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Abstract  24 

Coherent genomic groups are frequently used as a proxy for bacterial species delineation 25 

through computation of overall genome relatedness indices (OGRI). Average nucleotide 26 

identity (ANI) is a widely employed method for estimating relatedness between genomic 27 

sequences. However, pairwise comparisons of genome sequences based on ANI is relatively 28 

computationally intensive and therefore precludes analyses of large datasets composed of 29 

thousand genome sequences. 30 

In this work we evaluated an alternative OGRI based on k-mers counts to study prokaryotic 31 

species delimitation. A dataset containing more than 3,500 Pseudomonas genome 32 

sequences was successfully classified in few hours with the same precision as ANI. A new 33 

visualization method based on zoomable circle packing was employed for assessing 34 

relationships among the 350 cliques generated. Amendment of databases with these 35 

Pseudomonas cliques greatly improved the classification of metagenomic read sets with k-36 

mers-based classifier.  37 

The developed workflow was integrated in the user-friendly KI-S tool that is available at the 38 

following address: https://iris.angers.inra.fr/galaxypub-cfbp.  39 

 40 

Keywords : ANI, k-mers, circle packing, Pseudomonas, metagenome 41 
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Background 44 

Species is a unit of biological diversity. Species delineation of Bacteria and Archaea 45 

historically relies on a polyphasic approach based on a range of genotypic, phenotypic and 46 

chemo-taxonomic (e.g. fatty acid profiles) data of cultured specimens. According to the List of 47 

Prokaryotic Names with Standing in Nomenclature (LPSN), approximately 15,500 bacterial 48 

species names have been currently validated within this theoretical framework [1]. According 49 

to different estimates the number of bacterial species inhabiting planet Earth is predicted to 50 

range between 107 to 1012 species [2,3], the genomics revolution has the potential to 51 

accelerate the pace of species description.  52 

 Prokaryotic species are primarily described as cohesive genomic groups and 53 

approaches based on similarity of whole genome sequence, also known as overall genome 54 

relatedness indices (OGRI), have been proposed for delineating species. Genome Blast 55 

Distance Phylogeny (GBDP [4]) and Average nucleotide identity (ANI) are currently the most 56 

frequently used OGRI for assessing relatedness between genomic sequences. Distinct ANI 57 

algorithms such as ANI based on BLAST (ANIb [5]), ANI based on MUMmer (ANIm [6]) or 58 

ANI based on orthologous genes (OrthoANIb [7]; OrthoANIu [8]; gANI,AF [9]), which differ in 59 

their precision but more importantly in their calculation times [8], have been developed. 60 

Indeed, improvement of calculation time for whole genomic comparison of large datasets is 61 

an essential parameter. As of November 2018, the total number of prokaryotic genome 62 

sequences publicly available in the NCBI database is 170,728. Considering an average time 63 

of 1 second for calculating ANI values for one pair of genome sequence, it would take 64 

approximately 1,000 years to obtain ANI values for all pairwise comparisons.  65 

 The number of words of length k (k-mers) shared between read sets [10] or genomic 66 

sequences [11] is an alignment-free alternative for assessing the similarities between entities. 67 

Methods based on k-mer counts, such as SIMKA [10], can quickly compute pairwise 68 

comparison of multiple metagenome read sets with high accuracy. In addition, specific k-mer 69 

profiles are now routinely employed by multiple read classifiers for estimating the taxonomic 70 
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structure of metagenome read sets [12–14]. While these k-mer based classifiers differ in term 71 

of sensitivity and specificity [15], they rely on accurate genome databases for affiliating read 72 

to a taxonomic rank. 73 

 The objective of the current work was to evaluate an alternative method based on k-74 

mer counts to study species delimitation on extensive genome datasets. We therefore 75 

decided to employ k-mer counting to assess the similarity among genome sequences 76 

belonging to the Pseudomonas genus. Indeed, this genus contains an important diversity of 77 

species (n = 207), whose taxonomic affiliation is under constant evolution [16–22], and 78 

numerous genome sequences are available in public databases. We also proposed an 79 

original visualization tool based on D3 Zoomable Circle Packing 80 

(https://gist.github.com/mbostock/7607535) for assessing relatedness of thousands of 81 

genome sequences. Finally, the benefit of taxonomic curation of reference database on the 82 

taxonomic affiliation of metagenomics read sets was assessed. The developed workflow was 83 

integrated in the user-friendly KI-S tool which is available in the galaxy toolbox of CIRM-84 

