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Abstract1

Multi-contrast MRI captures information about brain macro- and micro-structure which can be combined in an inte-2

grated model to obtain a detailed “fingerprint” of the anatomical properties of an individual’s brain. Inter-regional3

similarities between features derived from structural and diffusion MRI, including regional volumes, diffusion tensor4

metrics, neurite orientation dispersion and density imaging measures, can be modelled as morphometric similarity net-5

works (MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm and 46 term) who were scanned6

between 38 and 45 weeks postmenstrual age (PMA). Inter-regional similarities were used as predictors in a regression7

model of age at the time of scanning and in a classification model to discriminate between preterm and term infant8

brains. When tested on unseen data, the regression model predicted PMA at scan with a mean absolute error of 0.70 ±9

0.56 weeks, and the classification model achieved 92% accuracy. We conclude that MSNs predict chronological brain10

age accurately; and they provide a data-driven approach to identify networks that characterize typical maturation and11

those that contribute most to neuroanatomic variation associated with preterm birth.12

Significance Statement13

Preterm birth affects 15 million deliveries each year and is closely associated with intellectual disability, educational14

under-performance and psychiatric disorders. Imaging studies reveal a cerebral signature of preterm birth that includes15

alterations in brain structure and network connectivity, but there has not been a unified data-driven approach that16

incorporates all available information from MRI. We report that morphometric similarity networks (MSNs), which17

integrate information from structural MRI and diffusion MRI in a single model, accurately predict brain age. MSNs18

reveal the networks that characterize maturation and those that contribute to neuroanatomic variation associated with19

preterm birth. MSNs are extensible and offer a new approach for investigating early life origins of neurodevelopmental20

and mental health disorders21
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Introduction22

Preterm birth is closely associated with increased risk of neurodevelopmental, cognitive and psychiatric impairment23

that extends across the life course (Nosarti et al., 2012; Anderson, 2014; Mathewson et al., 2017; Van Lieshout et24

al., 2018). Structural and diffusion MRI (sMRI and dMRI) support the conceptualisation of atypical brain growth25

after preterm birth as a process characterised by micro-structural alteration of connective pathways due to impaired26

myelination and neuronal dysmaturation (Boardman et al., 2006; Anjari et al., 2007; Counsell et al., 2008; Ball et27

al., 2013; Back and Miller, 2014; Van Den Heuvel et al., 2015; Eaton-Rosen et al., 2015; Thompson et al., 2016;28

Batalle et al., 2017; Telford et al., 2017; Batalle et al., 2018); and the ensuing ‘dysconnectivity phenotype’ could form29

the basis for long term functional impairment (Boardman et al., 2010; Caldinelli et al., 2017; Keunen et al., 2017;30

Cao et al., 2017; Batalle et al., 2018b). However, there has not been a unified approach that incorporates all available31

information from sMRI and dMRI to study brain maturation in the perinatal period so the set of image features that32

best capture brain maturation, and support image classification, are unknown.33

The majority of neonatal connectomics studies have used single modes of data such as dMRI tractography (Brown34

et al., 2014; Batalle et al., 2017; Blesa et al., 2019) or resting-state functional connectivity (Ball et al., 2016; Smyser35

et al., 2016a). An alternative connectome model is the structural covariance network (SCN) approach (Alexander-36

Bloch et al., 2013) in which covariance between regional measurements is calculated across subjects, resulting in a37

single network for the entire population. Other approaches have constructed subject-specific SCNs (Li et al., 2017;38

Mahjoub et al., 2018) or higher order morphological networks to model the relationship between ROIs across different39

views (Soussia and Rekik, 2018), but these techniques have been restricted to the use of morphometric variables40

available through standard structural T1-weighted MRI sequences and by using a single metric (e.g. cortical thickness)41

to assess the “connectivity” between nodes (Shi et al., 2012).42

Based on observations that integrating data from different MRI sequences enhances anatomic characterization (Mel-43

bourne et al., 2014; Kulikova et al., 2015; Ball et al., 2017; Thompson et al., 2018a), we investigated whether whole-44

brain structural connectomes derived from multi-modal data within a predicting framework capture novel information45

about perinatal brain development. We used morphometric similarity networks (MSN) to model inter-regional corre-46
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lations of multiple macro- and micro-structural multi-contrast MRI variables in a single individual. This approach was47

originally devised to study how human cortical networks underpin individual differences in psychological functions48

(Seidlitz et al., 2018), and we adapted it to describe both cortical and subcortical regions in the developing brain.49

The method works by computing for each region of interest (ROI) a number of metrics derived from different MRI50

sequences which are arranged in a vector. The aim is to obtain a multidimensional description of the structural prop-51

erties of the ROIs. The MSN is then built considering the ROIs as nodes and modelling connection strength as the52

correlation between pairs of ROI vectors, thus integrating in a single connectome the ensemble of imaging features.53

