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10

Abstract Reducing the complex behavior of living entities to its underlying physical and chemical11

processes is a formidable task in biology. Complex behaviors can be characterized as decision12

making: the ability to process the incoming information via an intracellular network and act upon13

this information to choose appropriate strategies. Motility is one such behavior that has been the14

focus many modeling efforts in the past. Our aim is to reduce the chemotactic behavior in E. coli to15

its molecular constituents in order to paint a comprehensive and end-to-end picture of this16

intricate behavior. We utilize a hierarchical approach, consisting of three layers, to achieve this goal:17

at the first level, chemical reactions involved in chemotaxis are simulated. In the second level, the18

chemical reactions give rise to the mechanical movement of six independent flagella. At the last19

layer, the two lower layers are combined to allow a digital bacterium to receive information from its20

environment and swim through it with verve. Our results are in concert with the experimental21

studies concerning the motility of E. coli cells. In addition, we show that our detailed model of22

chemotaxis is reducible to a non-homogeneous Markov process.23

24

Introduction25

Decision making is defined as choosing a course of action from a set of possibilities (Kitajima and26

Toyota, 2013). Biological systems have to cope with both internal and external perturbations and27

make the “right” decisions amidst this pandemonium. The decision-making machinery is shaped by28

natural selection to fit the conditions of its environment (Tagkopoulos et al., 2008;Mitchell et al.,29

2009). Motility can be viewed as a decision-making process that benefits the living cell by enabling30

it to find resources in its niche more efficiently (Xie and Wu, 2014). Cell motility requires sensors31

to monitor the environment, actuators to act upon the incoming information, and an network to32

process that information.33

34

Themajority of bacteria are motile, swimming being its most common form (Jarrell and McBride,35

2008; Lauga, 2016). Early studies revealed a substantial amount of variation in motility of clonal36

cells as they navigate a uniform environment (Dufour et al., 2016). In a homogeneous environment37

with uniformly-distributed resources, all decisions apropos of motility would be equally likely to be38

taken -i.e., random walk. Consequently in such circumstances, a motile cell would randomly navigate39
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the environment. Having encountered a non-uniform distribution of resources in the environment,40

a motile cell will move to more resource-rich areas - i.e., the default random walk turns into biased41

random walk.42

43

Chemotaxis, the ability of bacterial cells to sense chemical cues in their environment and move44

accordingly, predates the divergence of the eubacteria from the archaebacteria (Woese and Fox,45

1977). The steps taken in chemotactic behavior, to seek attractants and avoid repellents, can be46

seen as a chain of biased random steps. To illustrate this point, we can focus on Escherichia coli. E.47

coli detects the concentration of chemoattractants in its vicinity via an array of sensors, processes48

the sensory data via a sensory network, and swims accordingly using its flagella (Sourjik and49

Wingreen, 2012; Frankel et al., 2014). Following a trail of chemoattractants to get to their source is50

seemingly an insurmountable obstacle for E. coli, since their small size means that the difference51

between the amount of chemoattractants around its head and its tail would not be meaningful, and,52

consequently, useless in finding the correct direction. In reality, by rotating its flagella clockwise53

(CW) or counter clockwise (CCW), E. coli runs and tumbles through the environment (Wadhams and54

Armitage, 2004; Shimizu et al., 2010).55

56

Many mathematical models have been developed to understand the bacterial chemotaxis57

(reviewed in (Tindall et al., 2008)). The early models focused on the adaptive behavior of individual58

bacteria in different environmental conditions at a macroscopic level (Segel, 1976; Spudich and59

Koshland Jr, 1976; Block et al., 1982, 1983). Some models (e.g., Goldbeter and Koshland Jr (1982)),60

used ordinary differential equations to describe the bacterial response to a gradient of chemical61

stimulants. Some used the Ising model (Shi and Duke, 1998; Duke and Bray, 1999; Shi, 2000, 2001,62

2002; Guo and Levine, 1999, 2000), others utilized an individual-based approach (Frankel et al.,63

