle) (Map data: Landsat, USGS). 
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 Based on these data and tools, the presence/absence of connections between 217 

parcels of water associated with different village clusters were assessed. For example, 218 

year-round one would not expect KSR to contribute to transmission in Lawa or NNK 219 

but would expect the reverse to be true. In March, when less rainfall and flooding occur, 220 

each village cluster is relatively isolated, with the exception of the relatively weak 221 

influence of near neighbors (Lawa to CCK or BT to DPD). The origin of flows is also 222 

subject to a differential dilution effect; contaminated waste from the upstream 223 

watershed (Fig 2) would more strongly impact NNK than DPD or KSR and would 224 

experience the effects sooner. 225 

 226 

The mathematical model of disease transmission (which incorporates data from 227 

the hydrologic model as variables and parameters) is an expansion of the single-village 228 

model described in [12] to connect the six village clusters and uses as its state variables 229 

the infection prevalence in humans, reservoir hosts (cats and dogs), snails, and fish. Base 230 

equations are included below in Equations (1) – (5). Initial values were set from the 231 

baseline surveys in 2008, and base transmission parameters are carried over from the 232 

single-village model found using Markov chain Monte Carlo (MCMC) methods to fit the 233 

model onto known infection prevalence data as described below. The infection 234 

prevalence data includes surveys using two different methods: formalin-ether 235 

concentration technique (FECT) and Kato-Katz (or Kato thick smear). In Thailand, FECT 236 

has been regarded as the significantly more sensitive method to detect O. viverrini 237 

infection based on available data and because the protocol is intended to make  238 
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(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

Fig 4: (i) Calibration curve for sub-basin 1 (2006-2010); (ii) validation curve for 
sub-basin 1 (2011-2013); (iii) calibration curve for sub-basin 2 (2006-2010); (iv) 
validation curve for sub-basin 2 (2011-2013); green is prediction uncertainty, blue 
is observed discharge, red is estimated discharge. 
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microscopic examination easier [15,16]. Within the fish state variable is a fish 239 

demography model that captures the small window of time in the first few months of a 240 

fish’s life when it is susceptible to cercarial infection (before its scales harden and it 241 

becomes more resistant). This model assumes a maximum fish lifespan of 4 years before 242 

either being caught or natural death. 243 

 244 

Using this approach, the fish (𝐹) differential equations (4) and (5) solve for the 245 

number of infected fish in a cluster, whereas the human (𝐻, equation 1), reservoir host 246 

(𝑅, equation 2), and snail (𝑆, equation 3) differential equations solve for infection 247 

prevalence as in the single-village model. The egg inputs come from the Chi River and 248 

the two upstream watersheds and affect the snail state variable, contributing to the 249 

force of infection in that linkage; these time-varying parameters are derived on a 250 

monthly basis from the rainfall-runoff model. Other egg inputs from open defecation 251 

and disposal of septic tank sludge are not modeled due to lack of information about 252 

where and when they occur. The egg inputs from overland flooding of the Chi River 253 

were assumed to affect CCK and Lawa villages equally and were calculated by using 254 

flow measurements from the river and multiplying by a scalar to relate the impact of 255 

that water source with the upstream sub-basins. The first and second upstream sub-256 

basins’ outflow were modeled to contribute eggs to the systems in BT and NNK 257 

exclusively and multiplied by their own scalars to translate those flows into 258 

contributions to human and reservoir host infection. 259 

  260 
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Connectivity rates between patches were varied on a monthly basis between 262 

2008 and 2016 based on the hydrology model results to account for snail and fish 263 

mobility due to hydrologic connectivity. These connectivity parameters were derived 264 

by assessing the fate and transport of parcels of water in a village cluster’s area and 265 

what proportions reached other village clusters in the Lawa Lake system. These 𝑟 266 

parameters are unitless and vary from 0 to 1, describing the proportion of each village 267 

cluster’s force of infection for that host stage that affects each other village. Fig 5 shows 268 

examples of how these connectivity parameters varied by village pairing, month, and 269 

year (Figs 5-8 were produced in R using the ggplot2 package [17,18]). 270 

 271 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569913doi: bioRxiv preprint 

https://doi.org/10.1101/569913
http://creativecommons.org/licenses/by/4.0/


 The parameters carried over from the single-village model are listed in Table S1. 272 

The 𝛽 values are transmission parameters and are village cluster-specific (Table S2). The 273 