The pattern of inter-regional correlations can be conceptualized as a “fingerprint” of an individual’s brain.54

We investigated the utility of MSNs for describing brain maturation, and for patient classification. The edges of55

individual MSNs were used to train two predictive models: a regression model to predict postmenstrual age (PMA)56

at scan and identify the set of image features that best model chronological brain age; and a classification model to57

discriminate between preterm and term-born neonates, and thereby identify the networks that explain neuroanatomic58

variation associated with preterm birth. Compared to simple regression models or correlation analysis, the advantage59

of predictive models is the possibility to verify that results generalise on unseen data, and hence to assess the validity60

of MSNs as an integrated representation for studying early brain development brain.61

Materials and Methods62

Participants and data acquisition63

Participants were recruited as part of a longitudinal study designed to investigate the effects of preterm birth on brain64

structure and long term outcome. The study was conducted according to the principles of the Declaration of Helsinki,65

and ethical approval was obtained from the UK National Research Ethics Service. Parents provided written informed66

consent. One hundred and five neonates underwent MRI at term equivalent age at the Edinburgh Imaging Facility:67

Royal Infirmary of Edinburgh, University of Edinburgh, UK. The study group contained 46 term and 59 preterm infants68

(details are provided in Table 1). The distribution of PMA at scan for all participants, for the term and preterm groups,69

and the distribution by gender are shown in Fig. 1. Of the preterm infants, 12 had bronchopulmonary dysplasia, 3 had70
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necrotising enterocolitis and 2 required treatment for retinopathy of prematurity.71

Figure 1. Distribution of postmenstrual age at scan for all subjects. a) Age distribution for the for term (blue) and

preterm (orange) groups. b) Age distribution for male (blue) and female (pink) participants.

Table 1. Participant characteristics.

preterm (N=59) term (N=46) all (N=105)

PMA at birth (weeks) 23.42-32.00 37.00-42.00 23.42-42.00

Birth weight (grams) 454-2100 2556-4560 454-4560

PMA at scan (weeks) 38.00-44.56 38.28-43.84 38.00-44.56

M:F ratio 29:30 26:20 55:50

PMA = Postmenstrual age, M = male, F = female.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Healthcare Erlangen, Germany) and 16-channel72

phased-array paediatric head coil were used to acquire: 3D T1-weighted MPRAGE (T1w) (acquired voxel size = 1mm73

isotropic) with TI 1100 ms, TE 4.69 ms and TR 1970 ms; 3D T2-weighted SPACE (T2w) (voxel size = 1mm isotropic)74

with TE 409 ms and TR 3200 ms; and axial dMRI. dMRI was acquired in two separate acquisitions to reduce the time75

needed to re-acquire any data lost to motion artefact: the first acquisition consisted of 8 baseline volumes (b = 076

s/mm2 [b0]) and 64 volumes with b = 750 s/mm2, the second consisted of 8 b0, 3 volumes with b = 200 s/mm2, 677
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volumes with b = 500 s/mm2 and 64 volumes with b = 2500 s/mm2; an optimal angular coverage for the sampling78

scheme was applied (Caruyer et al., 2013). In addition, an acquisition of 3 b0 volumes with an inverse phase encoding79

direction was performed. All dMRI images were acquired using single-shot spin-echo echo planar imaging (EPI)80

with 2-fold simultaneous multislice and 2-fold in-plane parallel imaging acceleration and 2 mm isotropic voxels; all81

three diffusion acquisitions had the same parameters (TR/TE 3400/78.0 ms). Images affected by motion artefact were82

re-acquired multiple times as required; dMRI acquisitions were repeated if signal loss was seen in 3 or more volumes.83

Infants were fed and wrapped and allowed to sleep naturally in the scanner. Pulse oximetry, electrocardiography and84

temperature were monitored. Flexible earplugs and neonatal earmuffs (MiniMuffs, Natus) were used for acoustic85

protection. All scans were supervised by a doctor or nurse trained in neonatal resuscitation. Structural images were86

reported by an experienced paediatric radiologist (A.J.Q.) using the system described in Leuchter et al. (2014), and87

images with evidence of focal parenchymal injury (post-haemorrhagic ventricular dilatation, porencephalic cyst or88

cystic periventricular leukomalacia), or central nervous system malformation were excluded.89

Data preprocessing90

All the following preprocessing steps, including maps calculation and quality check, were performed using dcm2niix,91

FSL, MRtrix, MIRTK, ANTs, Connectome Workbench and cuDIMOT (Smith et al., 2004; Avants et al., 2011; Marcus92

et al., 2011; Makropoulos et al., 2014; Li et al., 2016; Hernandez-Fernandez et al., 2019; Tournier et al., 2019).93