2014; Niu et al., 2013), and some emphasized the hydrodynamic aspects of swimming (Elgeti et al.,64

2015) and the role of drift versus diffusion (Chatterjee et al., 2011).65

66

Most theoretical models of chemotaxis are limited to incorporating a single motor or simply67

assume that all cells have a single flagellum (Bray et al., 2007; Kalinin et al., 2009; Matthäus68

et al., 2009; Jiang et al., 2010; Flores et al., 2012; Kanehl and Ishikawa, 2014). Constructing a69

comprehensive model of bacterial chemotaxis from the single-flagellum state has remained out of70

reach (Mears et al., 2014). What is more, most models do not explain how macroscopic chemotaxis71

behavior arises from the fundamental laws of chemistry and physics. In this paper, we propose a72

model that reduce chemotaxis to simple phenomena.73

74

In our StochasticMulti-Layer (SML) model, E. coli is treated like a minute biological submarine.75

This nano-submarine is propelled by an average of six flagella in low Reynolds’ number regime.76

Our model attempts to offer a comprehensive description of chemotactic behavior in E. coli by77

breaking this complex process into three levels. In the first level, chemoattractants react with the78

receptors, causing molecular events in the cell that can result in the rotation of each flagellum.79

The sensory network determines the direction and rotation rate of each flagellum. In the second80

level, each flagellum generates a force and the resultant force of all flagella causes the E. coli to81

move in the direction of this force. In the third level, the combination of different force vectors82

of each flagellum provides a range of direction and length of movement in each step - i.e., the83

behavior of the bacterium emerges from the chemical and the physical levels. At each step, as84

the concentration of chemoattractants sensed by the bacteria changes, so does the distribution of85

probability of all choices, i.e., the direction and the distance of travel at that step.86

87

This hierarchical stochastic model is designed to model biochemical processes of chemotaxis88

within individual cells and the associated motion of cells within a 2D environment. This model can89

paint an end-to-end picture of chemotaxis and reveal its underpinning molecular mechanisms. In90
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(a) (b)

(c)
Figure 1. Trajectories of the random walk (left), the SML (right), and the NHMRW (buttom) models in a
two-dimensional space. Results based on 1000 trajectories for each models.

our view, while to details of our three-level model reflects the intricacies of the biology, its behaviour91

would be indistinguishable from a non-homogeneousMarkovian random walk (NHMRW) process.92

Results93

The Macroscopic Behavior of the SML model is indistinguishable from a NHMRW.94

We characterize the macroscopic behavior of the SMLmodel by comparing it with a random walk -as95

an unbiased foraging process- and the non-homogeneous random walk. The qualitative behavioral96

difference with the random walk is clear (Figure 1).97

98

While cells in the random walk process are roaming around and spent most of their time in99

a random location without any correlation between the concentration of the nutrients and their100

location, the bacterium in the SML model revolves around the high concentration area, i.e., nutrient101

concentration values and spatial movement direction are strongly correlated.102

103

However, there is a behavioral similarity between the SML and non-homogeneous random104

walk model (NHMRW): in the NHMRW, similar to the SML model, the movement to areas of higher105

chemoattractant concentration is more preferable (Figure 1). Bothmodels show the same dynamical106

behavior for ' as the concentration of nutrients varies. Moreover, the mean deviation angle, namely,107

64◦, is consistent with the findings of the experimental observations by Turner et al. (2016) (table108

2). The experimental mean value for E. coli tumble angle was found to be around 68◦ (Berg et al.,109

1972), and 64◦ (Turner et al., 2016).110
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Figure 2. Trajectories of 1000 simulations in the random walk (left) and the SML model (right). Starting points
are randomly chosen point, with random angles, 300 units away from the nutrient source. Each run will end if
the particle finds the nutrient resource or the number of simulation steps exceeds 3000. The height reflects the
density of particles.