𝑟 connectivity parameters are specific to each patch-to-patch relationship (Fig 1), 𝛾 is the 274 

fish catch rate describing the fraction of the total fish population caught at each time 275 

step, 𝜆(𝑡) is a gating function to control fish birth, death, and aging processes, 𝜇 are 276 

mortality rates, and 𝛼DEF are PZQ treatment events. 277 

 278 

 While a daily time scale could be preferable for assessing hydrologic impact, 279 

historical data only captured month-to-month variability. Because human infection 280 

survey data only measures prevalence and not incidence, this time scale is reasonable 281 

for this study. From the hydrology model, the extent of water surface area at a suitable 282 

depth (under 0.3m) for the contact events between juvenile cyprinid fish and the aquatic 283 

snail intermediate hosts (“hotspots” for infection transfer) were used and to estimate NS 284 

and NF. The transport time for a parcel of water between each village cluster was 285 

employed to estimate the time scale of movement between the locations, but these 286 

interactions happened on the order of days and not months and therefore the model’s 287 

Fig 5: Village connectivity for BT-DPD, CCK-Lawa, and NNK-BT in 2008, 
2012, and 2012 
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time scale was not granular enough to introduce a time lag component. There was 288 

insufficient data to track fish mobility between patches, so fishermen’s movement data 289 

from [19] was used to inform the exchange of fish in inter-village commerce as 290 

contributing to human infection from other village clusters. Table 2 summarizes these 291 

linkages and use of hydrology-related data in the disease transmission model. Fig 5 292 

shows examples of the variability between village connectivity across months and years 293 

for the human/reservoir-to-snail and snail-to-fish transmission processes (the 294 

remaining connectivity parameter graphs are shown in the Appendix). The general 295 

trends persist from year to year, but the timing of peaks differ and affect village 296 

connections differently. The year 2008 produced stronger connectivity for BT-DPD and 297 

NNK-BT, while 2010 had stronger connectivity for CCK-Lawa. 298 

 299 

Hydrology-related 
transmission impact Quantification method 

Retained 
in 

model? 

Egg inputs from 
overland flooding 

Rainfall-runoff model output from Chi 
River summarized on monthly basis Yes 

Egg inputs from 
upstream water 

basins 
Sub-basin model output summarized on 

monthly basis Yes 

Snail and fish 
mobility 

Snail: Patch connectivity from rainfall-
runoff model; Fish: fishermen catch data Yes 

Snail and fish 
available habitat 

Snail: Rainfall-runoff model output and GIS 
analysis; Fish: N/A Yes 

Hotspots for snail-to-
fish contact 

Rainfall-runoff model output and GIS 
analysis No 

 300 

  301 

Table 2: Description of linkages between hydrology model and disease 
transmission model 
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Results 302 

 Fig 6 shows the metapopulation model results for the six village clusters in the 303 

base scenario with the metapopulation model establishing relative connectivity between 304 

villages. Prevalence data points are included, distinguishing between the more sensitive 305 

FECT surveys and the less sensitive Kato method surveys. The heterogeneity of 306 

outcomes reflects the data: some villages saw reductions in infection prevalence to less 307 

than 10% (KSR, DPD), yet a few villages continued to have predicted prevalence values 308 

greater than 20% (BT and NNK). The steep drops in the graph were treatment events, 309 

when a subgroup of villagers was tested for infection and given praziquantel if they 310 

tested positive (the model assumes 100% drug efficacy). Model simulations were run for 311 

eight years between 2008 and 2016.  312 

Fig 6: Metapopulation model run for human infection prevalence 
in villages around Lawa Lake 
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Figs 7 and 8 show infection prevalence values for intermediate snail and fish 313 

hosts. In snails, the prevalence cycles seasonally with most patch populations 314 

decreasing to 0.1% from initial values of 0.2% (with the exception of Lawa where 315 

prevalence approaches 0%). NNK has the highest final snail prevalence value at 0.18%, 316 

which is well within the range of what would be expected in this type of environment. 317 

For fish prevalence, because the initial conditions are disparate and based on baseline 318 

survey data, the model behavior is quite different. There is a seasonal aspect to their 319 

dynamics though this is dampened for most villages except NNK, where it is readily 320 

apparent. The end prevalence values range from 8-41%, with CCK, Lawa, BT, and DPD 321 

having the lowest values and NNK having the highest. 322 

 323 

Fig 7: Snail prevalence values for metapopulation model 
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  324 