First, all DICOM image files (dMRI and sMRI) were converted to NIFTI (Li et al., 2016). Structural data were prepro-94

cessed using the developing Human Connectome Project (dHCP) minimal structural processing pipeline (Makropou-95

los et al., 2018). Briefly, the T1w image was co-registered to the T2w image, both were corrected for bias field96

inhomogeinities (Tustison et al., 2010) and an initial brain mask was created (Smith, 2002). Following this, the brain97

was segmented into different tissue types (CSF: cerebrospinal fluid; WM: white matter; cGM: cortical grey matter;98

GM: subcortical grey matter) using the Draw-EM algorithm (Makropoulos et al., 2014). Twenty manually labelled99

atlases (Gousias et al., 2012) were then registered to each subject using a multi-channel registration approach, where100

the different channels of the registration were the original intensity T2-weighted images and GM probability maps.101
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These GM probability maps were derived from an initial tissue segmentation, performed using tissue priors propa-102

gated through registration of a preterm probabilistic tissue atlas (Serag et al., 2012). The framework produces several103

output files, but for this study only the aligned T1w and the T2w images and the parcellation in 87 ROIs were used104

(Makropoulos et al., 2016).105

Diffusion MRI processing was performed as follows: for each subject the two dMRI acquisitions were first concate-106

nated and then denoised using a Marchenko-Pastur-PCA-based algorithm (Veraart et al., 2016; Veraart et al., 2016b);107

the eddy current, head movement and EPI geometric distortions were corrected using outlier replacement and slice-to-108

volume registration with TOPUP and EDDY (Andersson et al., 2003; Smith et al., 2004; Andersson and Sotiropoulos,109

2016; Andersson et al., 2016; Andersson et al., 2017); bias field inhomogeneity correction was performed by calcu-110

lating the bias field of the mean b0 volume and applying the correction to all the volumes (Tustison et al., 2010). This111

framework only differs from the optimal pipeline for diffusion preprocessing presented in Maximov et al. (2019) in112

that we did not perform the final smoothing or the gibbs-ring removal (Kellner et al., 2016) due to the nature of the113

data (partial fourier space acquisition).114

The mean b0 EPI volume of each subject was co-registered to their structural T2w volume using boundary-based115

registration (Greve and Fischl, 2009), then the inverse transformation was used to propagate ROI labels to dMRI116

space.117

For each ROI, two metrics were computed in structural space: ROI volume and the mean T1w/T2w signal ratio118

(Glasser and Van Essen, 2011). The other ten metrics were calculated in native diffusion space: five metrics derived119

from the diffusion kurtosis (DK) model (Jensen et al., 2005) and five derived from the Neurite Orientation Dispersion120

and Density Imaging model (NODDI) (Zhang et al., 2012; Tariq et al., 2016).121

Feature extraction122

Structural metrics ROI volumes were calculated without normalising for the whole brain volume; this step is123

performed later by use of z-score. The mean T1w/T2w signal ratio was calculated before the bias field correction.124
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The T1w/T2w ratio was used because it enhances myelin contrast and mathematically cancels the signal intensity bias125

related to the sensitivity profile of radio frequency receiver coils (Glasser and Van Essen, 2011).126

Diffusion kurtosis metrics The diffusion kurtosis (DK) model is an expansion of the diffusion tensor model. In127

addition to the diffusion tensor, the DK model quantifies the degree to which water diffusion in biological tissues is128

non-Gaussian using the kurtosis tensor. The reason for this is that the Gaussian displacement assumption underlying129

the diffusion tensor breaks at high b-values (Jensen et al., 2005). We assumed the kurtosis component to be the130

same along all directions of propagation. The metrics obtained from the DK model for each ROI are the means of:131

the fractional anisotropy (FA), mean, axial and radial diffusivity (MD, RD, AD) and kurtosis (MK). The MK map132

quantifies the deviation from Gaussianity of water molecule displacement and can reflect different degrees of tissue133

heterogeneity (Steven et al., 2014).134

NODDI metrics For the NODDI measures, the Bingham distribution was employed (Tariq et al., 2016) in order to135

extend the NODDI formalism to enable the characterisation of anisotropic orientation dispersion. From this NODDI136

implementation we obtain five metrics: intracellular volume fraction (υ ic), isotropic volume fraction (υ iso), the ori-137

entation dispersion index along the primary and secondary directions (ODIP and ODIS) and the overall orientation138

dispersion index (ODITOT). NODDI maps were calculated using default parameters.139

Data Quality Control140

The parcellations obtained after the processing were visually inspected and parcels corresponding to CSF and back-141

ground parcels were excluded because they do not represent brain tissue. A poor segmentation of the corpus callosum142

was observed in some of the subjects. Instead of removing the subjects with poor segmentation, we decided to remove143

the corpus callosum from the model, aiming to maximize the number of subjects. As a result of the whole quality144

check, we include the whole population and each network is composed of 81 nodes (ROIs).145