Table 1. Averaged number of simulation steps for particles to reach the maximum concentration.
value SML NHMRW Random Walk
mean 50.5 48.3 422.1
std 29.01 30.7.5 387.1

Figure 3. Changes in the movement direction of the particles at each simulated step with respect to their
previous direction. As glucose concentration increases, E. coli frisks less and waggles more, i.e., there are less
variations in the direction of movement. The results are averaged over 1000 simulations.
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Table 2. The average change in the direction of particles in each simulation step in comparison with the
experimental data sets from Berg et al. (1972) and Turner et al. (2016), respectively.

value SML NHMRW Random Walk data set
' 57.5◦ 59.9◦ 38.9◦ (68◦, 64◦)

Table 3. CW and CCW switching rates as comparison with the experimental outputs in (Mears et al., 2014)
SML experiments

CW ⇒ CCW 0.21 % 0.26s−1

CCW ⇒ CW 0.79 % 1.7s−1

Average CW bias of motors 0.21 % 0.13

111

Bacteria tumble more frequently as they move in areas with nutritional deficiency, to increase112

the chance of survival (Figure 4). Qualitatively, tumbling frequency in the SML model agrees well113

with the experimental reported data sets (Balázsi et al., 2011;Mittal et al., 2003). In this work, this114

quantity is calculated by scaling the concentration to the range [0, 10] and considering the steps115

with deviation angle greater than 25◦ as tumble.116

The rotational directions of all flagella combined determine the direction of move-117

ment.118

In E. coli, the flagellar rotation is the driving force behind motility. In response to the changing119

nutrient concentration, the chemical network in the cell regulates the rotational direction of each120

flagellum (CW⇆CCW rate). Consequently, the cell is capable of adjusting its mean speed and the121

distribution of tumbling angles to position itself more effectively. The switching rates of flagellar122

motors from the SML model are comparable with reported values inMears et al. (2014) (table 3).123

The chemical network results in directional sensing.124

The concentration of CheY-p plays a major role in the signaling network of E.coli chemotaxis. A125

well-known feature of the chemotactic network is the sigmoidal relation between the direction of126

the flagellar rotation and the CheY-p concentration (Yuan and Berg, 2013). A comparison between127

the CheY-p concentration from our Gillespie simulation (the chemical level) and the experimental128

data inMears et al. (2014); Lele et al. (2015); Terasawa et al. (2011) is given in table 4. Any change129

in the CheY-p concentration would cause a change in the probability of rotational direction of130

flagellar motors (Sagawa et al., 2014). On average, 13 ± 7 and 2 ± 4 CheY-p molecules bind to a131

flagellar motor during CW and CCW rotation respectively (Fukuoka et al., 2014; Segall et al., 1985).132

Discussion133

Gazing upon the movement of living entities invariably instigates a chain of thorny questions134

regarding the nature of movements. As Aristotle observed, in his De Motu Animalium, “it remains135

Table 4. Comparison between CheY-p concentration calculated by SML model and experiment (Mears et al.,
2014).

SML experiments

Mean([CheY-p])�M 1.69 2.59
Var([CheY-p]) �M2 0.76 1
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Figure 4. According to the results inMittal et al. (2003), the tumble frequency positively correlates with the
distances from the resource. The same pattern is observed in the SML model, where the chemoattractant

concentration decreases radially away from the resource, hence, E.coli would change its direction more
frequently. FollowingMittal et al. (2003), we considered angles greater than 25◦ as tumbling.

to inquire how the soul moves the body, and what is the origin of movement in a living creature”136

(Barnes (1995), p.2383). It is tempting to scoff at the idea of an èlan locomotif pushing a living entity137

forward, but one can hardly fault an observer studying the movement of a bacterium under the138

light microscope for inferring a certain intentionality from the movements of that organism.139

140

The movement of a bacterium, such as E. coli, can be characterized as a series of “decision”.141

