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Abstract

Tuberculosis remains one of the main causes of death worldwide. The long and

cumbersome  process  of  culturing  Mycobacterium  tuberculosis complex  (MTBC)

bacteria has encouraged the development of specific molecular tools for detecting

the pathogen. Most of these tools aim to become novel tuberculosis diagnostics, and

big  efforts  and  resources  are  invested  in  their  development,  looking  for  the

endorsement of the main public health agencies. Surprisingly, no study had been

conducted where the vast amount of genomic data available is used to identify the

best  MTBC  diagnostic  markers.  In  this  work,  we  use  large-scale  comparative

genomics to provide a catalog of 30 characterized loci that are unique to the MTBC.

Some of these genes could be targeted to assess the physiological status of the

bacilli.  Remarkably, none of the conventional MTBC markers is in our catalog. In

addition, we develop a qPCR assay to accurately quantify MTBC DNA in clinical

samples.
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Main text

Background

Tuberculosis (TB) is the most lethal infectious disease caused by a single agent,

namely bacteria belonging to the  Mycobacterium tuberculosis  complex (MTBC)[1].

Whereas isolating the bacteria from clinical specimens is a time-consuming process

that  delays both clinical  diagnosis  and research workflows,  rapid molecular  tests

have the potential to identify the pathogen DNA in a few hours [2,3]. This is the main

reason why the development of new molecular tools for TB diagnosis is an active

area of research, with many companies involved, looking for the endorsement of the

World Health Organization (WHO) [4]. The most successful example has been the

Xpert  MTB/RIF  test  [5],  which  was endorsed by  the  WHO back in  2010 for  TB

diagnosis, and recommended as the first-line diagnostic in 2017[6]. Achieving a high

sensitivity  and  specificity  is  pivotal  for  the  development  and  improvement  of

molecular tests to ensure an accurate diagnosis. To this end, most tests incorporate

specific markers for the detection of MTBC bacteria. For instance, the new Xpert

MTB/RIF  Ultra  assay,  previously  targeting  the  rpoB  gene  alone,  has  now

incorporated the insertion sequences IS6110 and IS1081[7]. The insertion sequence

IS6110 has been extensively used as a MTBC-specific marker since first described

in 1990[8]. In addition, the IS6110 can be present in high copy numbers in some

MTBC strains (from 0 to 27 copies)[9], causing the nucleic acid amplification tests

(NAAT) targeting this sequence to achieve higher sensitivities for strains carrying

several copies. However, the specificity of the IS6110 has been questioned since

two  decades  ago[10–15] what,  along  with  the  fact  that  some  strains  lack  this

insertion sequence, can lead to an incorrect diagnosis[16,17].

3

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

3

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569384doi: bioRxiv preprint 

https://paperpile.com/c/992tEn/vVOKX
https://paperpile.com/c/992tEn/mxzus+hmvAu
https://paperpile.com/c/992tEn/wZ5I5+w6icR+xjjHA+QeGV1+ltHjy+oqPPq
https://paperpile.com/c/992tEn/ajHNC
https://paperpile.com/c/992tEn/BFjWd
https://paperpile.com/c/992tEn/RoJS
https://paperpile.com/c/992tEn/0Tx6N
https://paperpile.com/c/992tEn/f0cTY
https://paperpile.com/c/992tEn/al4op
https://paperpile.com/c/992tEn/4Cwth+2OEaW
https://doi.org/10.1101/569384
http://creativecommons.org/licenses/by-nc/4.0/


Several other genes have been used as markers for the accurate identification of

MTBC bacteria[18–21]. However, the accuracy of NAATs based on these markers

rely on the specificity of the primers, since most of the targeted loci are claimed to be

MTBC-specific,  yet  they  were  evaluated with  limited  genomic  information  on the

diversity of NTM and MTBC bacteria.

Nowadays, the use of the publicly available omic data can help identifying species-

specific genetic markers to develop accurate molecular tools. Analyzing  omic data

has been proven to be an effective strategy for the identification of specific markers

in several organisms[22–26], and even some workflows have been published for the

evaluation of genetic markers based on genomic data[27]. For instance, comparative

genomics was used by Zozaya-Valdés  et al. to assess the population structure of

Mycobacterium chimaera, identifying six specific loci of these organisms that allowed

them to develop a highly accurate qPCR assay.