For the dMRI data we use eddy QC (Bastiani et al., 2019). The quality control is performed at subject level and group146
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level. Eddy QC provides several measures related to the rotation, translation and outliers of the images. In addition,147

it also computes the signal-to-noise (SNR) ratio maps of the b0 volumes and the contrast-to-noise (CNR) ratio maps148

for the different b-values. These maps can be used at group level to visualise the quality of the data (Bastiani et al.,149

2018). The results show that the overall quality of the data-set was good (Fig. 2). For eddy QC to work, we removed150

the b-value = 200 s/mm2. This is because the low number of volumes with this b-value sometimes leads the Gaussian151

process performed by eddy to produce a perfect fit, which makes the CNR maps unrealistic.152

Fig. 2 shows two representative subjects, one from the top quartile of the SNR and CNR distributions (green star) and153

one from the bottom quartile (red star). In the first panel we can see where they are placed in terms of SNR and CNR154

over the overall population. The second panel shows the SNR maps (for the b0) and the CNR maps (for the rest of155

b-values). The bottom panel of the Fig. 2 shows the b0 before and after the processing of the selected subjects. It is156

possible to observe the effect of the different steps involved, such as the EPI geometric corrections or the bias field157

inhomogeneity correction.158

Experimental design and statistical analysis159

The models and the analyses described in this section were implemented in Python (v3.6.4) using open source libraries160

and frameworks for scientific computing, including SciPy (v1.0.0), Numpy (v1.14.0), Statsmodels (v0.8.0), Pandas161

(v0.22.0), Scikit-learn (v0.19.1) and Matplotlib (v2.1.2) (Jones et al., 2001; Hunter, 2007; Seabold and Perktold, 2010;162

McKinney and others, 2010; Pedregosa et al., 2011; Van Der Walt et al., 2011).163

Network Construction The MSN for each subject was constructed starting from 81 ROIs; each of the ROI metrics164

was normalised (z-scored) and Pearson correlations were computed between the vectors of metrics from each pair165

of ROIs. In this way, the nodes of each network are the ROIs and the edges represent the morphometric similarity166

between the two related ROIs (Fig. 3). In the following, the terms “edge”, “connection” and “inter-regional similarity”167

are used interchangeably to refer to the correlation between the regional metrics of a pair of ROIs.168

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569319doi: bioRxiv preprint 

https://doi.org/10.1101/569319


Figure 2. Quality control results. a) Results for the overall population with two selected subjects, one from the top

quartile of the SNR and CNR distributions (green star) and the other from the bottom quartile (red star). b) The SNR

and CNR maps for the selected subjects. c) The b0 of both subjects before and after the processing pipeline.
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Figure 3. a) Individual MSN construction. Different metrics are extracted from dMRI and sMRI data. The same par-

cellation is applied to all image types and the average metric values are computed for each ROI. A MSN (represented

here as a connectivity matrix) is built by computing the Pearson correlation between the vectors of metrics of each

pair of ROIs. b) Training of a predictive model (here for PMA at scan) from individual MSNs. The inter-regional

correlations are used as predictor variables in a machine learning model. The performance of the model is evaluated

on an independent test set.
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Confounding variables We observed a positive correlation (ρ = 0.27, p = 0.0048) between PMA at scan and PMA169

at birth and a negative correlation (ρ = −0.22, p = 0.0233) between PMA at scan and gender (coded as a binary170

variable where 0 indicates female infants and 1 male infants), implying that in our sample term subjects and female171

subjects tend to have their scan acquired at a later age (see also fig. 1). To control for potential bias, we used these172

confounders as predictors and compared their predictive performance with our network-based features.173

Regression model for age We trained a linear regression model with elastic net regularisation to predict PMA at174

scan – i.e. chronological brain age – in both preterm and term infants starting from individual MSNs. This model was175

chosen for its ability to cope with a high number of features (Zou and Hastie, 2005). For each subject, the edges of176

the MSN (inter-regional correlations) were concatenated to form a feature vector to be given as input to the regression177

model. Since the connectivity matrix representing the MSN is symmetric, we considered only the upper triangular178

matrix for each subject. Gender and age at birth were included in the model to control for their possible confounding179

effects.The prediction performances were evaluated with a leave-one-out cross-validation scheme, by computing the180

mean absolute error (MAE) averaged across subjects. The parameters of the elastic net were selected with a nested181

3-fold cross-validation loop; the folds were stratified in percentiles to include samples covering the whole age range182

in each of the folds. Permutation testing was used for the statistical validation of the model performance: the null183

distribution was built by running the age prediction analysis on 1000 random permutation of the PMA.184

Classification model A Support Vector Machine (SVM) classifier with linear kernel was trained to discriminate185

between preterm and term infants. As per the regression model, the input for each subject consisted of inter-regional186

connections taken from the upper triangular connectivity matrix and age at the time of scanning and gender were187

included as covariates of no interest.While in the case of regression the elastic net regularisation performs automat-188

ically a variable selection step, recursive feature elimination (RFE) was applied in combination with SVM to select189

the best subset of connections. Model selection was implemented using nested cross validation: an outer 3-fold cross-190

validation loop was used to select the SVM parameters and an inner 4-fold cross-validation loop was used for RFE.191