CFBP (https://iris.angers.inra.fr/galaxypub-cfbp). 85 

 86 
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Methods 87 

 88 

Genomic dataset 89 

All genome sequences (n=3,623 as of April 2017) from the Pseudomonas genus were 90 

downloaded from the NCBI database 91 

(https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/). 92 

 93 

Calculation of Overall Genome Relatedness Indices  94 

The percentage of shared k-mers between genome sequences was calculated with Simka 95 

version 1.4 [10] with the following parameters (abundance-min 1 and k-mer length ranging 96 

from 10 to 20). The percentage of shared k-mer was compared to ANIb values calculated 97 

with PYANI version 0.2.3 (https://github.com/widdowquinn/pyani). Due to the computing time 98 

required for ANIb calculation, only a subset of Pseudomonas genomic sequences (n=934) 99 

was selected for this comparison. This subset was composed of genome sequences 100 

containing less than 150 scaffolds.  101 

 102 

Development of KI-S tool 103 

An integrative tool named KI-S was developed. The number of shared k-mers between 104 

genome sequences was initially calculated with Simka [10]. A custom R script was then 105 

employed to cluster the genome sequences according to their connected components at 106 

different selected thresholds (e.g. 50% of shared 15-mers). The clustering result is visualized 107 

with Zoomable Circle Packing representation with the D3.js JavaScript library 108 

(https://gist.github.com/mbostock/7607535). The source code of the KI-S tool is available at 109 

the following address: https://sourcesup.renater.fr/projects/ki-s/. A wrapper for accessing KI-S 110 

in a user-friendly Galaxy tool is also available at the following address: 111 

https://iris.angers.inra.fr/galaxypub-cfbp. 112 

 113 
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Taxonomic inference of metagenomic read sets 114 

The taxonomic profiles of 9 metagenomic read sets derived from seed, germinating seeds 115 

and seedlings of common bean (Phaseolus vulgaris var. Flavert) were estimated with Clark 116 

version 1.2.4 [14]. These metagenomic datasets were selected because of the high relative 117 

abundance of reads affiliated to Pseudomonas [23]. The following Clark default parameters –118 

k 31 –t <minFreqTarget> 0 and -o <minFreqtObject> 0 were used for the taxonomic profiling. 119 

Three distinct Clark databases were employed: (i) the original Clark database from 120 

NCBI/RefSeq at the species level (ii) the original Clark database supplemented with the 121 

3,623 Pseudomonas genome sequences and their original NCBI taxonomic affiliation (iii) the 122 

original Clark database supplemented with the 3,623 Pseudomonas genome sequences 123 

whose taxonomic affiliation was corrected according to the reclassification based on the 124 

number of shared k-mers. For this third database, genome sequences were clustered at 125 

>50% of 15-mers. 126 

 127 
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Results 128 

Selection of optimal k-mer size and percentage of shared k-mers  129 

Using the percentage of shared k-mers as an OGRI for species delineation first required the 130 

determination of the optimal k-mer size. This was performed by comparing the percentage of 131 

shared k-mers to a widely employed OGRI, ANIb [5], among 934 Pseudomonas genome 132 

sequences. Since the species delineation threshold was initially proposed following the 133 

observation of a gap in the distribution of pairwise comparison values [24], the distribution 134 

profiles obtained with k-mer lengths ranging from 10 to 20 were compared to ANIb values. 135 

Short k-mers (k < 12) were evenly shared by most strains and not discriminative (Fig. 1). As 136 

the length of the k-mer increased, a multimodal distribution based on four peaks was 137 

observed (Fig. 1). The first peak related to the genome sequences that do not belong to the 138 

same species. Then, depending on k length, the second and third peaks (e.g. 50% and 80% 139 

for k = 15) corresponded to genome sequences associated to the same species and 140 

subspecies, respectively. The fourth peak at 100% of shared k-mers was related to identical 141 

genome sequences. 142 

 Fifty percent of 15-mers is close to ANIb value of 0.95 (Fig. 2), a threshold commonly 143 

employed for delineating bacterial species [5]. More precisely, the median percentage of 144 

shared 15-mers is 49% [34%-66%] for ANIb value ranging from 0.94 to 0.96. In addition, 15-145 

mers allows the investigation of inter-and infra-specific relationship at lower and higher 146 

percentage of shared 15-mers, respectively.  147 

 Computation time of 15-mers for 934 genome sequences was 4 hours on a DELL 148 

Power Edge R510 server, while it took approximately 3 months for obtaining all ANIb pairwise 149 

comparisons (500-fold decrease of computing time).  150 

 151 

Classification of Pseudomonas genome sequences  152 

The percentage of shared 15-mers was then used to investigate relatedness between 3,623 153 