Strikingly, the use of comparative genomics for the identification of MTBC-specific

loci has been very limited. The few published studies focused on genetic regions

acquired by horizontal gene transfer and used the limited datasets available at the

time of publication, a decade ago[28–30]. By contrast, last years have witnessed a

burst of available genomic sequences of a wide range of mycobacteria species and

thousands of strains of the MTBC[31–33].

In this work, we perform a large-scale comparative genomic analysis to provide a

reference list of 30 MTBC-specific loci that will  be of great utility for the scientific

community  working  on  the  development  of  new  research  and  clinical  tools  for

tuberculosis. Remarkably, we found that the main MTBC markers used up to date

are also present in other organisms, mainly NTM. In our analysis, we assess the

global  diversity  of  each MTBC-specific  gene among a comprehensive dataset  of

4

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

4

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569384doi: bioRxiv preprint 

https://paperpile.com/c/992tEn/Lii1a+BYZoP+5OnMk
https://paperpile.com/c/992tEn/xAWzb+CDrnk+FXKzF
https://paperpile.com/c/992tEn/MdZzC
https://paperpile.com/c/992tEn/FjxML+jgsyH+0h9pv+Q4bg9+nEMUP
https://paperpile.com/c/992tEn/I9CKH+khMS2+OBRix+U7jOW
https://doi.org/10.1101/569384
http://creativecommons.org/licenses/by-nc/4.0/


more than 4,700 MTBC strains, showing the value of using the genomic data at hand

to identify the best targets for diagnostic assays. In addition, we develop a qPCR

assay based on one of these markers capable of quantifying MTBC DNA in clinical

samples.

Methods

In silico identification of MTBC-specific diagnostic gene markers

To identify MTBC-specific loci, we used blastn[34] to look for all the genes of the

tuberculosis  reference strain  H37Rv (NC_000962.3)  in  the  NCBI  nucleotide non-

redundant database (accessed October 2018) and a custom database comprising

4,277  NTM  assemblies  (Supplementary  Methods  1).  All  the  searches  were

performed specifying the algorithm blastn with a word size (or seed) of 7 bp. Then,

we filtered the results with a set of stringent parameters to discard loci similar to any

genomic region of any organism other than MTBC. We discarded all the genes that

presented an alignment of more than 25% of its sequence (query coverage) with a

similarity greater than 80%. If a gene was aligned in 60% of its sequence or longer it

was discarded regardless  of  the  similarity  of  the  alignment.  We only  kept  those

genes that were present in all the MTBC bacteria.

Once potential MTBC-specific markers were identified, we decided to assess their

genetic  diversity.  To  do  this,  we  analyzed  the  polymorphisms (single  nucleotide

polymorphisms  (SNPs)  and  indels)  observed  at  each  position  across  a  dataset

comprising 4,766 genomes of MTBC strains[35]. Therefore, the number of SNPs of

each gene was calculated as the sum of positions showing any nucleotide other than

the reference. In the case of indels, we considered those positions showing an indel

in at least 10 strains (0.2% of the database) to avoid the noise introduced by single-
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strain indels spanning large genic regions and possible false deletions arising as a

result of sequencings with uneven genomic coverages. This allowed us to calculate

different  metrics  for  each gene such as  the  absolute  number  of  polymorphisms,

polymorphisms per base and, most importantly, the prevalence of each one.

Finally, we looked for available information of these genes in the bibliography, what

allowed us to discard some candidates based on their genomic context and provide

extended  information  about  their  physiology.  We  gathered  transcriptomic  and

proteomic  data  derived  from  different  published  studies:  transcriptomic  data  in

response  to  overexpression  of  206  transcription  factors[36],  different  genotoxic

stresses[37] and response to nitric oxide stress at different time-points[38], as well

as proteomic data in response to nutrient starvation[39].

Set-up of a MTBC-specific qPCR assay for DNA detection and quantification

We used the list of 30 MTBC-specific loci to set up a qPCR assay for the detection

and quantification of MTBC DNA. To select the target for the assay, we took into

consideration the number of polymorphisms per base, the absence of high-prevalent

polymorphisms, the gene length and its genomic context. These criteria enabled an

optimum design of primers, amplifying a universal and highly-specific region for the

detection of MTBC. We designed the primers and probes for the assay using the

web tool Primer-BLAST[40], checking that no unspecific amplicons were predicted.