Throughout this work, we have used decision making as a mere shorthand to denote change in the142

behavior of the organism caused by processes at the molecular level; a kind of decision making143

that is devoid of any intentionality and comprehension. To achieve this, our SML model simulates144

the CW and CCW rotations of flagella as a function of the concentration of chemoattractants in145

the environment. The comparison between the SML model and a random walk alternative vividly146

demonstrates the efficacy of our model, whereby our digital E. coli spends significantly more time at147

zones with higher chemoattractant concentrations (fig. 2 and table 1). The SML model is unique in148

that it simulate a bacterium with six functional flagella. This level of realism in simulating cell motility149

is absent from similar studies, which are content with including a single fellaglla. This melange of150

modest, yet unprecedented, cellular realism, and a stochastic approach to simulating molecular151

process, a salient feature of the SML model, is an attempt to reflect the inherent complexity, as well152

as the innate stochasticity, of living entities.153

154

The probabilistic nature of the SMLmodel means that chemoattractant concentrations below the155

sensitivity of this model results in a behavior indistinguishable from the random-walk alternative,156

but as the chemoattractant concentration increases, so does the bias of E. coli movement (fig.157

3). The comparison between the SML model, the Markovian model, and the experimental data158

indicates the similarity between the SML model and the way E. coli behaves in real life (table 2). The159

mean angle of movement in our model is slightly different from experimental data (57.5◦ versus 64◦160

(Berg et al., 1972) and 68◦ (Turner et al., 2016)). This slight discrepancy can be partly attributed to161

neglecting near-zero angles in the experiments; a similar discrepancy can be observed between162
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Figure 5. The number of CheY molecules bound to each flagellum in different chemoattractant concentrations.
The binding of the phosphorylated CheY (CheY-p) to flagellar motors increases the probability of a transition

from CCW to CW rotation of the motor.

Turner et al.,2016 and Berg et al.,1972, where different thresholds to distinguish running from163

tumbling were used. In this work, tumbling, defined as a movements with angle > 25◦, is determined164

by the resultant movement vector of all flagella. The movement vector for each flagellum depends165

on its direction of rotation, itself the function of the number of Chey-P proteins attached to it.166

Treating the movement of each flagellum independently is in accordance with studies such as Mears167

et al.,2014.168

169

The similarity between the SML model, with all its molecular accoutrements, and the Markovian170

model, might seem quite irrelevant on the surface: The Markov process simply captures the171

macroscopic behavior, while utterly oblivious to the intricacies at the cellular level. However, this172

similarity can be interpreted in a starkly different manner: our Markovian model, though deeply173

devoid of any biological realism, can keep up with the SML model, in describing the macroscopic174

level. While no molecular machinery can be gleaned from the Markovian model, it does enable us175

to predict the behavior of a living entity in an accurate fashion.176

177

Why should we bother with a hierarchical model, combining physical and chemical levels to178

investigate the movement of a cell? This layered approach allows for different experimental179

measurements to be incorporated in a singular model. In addition, by utilizing an approach similar180

to the SML model, one can compare results studies at the chemical level (e.g., Shimizu et al,2010181

and Sourjik and Berg,2002b) with treatments of the physical level (e.g., Rodenborn et al.,2013).182

A detailed model of any cellular behavior, such as cell movement, enables us to make testable183

predictions as well.184

185

Our attempt here was to reconstruct the behavior of a complex entity, namely a free-living186

prokaryote, by incorporating a detailed chemical level to a physical level. It is only natural that the187
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exact behavior of the SML model would change if you change the parameters (for example, the rate188

of Chey-P attachment to a flagellum reported by Hosu and Berg (2018) - which we used in our model189