Discussion 325 

Compared with the single-village model, the metapopulation model no longer 326 

over-predicts final infection prevalence for the villages in 2016. Instead, the model now 327 

occasionally under-predicts prevalence for some data points, notably, CCK in 2012. This 328 

specific issue can be partially accounted for by the number of treatment-naïve 329 

individuals included in the 2012 infection surveys. Interpretation of the data leads to 330 

some specualtion about the meaning of the surveys and their different diagnostic 331 

methods. BT stands out as the modeled village with the least improvement (though it 332 

overpredicts the 2012 and 2014 data). According to control program managers, BT 333 

villagers were the least participatory in the Lawa Project and may therefore have reaped 334 

the least benefit from the control program. Given that this mathematical model is 335 

Fig 8: Fish prevalence values for metapopulation model 
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primarily concerned with infectious indviduals actively shedding parasites into the 336 

environment rather than asymptomatic cases, the Kato-based surveys from 2011, 2014, 337 

and 2015 may actually capture the most infectious and relevant individuals in the 338 

system and therefore be useful for thinking about infection prevalence patterns. 339 

However, fitting all of the data points accurately would be nearly impossible since most 340 

villages show non-monotonic patterns, and infection burden builds up over time. 341 

  342 

 Two major questions are, given the discrepancy between model fits and the data, 343 

whether the data accurately reflects the reality of the disease transmission situation and 344 

should the model by tuned with yet more parameters to get a close fit to the data. While 345 

this dataset is relatively complete and informative by the standards of NTDs, it still 346 

lacks enough time points, consistency in collection methods, and  large enough sample 347 

proportions of the populations to give a detailed picture of the O. viverrini infection 348 

situation around Lawa Lake. The data (Table 1) show major swings across time points 349 

and discrepancies between the survey methods. Therefore, while the FECT data was 350 

used to fit via MCMC the transmission parameters in the single-village model, no 351 

parameters were fit for the metapopulation model because of the increase in model 352 

complexity and number of parameters (eighteen transmission parameters alone 353 

compared with three per single-village model, plus seventy-two time-varying 354 

connectivity parameters between the six village clusters). For this reason, the 355 

connectivity parameters were derived exclusively from hydrology submodel results. 356 

The metapopulation model is more believable than the single-village model in part 357 

because of its inclusion of external hydrologic influences and connecitivity and in part 358 

because the modeled behavior is more nuanced in the clustered patterns of village 359 

prevalence change it exhibits. The lack of parameters fitted to this model structure and 360 
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the higher quality data that informed the hydrology model lend a realism to the 361 

underlying mechanics of the metapopulation model that improves upon the relatively 362 

straightforward transmission framework of the single-village model. The 363 

metapopulation model is meant to capture patterns of transmission rather than exact 364 

fits to the data. Nonetheless, the lack of information about differences in snail infection 365 

and raw fish eating patterns between villages remains a weakness, as they could not be 366 

incorporated into the model. Better data on these aspects of the transmission cycle 367 

would further strengthen the modeling framework and bring it into greater alignment 368 

with reality. 369 

 370 

The patterns observed in these results support the sorting of the six village 371 

clusters into three geographical clusters that exhibit different patterns and trends based 372 

on human prevalence values. The first cluster, consisting of CCK and Lawa, is in close 373 

proximity to the Chi River and is most susceptible to overland flooding experienced 374 

during the rainy season. Its villages had high human prevalence values at the start of 375 

the control program, which decreased sharply during the period of treatment and 376 

control activity. These villages were the headquarters and major focal area of Lawa 377 

Project activities, suggesting that they benefited the most from health education and 378 

health volunteer engagement. The model is able to accurately account for the decrease 379 

in prevalence without making any assumptions about reinfection. Additionally, these 380 

villages are in close proximity to heavily fished waters in the lake, as supported by GPS 381 

evidence and interviews described in [19]. 382 

 383 

 The second cluster consists of BT and NNK, the villages to the south and 384 

southeast of the lake. These village also had high prevalence values at the start of the 385 
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treatment and control program but experienced much more modest decreases when 386 

comparing data from later infection surveys. These villages are most impacted by 387 

upstream watersheds draining into Lawa Lake (Fig 2.2), where some villages still have 388 

over 50% O. viverrini infection prevalence (B. Sripa, unpublished data). Consequently, if 389 

open defecation or unsafe disposal of human or reservoir waste is occurring in these 390 

watersheds, the runoff will disperse parasite eggs into the canals, ponds, and sections of 391 

the lake in close proximity to the second cluster’s villages. These villages are also 392 

adjacent to the highest concentration of fish ponds in the system and were not a focus of 393 

major emphasis for Lawa Project activities. 394 

 395 

 The third cluster is KSR and DPD, which are located to the northeast of Lawa 396 

Lake. At the start of the control program, these villages had significantly lower 397 

prevalence values, which may be attributable to a lower degree of baseline 398 

environmental contamination. These villages were significantly affected by neither the 399 