Folds were stratified to include the same proportion of term and preterm subjects. The accuracy of the model was eval-192
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uated as the number of correctly classified subjects across the leave-one-out folds over the total number of subjects in193

the test set. The null distribution was built by repeating the exact same analysis 1000 times after randomly assigning194

subjects to the term and the preterm group.195

Feature selection After the preprocessing phase, twelve different metrics were available for each ROI. To study196

which combination of features produced better performance in the prediction tasks, we implemented a sequential197

backward-forward feature selection scheme. Starting from the full set of features, at each iteration we removed the198

feature whose subtraction caused the least increase in prediction error (down to three features, for a total of 73 combi-199

nations). The procedure was performed separately for the regression and the classification models.200

Results201

Feature selection202

In figure 4 we report two histograms summarising the performance of the 73 different models compared per each203

task in the backward feature selection scheme. In both cases, we can observe that the models based on all three data204

modalities achieved better results in terms of prediction accuracy. The performances of each of the compared model205

are reported in figure 4-1 and 4-2 for the age prediction and for the classification models, respectively.206

The best performing model for age prediction, which was adopted for all subsequent analyses, was based on seven207

features (Volume, FA, MD, AD, MK, υ iso, ODIP). Figure 5 shows the average MSN matrix computed across all208

subjects for the selected set of features and the matrix of correlation between inter-regional similarities and PMA at209

scan across subjects. The average MSN matrix shows four main blocks that correspond roughly to positive correlations210

between ROIs within GM and between ROIs within WM, and to negative correlation between WM ROIs and GM211

ROIs, indicating that ROIs within GM (and within WM) share similar structural properties, while GM and WM212

regional descriptors tend to be anti-correlated. The four-block structure is recognisable also in the matrix reporting213

correlations with chronological age: with increasing age regions within GM or within WM become more similar with214

each other, while the dissimilarities between GM and WM ROIs increases.215
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Figure 4. Histograms of the performance of the 73 models compared in the backward feature selection scheme for the

age prediction task (a) and for the classification task (b). Bars are grouped by the number of modalities included in the

models.
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Figure 5. a) Average MSN computed across all subjects using the combination of features selected through the

backward feature selection scheme for the age prediction task (Volume, FA, MD, AD, MK, υ iso, ODIP). b) Correlation

between each connection weight (inter-regional similarity) and PMA at scan across subjects. Connections that were

identified as predictive features by the predictive model are highlighted in black. ROIs are ordered as in table 5-1.
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Figure 6. a) Average MSN computed across all subjects using the combination of features selected through the

backward feature selection scheme for the classification task (Volume, T1/T2, FA, MD, AD, RD, MK, υ ic, υ iso, ODIP,

ODITOT). b) Correlation between each connection weight (inter-regional similarity) and PMA at birth across subjects.

Connections that were identified as discriminative features by the SVM are highlighted in black. ROIs are ordered as

in table 5-1.

The best classifier model was based on eleven out of the twelve features (all except ODIS), so compared to the age216

prediction model, four additional features were included: T1/T2, RD, υ ic and ODITOT. The average MSN computed217

with the selected features and the matrix of correlation with PMA at birth is shown in figure 6. Comparing panel b of218

figures 5 and 6, it is apparent that while the patterns of correlation with PMA at scan and at birth are similar within219

GM and WM, subcortical ROIs show an opposite trend: with increasing PMA at scan subcortical ROIs tend to become220

more similar to WM ROIs and more dissimilar to GM ROIs, but the similarity between subcortical ROIs and cortical221

GM is positively correlated to age at birth.222

Prediction results223

The best regression model predicted chronological age (PMA at scan) with a MAE of 0.70 ± 0.56 weeks on the224

test data. The results of the permutation test are shown in figure 7. The two confounding variables (gender and age225
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at birth) were not selected by the internal feature selection procedure, hence the predictions were based on network226

features alone. For comparison, we evaluated the predictive performance of a linear regression model using only227

gender and PMA at birth as independent variables, that achieved a MAE of 1.03 ± 0.88 weeks. A Wilcoxon rank-sum228

test confirmed that the latter model achieved a significantly greater error (W = 6525, p = 0.0107).229