Finally, the qPCR assay consisted on the amplification of a 65 bp region within the

Rv2341 gene using the following primers: Forward-GCCGCTCATGCTCCTTGGAT,

Reverse-AGGTCGGTTCGCTGGTCTTG,  Probe-

TGAGTGCCTGCGGCCGCAGCGC.
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To test the specificity of the assay we performed qPCR experiments with DNA from

all  MTBC lineages (except lineage 7 due to  unavailability),  human DNA, a mock

sample with mixed DNA from 20 different bacterial species (ATCC
®

 MSA-1002
™

)

and 17 different species of NTM (Supplementary Methods 2).

The reaction efficiency was calculated using serial dilutions of pure H37Rv DNA as

template (0.5 ng/ul to 0.5*10
-5

 ng/ul). In addition, we evaluated the performance of

the assay detecting and quantifying MTBC DNA in a test set of clinical samples. We

used extracted DNA from 12 homogenized sputum samples from culture-positive TB

patients,  two  of  them  with  negative  smear  microscopy.  We  also  used  a  DNA

extraction from a non-TB patient sputum to spike in known concentrations of pure

H37Rv  DNA (0.5  ng/ul  to  0.5*10
-5

 ng/ul),  to  calculate  the  reaction  efficiency  in

clinical samples.

All  the  qPCR  reactions  were  carried  out  using  hydrolysis  probes  chemistry

(FAM/BHQ) in a total volume of 20ul, containing 10ul of Kapa Probe Fast Master Mix

2X (Kapa Biosystems), 250mM of each primer, 350mM of probe and 2ul of sample.

All  were  performed  in  a  Roche  Lightcycler  96  (Roche  Diagnostics),  with  two

replicates per sample and including reactions with no template as negative controls

(NTC).  When calculating reaction efficiencies,  we used three replicates per  point

instead of two. The conditions for each assay comprised an initial denaturation step

at 95ºC for 3 minutes, followed by 55 amplification cycles as follows: 20 seconds at

60ºC for annealing, 1 second at 72ºC for extension, and 10 seconds at 95ºC for

denaturation.  The  results  were  analyzed  with  LightCycler  96  ®  1.1  software.

Triplicates of each assay were carried out to check the reproducibility.
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Bacterial culture, clinical specimens and DNA extraction.

All the DNA extractions were performed in our laboratory except for the commercial

DNA mix of 20 bacterial species. Available cultures of different NTM species were

subcultured in in 7H11 solid agar media and then the DNA extracted following the

standard  CTAB  protocol[41] with  an  inactivation  step  of  1  hour  at  80ºC.  DNA

concentrations were measured with the Qubit  fluorometer (dsDNA high-sensitivity

kit) and samples with a concentration higher than 1ng/ul were normalized to 1ng/ul.

In  the  case  of  the  13  sputum  specimens,  DNA  extraction  was  performed  as

described by Votintseva et al[42]. All the samples were handled in a BSL-3 until DNA

was extracted and purified.

Ethics approval

The clinical specimens used in this study were collected as part of the surveillance

program of communicable diseases by the General Directorate of Public Health of

the  Comunidad  Valenciana  and,  as  such,  falls  outside  the  mandate  of  the

corresponding Ethics Committee for Biomedical Research. All personal information

was anonymized and no data allowing individual identification was retained.

Results

We identified 40 genes to be uniquely present in members of the MTBC according to

our filtering parameters (Figure 1). After evaluating their genetic diversity across a

database of more than 4,700 MTBC strains, we observed that the median number of

SNPs per base was 0.07, with some of these genes showing either higher or lower

diversities  (up  to  0.1  and 0.04 SNPs/base  respectively),  probably  as  a  result  of

8

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

8

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 6, 2019. ; https://doi.org/10.1101/569384doi: bioRxiv preprint 

https://paperpile.com/c/992tEn/fciDW
https://paperpile.com/c/992tEn/S2mOs
https://doi.org/10.1101/569384
http://creativecommons.org/licenses/by-nc/4.0/


different  selective  pressures.  Importantly,  although  most  of  the  polymorphisms

analyzed were strain-specific, we observed high prevalent polymorphisms as well

(Figure 1, Supplementary File 1). For instance, Rv0610c showed a SNP present in

4182 strains  and Rv2823c showed an insertion in  4,345 strains.  Analysis  of  the

phylogenetic  distribution  of  these  polymorphisms confirmed  that  they  mapped  to

deep branches in  the phylogeny.  For  example,  the SNP in  Rv0610c affected all

modern lineages (L2, L3, L4).