Chi River nor the upstream watersheds, so they experienced fewer external inputs of 400 

infectious individuals or waterborne forms of the parasite into their local systems. 401 

These villages were not adjacent to high concentrations of fish ponds or fishing activity 402 

in their local waters and received less emphasis by the Lawa Project compared to the 403 

first cluster. 404 

 405 

 Because of the low prevalence of snail infection, the lack of field survey data, and 406 

the difficulty measuring snail prevalence precisely, strong claims cannot be made about 407 

the model results for the snail intermediate host. However, most field surveys indicate 408 

that snail prevalence in this region ranges between 0 and 0.2%, agreeing with the model 409 

results [13]. With current diagnostic methods, differentiating between the clusters 410 
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would require surveys of tens of thousands of snails at least.  In recent years, the 411 

highest snail prevalence values found are still less than 10% [20]. Much like other snail-412 

borne diseases such as schistosomiasis though, only a few snails are required to 413 

maintain transmission in an area because of the high number of cercariae they shed into 414 

water bodies. Further understanding of where snails are most likely to be infected will 415 

help with environmental measurement and control. Bottlenecks of water flow, such as 416 

certain ditches and culverts, would concentrate fecal waste and parasite eggs and be 417 

zones of likely contact with susceptible snail hosts. Eliminating or protecting these areas 418 

could be an effective method of environmental control subject to proper coverage in the 419 

environment of interest and patch/cluster connectivity. 420 

 421 

 Considering fish, infection prevalence is much higher and therefore it is easier to 422 

discern differences between clusters. Because transmission is foodborne, we are 423 

interested in the supply chain of food to consumers, which is not necessarily related to 424 

proximity between where fish lived and where they are eaten. Fishermen, middlemen, 425 

and merchants are all mobile and may choose to sell and distribute fish to other villages 426 

to expand their market. In the model simulation, the relative ordering of low to high 427 

fish prevalence values in fish hosts differ considerably from the results in humans, with 428 

NNK and KSR having the highest infection prevalence. NNK’s is driven largely by the 429 

initial value, but KSR’s is driven by dynamics, as its outcome is quite different from 430 

Lawa’s, which started with a similar prevalence level. Fish are infected by having 431 

infectious snails releasing cercariae into areas with juvenile fish, so KSR is the cluster 432 

with the greatest magnitude of this process taking place. Paying attention to fish 433 

prevalence results and how they interact with patterns of fish commerce can help 434 

identify where to target health education interventions related to cooking. 435 
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 436 

 The model and the data that inform the model have limitations due to their 437 

fragmentary nature. Other model assumptions ignore the impact of different parasite 438 

burden levels in hosts and the age structure of human populations. The hydrology 439 

model was calibrated and validated against available data, leading to a plausible 440 

interpretation of the observed hydrologic behavior of the system. However, it could not 441 

account for very local effects that eluded its time and spatial scale and may have 442 

relevance for the points of contact between stages of the life cycle. The infection survey 443 

data may not be representative of the host populations because of sampling bias, but its 444 

overall spatial and temporal patterns align with local understanding and experience. 445 

 446 

Conclusion 447 

This work highlights a major driver of persistent O. viverrini infection in 448 

northeast Thailand: a disturbed and dynamic hydrologic environment that mediates 449 

parasite transmission between connected village clusters and environments. This was 450 

accomplished by discussing and modeling five different means of hydrology 451 

influencing parasite transmission and showing that its effects are significant and 452 

complex, acting heterogeneously across the Lawa Lake system. While local infection 453 

and contamination may be the main factor driving transmission at higher prevalence 454 

levels, as prevalence declines and villages move toward elimination connectivity will 455 

play a bigger role in maintaining the transmission cycle and preventing local 456 

elimination of the parasite. 457 

 458 

 The connectivity between water bodies and villages ensures that elimination of 459 

local infection is not possible without addressing upstream and adjacent environments. 460 
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If infectious fecal waste from human and reservoir hosts is continually flushed 461 

downstream and the source is not treated, transmission will be restarted even if 462 

previously disrupted. This argument supports an approach that first targets villages 463 

and populations near headwaters and then proceeds further downstream while still 464 

accounting for human mobility and migration that could reintroduce infection into a 465 

previously cleared environment. Flood pulses and overland flooding also risk moving 466 

parasites into isolated and disconnected environmental patches on an annual basis, 467 

which requires constant treatment and attention to infection status of individuals in 468 

those patches. Snail and fish mobility remain little understood but have major relevance 469 

for O. viverrini’s life cycle, specifically how infection propagates in the environment. 470 