- differs from that of Bai et al. (2012)). More generally, modelling is a process of simplification and190

these simplifications, such as treating E. coli cell as a sphere, might result in further deviations from191

reality.192

193

Despite all the possible fine tunings and the inescapable reductionism inherent in a model194

of movement, we can qualitatively answer what Aristotle asked about the seemingly magical195

feature of living bodies, i.e., to move without being moved. It is not a “soul” that moves the entity196

forward, but the stochastic chemical reactions that become biased enough in response to the197

environmental cues. Here, we have shown that a seemingly complex feature of E. coli, namely198

its ability to explore the environment, simulated here using a multi-layered model, can be easily199

reduced to non-homogenous Markov process. A biased random walk that at the macroscopic level200

that is so deceptively directed as to imply a sort of intent to the untrained observer. But the reality201

is far more pedestrian, and yet far more majestic. The seething chemical soup within a living cell202

can result in a behavior -i.e., movement- that seems utterly alive.203

Methods204

To simplify the implementation of the cell migration and mobility, we mainly focus on the cell205

chemotaxis without considering cell division; moreover, we consider E. coli as a sphere with non-206

interacting flagella.207

Chemical Intracellular Interactions208

The eukaryotic means of detecting the chemical gradient in the environment directly is not useful209

to bacteria given their comparatively diminutive size. In fact, many chemotactic bacteria navigate210

by measuring temporal changes in concentration as they swim. he classical stochastic simulation211

algorithm (SSA) by Gillespie and its modified versions are widely used to simulate the stochastic212

dynamics of biochemical reaction systems. It has, however, remained a challenge to implement213

accurate and efficient simulation algorithms for general reaction schemes in growing cells (Yu et al.,214

2010).215

Figure 6 shows the schematic view of E. coli and its chemotactic chemical network. E. coli can216

merely sense the environment by an array of chemoreceptors to perceive the concentration of217

chemoattractants. This sensory array triggers the inner network in E. Coli. The probability of CheY-p218

protein binding to motors is regulated by the input of inner network as the Navigation system. We219

apply a radially-decreasing nutrient gradient away from a local resource, in which the attractant220

concentration,221

C(r) = C2 ×
R0
r

, r > R0 , (1)

is constant within a ball of radius R0 = 100�m.222

223

As a cell swims, chemoattractant molecules bind to the receptors on the cell surface; therefore,

a signal from receptors would be transmitted, stochastically, through a biochemical network to one

or more of the flagellar motors, which controls the speed and direction of the flagellar rotations.

We assume the following dependency for the sensitivity of these receptors to the chemoattractant

concentration, C ,

f (C) ∶=

{ Linear, C < Ci
Logarithmic, Ci ≪ C ≪ Ca
plateau, C > Ca

(2)

in this work, the values for the threshold concentration, Ci = 0.0182mM and Ca = 3mM , are assumed224

according to Shimizu et al. (2010). Thus, as a cell approaches a high concentration of nutrients, its225

8 of 18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/569277doi: bioRxiv preprint 

https://doi.org/10.1101/569277
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Schematic diagram depicting the body of E. coli and the chemical network inside the cell. Receptors
sense the chemoattractant concentration from the environment, then trigger signaling cascade in the

chemotactic network. The number of CheY-p proteins bound to the motor complex of each flagellum– resulted

from internal chemotactic network– determines the rotational direction of that flagellum.

sensitivity decreases, which effectively increases the value of CheR, see chemical network in figure 6.226

In order to fulfill the logarithmic dependency,227

f (C) = ln
(

1 + C∕Ci
1 + C∕Ca

)

, (3)

a localized attractant resource was assumed.228

229

Chemoreceptors in E. coli are coupled to the flagella by a phosphorylated intermediate, CheY-p.230

CheY-p activity can be inferred from the rotational bias of the flagellar motors, although the motor231

response is stochastic and limited to a narrow physiological range (Sourjik and Berg, 2002).232

Chemotactic Network233

The signal transduction between receptors and flagellar motors is controlled by a set of well-defined234

intracellular protein-protein interactions (Wadhams and Armitage, 2004). The core of the network235

is a two-component signal transduction system that carries the chemical information, gathered236

by transmembrane receptors, to flagellar motors responsible for the cell propulsion (Figure 6).237

A second group of proteins allows cells to physiologically adapt to the changing levels of the238

background signal, enabling them to track signal gradients over many orders of magnitude.239