Among these, 9 genes were discarded as potential diagnostic markers since they

were included in regions of difference (RD) 182 (Rv2274c) and RD 207 (Rv2816c-

Rv2820c) as described in Gagneux  et al.[43] or were in variable genomic regions

associated to CRISPR elements (Rv2816c-2823c)[44]. Another gene, Rv3424c was

also  discarded as  we found it  to  be  duplicated in  a  very  labile  genomic  region,

between the (putative) transposase of the insertion sequence IS1532 and PPE 59.

Therefore, the curated list of MTBC-specific diagnostic markers finally consisted in

30 genes (Figure 1).

When looking at published transcriptomic and proteomic data (see Methods),  we

observed that Rv2003c, Rv2142c, and Rv3472 proteins are found in greater levels

(6.19, 3.6 and 100-fold respectively) when the bacteria is subjected to starvation.

Interestingly, Rv2003c is also observed to be overexpressed upon treatment with

nitric oxide (Supplementary File 2).

Based on our large genomic analysis, we set up a qPCR assay targeting the Rv2341

gene.  This  gene,  described  as  “probable  conserved  lipoprotein  lppQ”  in  the

Mycobrowser  database[45],  is  situated  in  a  stable  genomic  region,  between  the

asparagine tRNA and the gene of the DNA primase, involved in the synthesizes of

the okazaki  fragments. Furthermore, we were able to design an optimized set of
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primers that avoid, at the same time, any region harboring prevalent polymorphisms

(Figure 1).

When testing the qPCR assay with a panel of  samples including different MTBC

lineages, human, mock bacterial communities and different NTMs, the specificity of

the assay was of 100%. The efficiency of the reaction was of 95% showing a limit of

detection  of  10fg
 
(hypothetically  corresponding  to  2  genome equivalents).  When

using a standard curve of pure H37Rv DNA spiked in sputum samples, both the

efficiency of the reaction (97%) and the limit of detection remained unaltered (Figure

2). When testing our qPCR assay with a panel of 12 TB sputum samples, we were

able to detect and quantify MTBC DNA in all TB patient sputa, including 2 confirmed

TB cases with a negative smear microscopy (Supplementary File 4).

Discussion

Identification of MTBC markers for the development of new diagnostic and research

tools for tuberculosis has been an active area of research over the last decades,

focusing on the direct or indirect detection of the tubercle bacilli. It is striking that for

such a relevant disease, from both the epidemiological and economical point of view,

for  which  tons of  genomic  data  is  already  available,  the  identification  of  MTBC-

specific  genes  had  been  relegated  to  the  background.  This  has  been  probably

motivated by the fact that current molecular tools have shown to perform well in most

of situations. For instance, assays targeting the insertion sequence IS6110 ([46] or

rpoB[47].  However,  the available tools are not enough to stop the spread of the

disease  and  for  this  reason  many  new  generation  diagnostics  are  still  being

developed with the aim to improve the accuracy of the existing ones and tackle their

known flaws.
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Our analysis  provides invaluable  information  to  develop such diagnostics,  with  a

catalog of specific MTBC markers. Remarkably, some of the markers that we identify

could  be targeted to  determine the physiological  status of  MTBC bacteria  under

certain  conditions.  For  example,  Rv2003c,  overexpressed  during  starvation  and

upon treatment  with  nitric  oxide[38,39],  is  also  upregulated during  dormancy[48].

Similarly, Rv1374c has been described to be a small RNA that is highly expressed

during exponential growth[49], and hence could be used to evaluate the replicative

state of the bacilli. 

Strikingly, none of the markers considered to be MTBC-specific up to date are in our

list  of  unique MTBC genes.  For  instance,  when examining  in  which  species  the

IS6110  can  be  found,  we  observed  several  non-MTBC organisms,  including  14

NTMs, carrying at least one copy. The same is true for IS1081 and mpt64, present in

38  and  6  NTM  respectively  (Supplementary  File  3).  Similarly,  the  short-chain

dehydrogenase/reductase  gene  (SDR)  (Rv0303,  region  365,234–366,142),  which

has been recently  described as a  M. tuberculosis-specific  marker[28],  is  actually

present  in  several  NTM,  as  revealed  by  a  blastn  search  in  the  non-redundant

database of the NCBI web server (accessed January 2019), and in our database of

NTM assemblies (Supplementary File 5). The fact that IS6110 is still one of the most

used genetic targets for MTBC DNA detection (for example in the new Xpert Ultra

MTB/RIF assay[7]), highlights the great utility, and the necessity, of translating the

results of genomic analyses to the laboratory.