Targeting the locations where snails and juvenile fish come into close proximity with 471 

each other could be a promising environmental control technique but requires greater 472 

knowledge about the conditions that enable this transmission process. 473 

 474 

 A linked disease transmission-hydrologic modeling approach was employed 475 

here that uses hydrology model outputs as time-varying inputs in the disease 476 

transmission model to account for seasonal effects of flooding and water movement 477 

relevant to the intermediate hosts and waterborne forms of O. viverrini. Based on model 478 

results, village clusters were grouped into three disease prevalence curve patterns based 479 

on presence/absence of upstream and flooding impacts and history of control program 480 

intensiveness. Considering these findings, we argue for the use of this modeling 481 

approach and its results to inform environmental control of O. viverrini and for the need 482 

for environmental surveillance. While the specifics of the hydrology, population 483 

structure, and pathogen transmission cycle are local and specific in nature, this 484 
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approach can be replicated across a variety of disease systems that are impacted by 485 

seasonally dynamic water movement.  486 
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Supporting information 557 

Parameter Value Units Source Symbol 

Natural mortality of 
snails 1.37E-03 per day Kruatrachue et al. 1982 𝜇H 

Parasite dependent 
mortality of snails 1.37E-03 per day Chanawong & Waikagul 

1991 𝛼H 

Mortality of fish 6.85E-04 per day Suvarnaraksha et al. 2011 𝜇- 

Parasite dependent 
mortality of fish 0 per day Assumption (unstudied) 𝛼- 

Natural mortality of 
humans 3.69E-05 per day CIA 2015 (Factbook) 𝜇' 

Human infection 
clearance by 
praziquantel 

Variable Episodic Treatment data from 
clinics 𝛼DEF  

Mortality of reservoir 
host  2.74E-04 per day Local interview data 𝜇G 

Reservoir infection 
clearance by 
praziquantel 

Variable Episodic Cat/dog treatment data 
from veterinarians 𝛼DEF,G 

Transmission 
parameters (fish-to-

human, fish-to-
reservoir, human-to-
snail, snail-to-fish) 

See Table 
3.5.1 

per day per 
infectious 

host/worm 
Equilibrium conditions 

and MCMC 
𝛽-'𝛽-G, 
𝛽'H, 𝛽H- 

 

Fish population 3000 fish Estimate 𝑁- 

Snail population 30000 snails Estimate 𝑁H 

Human population Variable humans Village censuses 𝑁' 

Cat and dog population 100 reservoir 
hosts 

Estimate from village 
censuses 𝑁G 

Mean human worm 
count Variable worms Infection survey data 𝑊' 

Mean reservoir worm 
count Variable worms Infection survey data 𝑊G 

Table S1: Parameter values for single-village model 
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 558 

 559 

Equilibrium CCK Lawa BT NNK KSR DPD 

Fish to Human 2.50E-10 7.24E-11 2.53E-10 1.81E-11 3.32E-07 2.68E-07 

Human to Snail 8.90E-09 1.01E-08 4.92E-09 8.92E-09 6.56E-12 1.18E-11 

Snail to Fish 7.34E-06 7.10E-06 3.40E-06 8.96E-06 1.67E-05 1.35E-05 

MCMC CCK Lawa BT NNK KSR DPD 

Fish to Human 2.95E-07 3.45E-07 7.26E-07 2.28E-07 3.30E-08 7.75E-08 

Human to Snail 1.25E-08 2.53E-09 3.45E-09 2.26E-08 1.28E-08 1.48E-08 

Snail to Fish 4.48E-06 7.03E-06 2.23E-06 2.28E-05 7.08E-06 3.89E-06 

Table S2: Beta transmission parameters for single village model 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569913doi: bioRxiv preprint 

https://doi.org/10.1101/569913
http://creativecommons.org/licenses/by/4.0/