To study which connections contributed the most to chronological age prediction, we selected only edges which were230

assigned a non-zero coefficient in at least 99% of cross-validation folds. These edges are shown in the chord diagram231

in Fig. 8, and are colour coded to distinguish between inter-regional similarities that increase or decrease with age,232

to highlight networks of regions whose morphological properties are converging (gray) or that tend to differentiate233

with increasing age (red). Intuitively, these edges connect ROIs whose anatomical and micro-structural properties are234

changing more than others between 38 and 45 weeks PMA, making the ROIs more or less similar. In other words,235

it is the relative timing of maturation of different brain tissues to determine the relevance of a connection in the age236

prediction task. The selected connections are located in both cortical (frontal, temporal, parietal and occipital lobes;237

insular and posterior cingulate cortex) and subcortical regions (thalamus, subthalamic and lentiform nuclei), in the238

brain stem and in the cerebellum. These areas have been previously associated with age-related changes and preterm239

birth (Boardman et al., 2006; Ball et al., 2013; Batalle et al., 2017).240

Figure 7. Null distributions computed over 1000 random permutations of the target variable for the age prediction (a)

and the classification tasks (b). The red dotted lines indicate the performances of our models.
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The best classifier discriminated between term and preterm infants with a 92% accuracy (figure 7). None of the241

confounders were included among the selected features. A logistic regression model built on the confounders alone242

did not achieve significant accuracy (56%, p = 0.091).243

The network of regions that showed the most divergent pattern of structural brain properties in preterm versus term244

infants comprised the brain stem, the thalamus and the subthalamic nucleus; WM regions in the frontal and insular245

lobes; GM regions in the occipital lobe; both WM and GM regions in the temporal and parietal lobes and in the246

posterior cingulate cortex. The chord diagram of edges selected by 99% of the models is shown in Fig. 9, in red where247

inter-regional similarities are greater in the term group and in gray where they are greater in the preterm group.248

Discussion249

These results show that the information encoded in MSNs is predictive of chronological brain age in early life and250

that MSNs provide a novel data-driven method for investigating neuroanatomic variation associated with preterm251

birth. MSNs were built by combining features from different imaging sequences that describe complementary as-252

pects of brain structure that have been previously studied in isolation (Makropoulos et al., 2016; Batalle et al., 2017)253

and the resulting predictive models achieved a high accuracy. Furthermore, the regions identified as most predictive254

have been previously associated with age-related changes and preterm birth (Boardman et al., 2006; Ball et al., 2013;255

Batalle et al., 2017; Bouyssi-Kobar et al., 2018). These data suggest that to fully describe morphological variation in256

the developing brain it may be advantageous to adopt a holistic approach, leveraging the additional information that257

can be derived from integrating multi-contrast MRI data. The main motivation for using a network-based approach258

is indeed obtaining a whole-brain description able to capture a developmental pattern. A second reason for working259

with similarities instead of single regional metrics is methodological: computing edge weights as inter-regional sim-260

ilarities enables an integrated representation of all available metrics in a single network; to work with the original261

features directly would mean either working with several networks (thus requiring a further step to integrate them)262

or concatenating all the features in a single predictive model, aggravating the problems related with the “curse of263

dimensionality”.264
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Figure 8. Chord diagram showing MSN edges used for age prediction in at least 99% of regression models in the cross-

validation folds. Connections shown in gray are inter-regional similarities that increase with chronological age, while

connections in red are inter-regional similarities that decrease with chronological age. The edge width is proportional

to the correlation between inter-regional similarities and PMA. The left side of the diagram corresponds to the left side

of the brain. Abbreviations for ROI names are explained in table 5-1.
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Figure 9. MSN edges showing a divergent pattern of morphological properties in term and preterm infants in at least

99% of classification models in the cross-validation folds. Gray connections indicate inter-regional similarities that

are greater in the preterm group, while red connections are greater in the term group. The edge width is proportional

to the correlation between inter-regional similarities and prematurity. The left side of the diagram corresponds to the

left side of the brain. Abbreviations for ROI names are explained in table 5-1.
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Our data are consistent with previous studies of perinatal brain age prediction based on a single type of data or a single265

metric. For example, Brown et al. (2017) used dMRI tractography to predict brain dysmaturation in preterm infants266

with brain injury and abnormal developmental outcome and found that altered connectivity in the posterior cingulate267

gyrus and the inferior orbitofrontal cortex were associated with a delayed maturation; both of these regions are included268

in the networks identified by our model. Regional FA, MD, MK, and υ ic are each predictive of age (Genc et al., 2017;269

Karmacharya et al., 2018; Ouyang et al., 2019), and the first three measures were selected in our age predicition model.270

Growth of the thalami and brainstem, defined in terms of myelin-like signals from T2-weighted images, successfully271

predicted age between 29 and 44 weeks (Deprez et al., 2018) and these regions are included in the networks most272

predictive of age in the current study. In Toews et al. (2012), scale-invariant image features were extracted from T1-273

weighted MRI data of 92 subjects over an age range of 8-590 days to build a developmental model that was used to274

predict age of new subjects; and Ceschin et al. (2018) proposed a deep learning approach to detect subcortical brain275

dysmaturation from T2-weighted fast spin echo images in infants with congenital hearth disease. Wu et al. (2019)276

used cortical features extracted from structural images to predict age of 50 healthy subjects with 251 longitudinal MRI277

scans from 14 to 797 days; compatibly with our results, the regions reported to be important for age prediction were278

bilateral medial orbitofrontal, parahippocampal, temporal pole, right superior parietal and posterior cingulate cortex.279