Pseudomonas publicly available genome sequences. At a threshold of 50% of 15-mers, we 154 
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identified 350 cliques. The clique containing the most abundant number of genome 155 

sequences was related to P. aeruginosa (n = 2,341), followed by the phylogroups PG1 (n = 156 

111), PG3 (n = 92) and PG2 (n = 74) of P. syringae species complex ([17]; Table S1). At the 157 

clustering threshold employed, 185 cliques were composed of a single genome sequences, 158 

therefore highlighting the high Pseudomonas strain diversity. Moreover, according to Chao1 159 

index, Pseudomonas species richness is estimated at 629 cliques [+ 57], which indicates that 160 

additional strain isolations and sequencing effort are needed to cover the whole diversity of 161 

this bacterial genus. Graphical representation of hierarchical clustering by dendrogram for a 162 

large dataset is generally not optimal. Here we employed Zoomable circle packing as an 163 

alternative to dendrogram for representing similarity between genome sequences (Fig. 3 and 164 

FigS1.html). The different clustering thresholds that can be superimposed on the same 165 

graphical representation allow the investigation of inter- and intra- groups relationships (Fig. 166 

3 and FigS1.html). This is useful for affiliating a specific clique to a group or subgroup of 167 

Pseudomonas species.  168 

 169 

Improvement of taxonomic affiliation of metagenomic read sets. 170 

The taxonomic composition of metagenome read sets is frequently estimated with k-mer 171 

based classifiers. While these k-mer based classifiers differ in term of sensitivity and 172 

specificity, they all rely on accurate genome databases for affiliating reads to taxonomic rank. 173 

Here, we investigated the impact of database content and curation on taxonomic affiliation. 174 

Using Clark [14] as a taxonomic profiler with the original Clark database, we classified 175 

metagenome read sets derived from bean seeds, germinating seeds and seedlings [23]. 176 

Adding the 3,623 Pseudomonas genome sequences with their original taxonomic affiliation 177 

from NCBI to the original Clark database did not increase the percentage of classified reads 178 

(Fig. 4). However, adding the same genome sequences reclassified in cliques according to 179 

their percentage of shared k-mers (k=15; threshold= 50%) increased 1.4-fold on average the 180 

number of classified reads (Fig. 4). 181 
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Discussion 184 

Classification of bacterial strains on the basis on their genome sequence similarities has 185 

emerged over the last decade as an alternative to the cumbersome DNA-DNA hybridizations 186 

[4, 25]. Although ANIb is one widely employed method for investigating genomic relatedness, 187 

its intensive computational time prohibited its used for comparing large genome datasets [8]. 188 

In contrast, investigating the percentage of shared k-mers is scalable for comparing 189 

thousands of genome sequences.  190 

 In a method based on k-mer counts, choosing the length of k is a compromise 191 

between accuracy and speed. The distribution of shared k-mer values between genome 192 

sequences is impacted by k length. For k = 15, four peaks were observed at 15%, 50%, 80% 193 

and 100% of shared k-mers. The second peak is close to ANIb value of 0.95 and falls in the 194 

so called grey or fuzzy zone [25] where taxonomists might decide to split or merge species. 195 

Hence, according to our working dataset, it seems that 50% of 15-mers is a good proxy for 196 

estimating Pseudomonas clique. Despite the diverse range of habitats colonized by different 197 

Pseudomonas populations [20], it is likely that the percentage of shared k-mers has to be 198 

adapted when investigating other bacterial genera. Indeed, since population dynamics, 199 

lifestyle and location impact molecular evolution, it is somewhat illusory to define a fixed 200 

threshold for species delineation [26]. While 15-mers is a good starting point for investigating 201 

infra-specific to infra-generic relationships between genome sequences, the computational 202 

speed of KI-S offers the possibility to perform large scale genomic comparisons at different k 203 

sizes to select the most appropriate threshold.  204 

 Genomic relatedness using whole genome sequences has become the standard 205 

method for bacterial strain identification and bacterial taxonomy [4,25,27]. This is primarily 206 

motivated by fast and inexpensive sequencing of bacterial genomes together with the limited 207 

availability of cultured specimen for performing classical polyphasic approach. Whether full 208 

genome sequences should represent the basis of taxonomic classification is an ongoing 209 

debate between systematicians [28]. While this consideration is well beyond the objectives of 210 
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this work, obtaining a classification of bacterial genome sequences into coherent groups is of 211 

general interest. Indeed, the number of misidentified genome sequences is exponentially 212 

growing in public databases. A number of initiatives such as Digital Protologue Database 213 