To illustrate the translational  potential  of our work, we set up an accurate qPCR

assay capable of quantifying MTBC DNA with 100% specificity and a sensitivity up to

2 genome copies. Quantifying MTBC DNA from clinical samples is challenging due

to the presence of PCR inhibitors along with great proportions of DNA from human
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and oropharyngeal  microbiota.  However,  this  capability  is  invaluable not  only  for

diagnostic purposes, but also in the research context, for example when developing

new protocols[42,50]. Remarkably, our assay, targeting a small region of the Rv2341

gene, showed an excellent performance in a test set of clinical specimens. However,

we want to highlight that the list provided here comprehends 30 loci,  from which

many different molecular tools for tuberculosis could be developed.

Altogether, our analysis has a direct translational value, as it represents an important

resource  for  research  groups  and  companies  involved  in  the  development  and

improvement of  novel TB diagnostics.  For instance, the markers identified in this

work could be used to improve existing tests such as the Xpert MTB/RIF assay, by

including  targets  that  we  have  demonstrated  to  be  globally  conserved  and  fully

specific to the MTBC.
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Figure Legends

Figure  1.  The  40  Mycobacterium  tuberculosis complex  (MTBC)-specific  loci

identified after an extensive search with blast in the NCBI non-redundant nucleotide

database and a custom database of 4,277 Non-tuberculous mycobacteria (NTM).

Gene names in red indicate loci that were discarded as diagnostic markers for being

within regions of difference (Rv2274c within RD 182 and Rv2816c-2820c within RD

207),  associated  to  CRISPR  (Rv2816c-2823c)  or  duplicated  in  the  genome

(Rv3424c).  Concentric  circles  represent  genetic  diversity  metrics  calculated  by

analyzing a dataset of 4,766 MTBC strains. Outer circle: heatmap representing the
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number of SNPs per base. Blue circle: prevalence of each SNP of each gene across

the database of MTBC strains. Inner, read circle: prevalence of each indel of each

gene across the database of MTBC strains. Note that both inner circles have two

scales, one from 0 to 300 strains and other from 300 to 4,800 strains. The region of

the Rv2341 gene amplified in our qPCR assay, avoiding prevalent polymorphisms, is

indicated in light yellow. Note that regions of difference 182 and 207 are clearly

detected in our analysis, indicated as contiguous deleted regions in a high number of

strains.

Figure  2.  Standard  curve  for  the  qPCR  assay  targeting  Rv2341  using  known

quantities  of  pure  H37Rv  DNA (in  blue;  efficiency=95%)  and  pure  H37Rv  DNA

spiked  in  sputum  samples  (in  red;  efficiency=97%).  In  the  upper  x-axis  is

represented the hypothetical number of genome copies. All qPCR experiments were

carried out in triplicates to check for reproducibility.
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Figure 1. The 40 Mycobacterium tuberculosis complex (MTBC)-specific loci identified after an extensive 

search with blast in the NCBI non-redundant nucleotide database and a custom database of 4,277 Non-

tuberculous mycobacteria (NTM). Gene names in red indicate loci that were discarded as diagnostic 

markers for being within regions of difference (Rv2274c within RD 182 and Rv2816c-2820c within RD 207), 

associated to CRISPR (Rv2816c-2823c) or duplicated in the genome (Rv3424c). Concentric circles represent 

genetic diversity metrics calculated by analyzing a dataset of 4,766 MTBC strains. Outer circle: heatmap 

representing the number of SNPs per base. Blue circle: prevalence of each SNP of each gene across the 

database of MTBC strains. Inner, read circle: prevalence of each indel of each gene across the database of 

MTBC strains. Note that both inner circles have two scales, one from 0 to 300 strains and other from 300 to 

4,800 strains. The region of the Rv2341 gene amplified in our qPCR assay, avoiding prevalent 

polymorphisms, is indicated in light yellow. Note that regions of difference 182 and 207 are clearly detected 

in our analysis, indicated as contiguous deleted regions in a high number of strains.
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Figure 2. Standard curve for the qPCR assay targeting Rv2341 using known quantities of pure H37Rv DNA 

(in blue; efficiency=95%) and pure H37Rv DNA spiked in sputum samples (in red; efficiency=97%). In the 

upper x-axis is represented the hypothetical number of genome copies. All qPCR experiments were carried 

out in triplicates to check for reproducibility.
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