In addition, many works have identified imaging biomarkers associated with preterm birth, such as brain tissue volume280

(Alexander et al., 2018; Gui et al., 2019), myelin content (Melbourne et al., 2016), and diffusion tensor metrics (Anjari281

et al., 2007; Bouyssi-Kobar et al., 2018).282

The connections most predictive of age revealed that brain maturation is characterised by morphological convergence283

of some networks and divergence of others (fig. 8). These connections mostly involve fronto-temporal and subcortical284

ROIs, which suggests that the micro- and macro-structural properties of these regions are highly dynamic between285

38-45 weeks. Among these, inter-regional similarities within GM and WM increase with age, similarities between286

cortical GM and WM decrease, while subcortical ROIs become more similar to WM and more dissimilar to cortical287

GM. This is consistent with previous findings on the different trends in development of the thalamus and the cortex288

(Eaton-Rosen et al., 2015). Additionally, in a study of early development of structural networks (Batalle et al., 2017),289
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connections to and from deep grey matter are reported to show the most rapid developmental changes between 25-45290

weeks, while intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections are reported to291

mature more slowly.292

Conversely, the inter-regional similarities selected by the SVM classifier to discriminate between term and preterm293

(figures 5 and 9) are more distributed across cortical GM and WM and are for the most part greater in the preterm294

group. The fact that in the term group these cortical ROIs are less homogeneous in terms of structural properties295

could be interpreted as a sign that in term infants these regions are at a different stage of maturation where their296

morphological profile is consolidating along specialized developmental trajectories. It has been previously suggested297

that the rapid maturation of cortical structures occurring in the perinatal period is vulnerable to the effects of preterm298

birth (Kostović and Jovanov-Milošević, 2006; Ball et al., 2011; Ball et al., 2013; Smyser et al., 2016b).299

The differences between networks identified for age prediction and for preterm classification indicate that atypical300

brain development after preterm birth is not solely a problem of delayed maturation, but it is characterised by a301

specific signature. Indeed, while the age prediction networks capture changes occurring in both the preterm and the302

term group, the classification networks highlights where there are group-wise differences, and they do not match:303

in the case of a delayed maturation we would have observed differences in the same regions undergoing age-related304

changes. MSN variations associated with preterm birth affected brain stem, thalami, sub-thalamic nuclei, WM regions305

in the frontal and insular lobes, GM regions in the occipital lobe, and WM and GM regions in the temporal and306

parietal lobes and in the posterior cingulate cortex. This distribution of structural variation is consistent with previous307

reports of regional alteration in brain volume and dMRI parameters based on single contrasts (Boardman et al., 2006;308

Bonifacio et al., 2010; Ball et al., 2013; Brown et al., 2017; Batalle et al., 2017; Alexander et al., 2018; Thompson309

et al., 2018b; Bouyssi-Kobar et al., 2018). Furthermore, compared to the age prediction model, the MSNs used310

for preterm classification are based on four additional metrics: T1/T2, related to myelination; RD, measuring water311

dispersion; υ ic describing neurite density; and ODITOT, associated with the fanning of WM tracts. All these metrics312

contribute to characterise the micro-structural alterations associated with preterm birth (Eaton-Rosen et al., 2015;313

Melbourne et al., 2016; Batalle et al., 2018; Thompson et al., 2018b; Bouyssi-Kobar et al., 2018).314
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In both chord diagrams (figures 8 and 9) we observed more edges in the right hemisphere than in the left one, hinting at315

the existence of a lateralization mechanism in the maturational process. An asymmetry in the development of the right316

hemisphere in neonates was previously reported in Dubois et al. (2010); Yap et al. (2011); Wu et al. (2019). It is worth317

noting that both elastic net and SVM models perform a feature selection step to exclude features that are correlated318

and that carry redundant information in order to improve prediction performance, hence it might be the case that the319

models selected the right connections and discarded the left ones precisely because they had a similar information320

content. However, the displayed connections were selected in 99% of the cross-validation folds, therefore if left and321

right edges were indeed “exchangeable” this disproportion would probably be less stark.322

This work has some limitations. First, the decision to include subcortical and white matter structures in the network323

was made because of prior knowledge of their importance in preterm brain development, but inclusion meant that324

cortical measures had to be removed from the model, such as sulcal depth or curvature. Second, compared with the325

original work on MSNs (Seidlitz et al., 2018), we did not have a multi-parametric mapping sequence (Weiskopf et al.,326

2013); however, because the model is extensible, information from other contrasts could be added and evaluated for327

their effect on prediction.328

Morphology, structural connectivity ad maturation are all influenced by genetics, co-morbidities of preterm birth, and329

nutrition (Boardman et al., 2014; Anblagan et al., 2016; Sparrow et al., 2016; Krishnan et al., 2016; Ball et al., 2017;330