(DPD [29]), Microbial Genomes Atlas (MiGA [30]), Life Identification Numbers database 214 

(LINbase [31]) or the Genome Taxonomy Database (GTDB [27]) proposed services to 215 

classify and rename bacterial strains based ANIb values or single copy marker proteins. 216 

Using the percentage of shared k-mers between unknown bacterial genome sequences and 217 

reference genome sequences associated to these databases could provide a rapid 218 

complementary approach for bacterial classification. Moreover, KI-S tool, provides a friendly 219 

visualization interface that could help systematicians to curate whole genome databases. 220 

Indeed, zoomable circle packing could be employed for highlighting (i) misidentified strains, 221 

(ii) bacterial taxa that possess representative type strains or (iii) bacterial taxa that contain 222 

few genome sequences.  223 

 Association between a taxonomic group and its distribution across a range of habitats 224 

is useful for inferring the role of this taxa on its host or environment. For instance, community 225 

profiling approaches based on molecular marker such as hypervariable regions of 16S rRNA 226 

gene have been helpful for highlighting correlations between host fitness and microbiome 227 

composition. Higher taxonomic resolution of microbiome composition could be achieved with 228 

metagenomics through k-mer based classification of reads. In this study we demonstrate that 229 

employing a database with a classification of strains reflecting their genomic relatedness 230 

greatly improve taxonomic assignments of reads. Therefore, investigating the relationships 231 

between bacterial genome sequences not only benefits bacterial taxonomy but also microbial 232 

ecology.  233 
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Figures and Supplemental files  244 

Figure 1: Distribution of shared k-mers values. Relatedness between genome sequences 245 

were estimated with ANIb (green) or shared k-mers (blue). The x axis represents ANIb or 246 

percentage of shared k-mers while the y axis represents the number of values by class in the 247 

subset of 934 Pseudomonas genomic comparison. 248 

Figure 2: Comparison of various k-mers length and ANIb values. Pairwise similarities 249 

between genome sequences were assessed with average nucleotide identity based on 250 

BLAST (ANIb, x-axis) and percentage of shared k-mers of length 10 (A), 15 (B) and 20 (C). 251 

The red line corresponds to ANIb of 0.95, a threshold commonly employed for delineating 252 

species level.  253 

Figure 3: Hierarchical clustering of Pseudomonas genome sequences. Zoomable circle 254 

packing representation of Pseudomonas genome sequences (n = 3,623). Similarities 255 

between genome sequences were assessed by comparing the percentage of shared 15-256 

mers. Each dot represents a genome sequence, which is colored according to its group of 257 

species [17,22]. These genome sequences have been grouped at three distinct thresholds 258 

for assessing infraspecific (0.75), species-specific (0.5) and interspecies relationships (0.25).  259 

Figure 4: Percentage of classified reads. Classification of metagenome read sets derived 260 

from bean seeds, germinating seeds and seedlings with Clark [14]. Three distinct databases 261 

were employed for read classification: the original Clark database (red), Clark database 262 

supplemented with 3,623 Pseudomonas genome sequences (green) and the Clark database 263 

supplemented with 3,623 Pseudomonas genome sequences that were classified according 264 

to their percentage of shared k-mers (blue).  265 

TableS1.csv : Pseudomonas cliques. Description of the 350 cliques obtained after 266 

clustering at 50% of shared 15-mers. For each clique, the Pseudomonas group [22] and 267 

subgroup [17,22] are displayed. 268 

FigureS1.html: Zoomable circle packing representation of Pseudomonas genome 269 

sequences. Similarities between genome sequences were assessed by comparing the 270 
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percentage of shared 15-mers. Each dot represents a genome sequence, which is colored 271 

according to its group of species [17,22]. These genome sequences have been grouped at 272 

three distinct thresholds for assessing infraspecific (0.75), species-specific (0.5) and 273 

interspecies relationships (0.25).  274 
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