Alexander et al., 2018; Blesa et al., 2019). In future work MSNs could offer new understanding of the impact of these331

factors on integrated measures of brain development, and the relationship between neonatal MSNs and functional332

outcome could provide novel insights in to the neural bases of cognition and behaviour.333

Conclusion334

Combining multiple imaging features in a single model enabled a detailed description of the morphological properties335

of the developing brain that was used inside a predictive framework to identify two networks of regions: the first,336

predominantly located in subcortical and fronto-temporal areas, that contributed most to age prediction: the second,337

comprising mostly frontal, parietal, temporal and insular regions, that discriminated between preterm and term born338
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infant brains. Both predictive models performed best when structural, diffusion tensor-derived and NODDI metrics339

were combined, which demonstrates the importance of integrating different biomarkers to generate a global picture of340

the developing human brain.341
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Table Legends576

Table 1 Participant characteristics.577

578

579

Figure Legends580

Figure 1 Distribution of postmenstrual age at scan for all subjects. a) Age distribution for the for term (blue) and581

preterm (orange) groups. b) Age distribution for male (blue) and female (pink) participants.582

583

Figure 2 Quality control results. a) Results for the overall population with two selected subjects, one from the584

top quartile of the SNR and CNR distributions (green star) and the other from the bottom quartile (red star). b) The585

SNR and CNR maps for the selected subjects. c) The b0 of both subjects before and after the processing pipeline.586

587

Figure 3 a) Individual MSN construction. Different metrics are extracted from dMRI and sMRI data. The same588

parcellation is applied to all image types and the average metric values are computed for each ROI. A MSN (repre-589

sented here as a connectivity matrix) is built by computing the Pearson correlation between the vectors of metrics of590

each pair of ROIs. b) Training of a predictive model (here for PMA at scan) from individual MSNs. The inter-regional591

correlations are used as predictor variables in a machine learning model. The performance of the model is evaluated592
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on an independent test set.593

594

Figure 4 Histograms of the performance of the 73 models compared in the backward feature selection scheme for the595

age prediction task (a) and for the classification task (b). Bars are grouped by the number of modalities included in the596

models.597

598

Figure 5 a) Average MSN computed across all subjects using the combination of features selected through the back-599

ward feature selection scheme for the age prediction task (Volume, FA, MD, AD, MK, υ iso, ODIP). b) Correlation600

between each connection weight (inter-regional similarity) and PMA at scan across subjects. Connections that were601

identified as predictive features by the predictive model are highlighted in black. ROIs are ordered as in table 5-1.602

603

Figure 6 a) Average MSN computed across all subjects using the combination of features selected through the back-604

ward feature selection scheme for the classification task (Volume, T1/T2, FA, MD, AD, RD, MK, υ ic, υ iso, ODIP,605

ODITOT). b) Correlation between each connection weight (inter-regional similarity) and PMA at birth across subjects.606

Connections that were identified as discriminative features by the SVM are highlighted in black. ROIs are ordered as607

in table 5-1.608

609

Figure 7 Null distributions computed over 1000 random permutations of the target variable for the age prediction610

(a) and the classification tasks (b). The red dotted lines indicate the performances of our models.611

612

Figure 8 Chord diagram showing MSN edges used for age prediction in at least 99% of regression models in the613

cross-validation folds. Connections shown in gray are inter-regional similarities that increase with chronological age,614

while connections in red are inter-regional similarities that decrease with chronological age. The edge width is pro-615

portional to the correlation between inter-regional similarities and PMA. The left side of the diagram corresponds to616

the left side of the brain. Abbreviations for ROI names are explained in table 5-1.617

618
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Figure 9 MSN edges showing a divergent pattern of morphological properties in term and preterm infants in at619

least 99% of classification models in the cross-validation folds. Gray connections indicate inter-regional similarities620

that are greater in the preterm group, while red connections are greater in the term group. The edge width is propor-621

tional to the correlation between inter-regional similarities and prematurity. The left side of the diagram corresponds622

to the left side of the brain. Abbreviations for ROI names are explained in table 5-1.623

624

625

Extended Data Legends626

Figure 4-1 Feature selection results for the age prediction task. The best set of features was selected with a backward627

feature selection scheme: starting from the full set of features, at each iteration the feature whose subtraction caused628

the least increase in prediction error was removed. The mean absolute error (MAE) computed with leave-one-out629

cross-validation is reported for each subset of features. The black lines depict standard deviation.630

Figure 4-2 Feature selection results for the classification task. The best set of features was selected with a backward631

feature selection scheme: starting from the full set of features, at each iteration the feature whose subtraction caused632

the least decrease in prediction accuracy was removed. The accuracy computed with leave-one-out cross-validation is633

reported for each subset of features. The black lines depict standard deviation.634

Table 5-1 Abbreviations of ROI names and division of ROIs into groups.635
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