240

While different receptors allow cells to sense different signals, all signals are then processed241

through the same set of cytoplasmic proteins, responsible for signal transduction and adaptation.242

Signals can vary in time, space, and identity; consequently, this horizontal integration may impose243

incompatible demands on the regulation of these core decision-making components. In this study,244

we applied a simplified abstract network in which a number of intracellular proteins– known as245

chemotaxis (Che) proteins– provide the necessary signaling cascade which links the membrane246

receptors to the flagellar motors (Figure 6). CheW and CheA are chemotactic proteins bound to247
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the receptors. CheW is thought to act as a link between the receptors and CheA. In addition, CheA248

appears to directly interact with the receptors. To bring about tumbling, the receptors activate CheA249

autophosphorylation on a conserved histidine in response to decreased attractant or increased250

repellent concentration. One of the phosphoryl groups is transferred to CheY. CheY-p shows251

a reduced affinity for CheA and a higher affinity for the flagellar motor protein FliM. Therefore,252

it diffuses through the cytoplasm to the motors. CheZ acts to dephosphorylate CheY-p at the253

receptors to regulate the rate of signal termination (Tindall et al., 2008).254

Flagellar Rotation255

The rotation of the bacterial flagellar motors is controlled by the above mentioned signal transduc-256

tion pathway. The switch from CCW to CW rotation is triggered by binding of the signaling protein257

CheY-p to the motor. The direction of flagellar rotation and the amount of the generated torque is258

regulated by a complex at the bottom of the basal body called the switch complex, constructed259

from FliG, FliM, and FliN proteins (Sarkar et al., 2010). The distribution of CW and CCW switching260

intervals depends on parameter sets for the volume of localization and the number of localized261

molecules (CheZ) (Yu et al., 2010). A discrete stochastic model captures the fluctuations in the262

rotational direction of the flagellar motors (CW⇆ CCW), in which the random binding of CheY-p263

proteins to the motor-binding protein FliM leads to the motor switching from either a CCW rotation264

to CW or vice-versa. The probability of CCW rotation is assumed proportional to the concentration265

of CheY proteins,266

P (CCW ) =
X(CCW )

X(CCW ) +X(CW )
. (4)

The parameters in this model have been chosen based on the available experimental data267

(Fukuoka et al., 2014). On average, 13 ± 7 and 2 ± 4 CheY-p molecules bind to a flagellar motor268

during CW and CCW rotation, respectively,269

X(CCW ) ∼ (2, 4) ,

and

X(CW ) ∼ (13, 7) ,

where (i, j)means X has normal distribution with mean i and variance j. The number of CheY-p270

molecules binding to CW rotatory motor plateaus at about 13molecules, instead of saturating at 34271

molecules which is the number of FliM subunits (Hosu and Berg, 2018).272

Based on our assumptions, there is no correlation between the rotational direction of flagellar273

motors. Any interaction between flagellar motors and CheY-p– generated by chemoreceptors–274

would be inhibited by the CheY, which is distributed uniformly throughout the cell. Rotational275

direction of motors is dictated by CheY-p and the motor closer to the chemoreceptor patch would276

switch earlier than a motor farther from it (Terasawa et al., 2011).277

Physical Movement Mechanism278

The cell body is considered as a solid sphere of diameter Rb = 9Å with six flagella of length L = 6.6pm279

randomly distributed on the cell membrane, see figure 6. Flagellar diameter depends on its state280

(Rodenborn et al., 2013) (table 5).281

Flagellar motors are capable of rotating with angular speeds of up to hundreds Hertz, enabling282

the bacterium to propel itself through the extracellular environment. To model the role of the283

flagella in the motility of E.coli, it requires to calculate the total force generated by all flagella. At284

each time step, each flagellum exerts a force with magnitude and direction driven by its rotatory285

motor which is the result of the stochastic chemotactic network. Consequently, the total force–286

applied on the cell body by all the flagella– would be a stochastic quantity.287

The helical flagella are driven by a rotary motor embedded in the wall of the body, spinning with288

angular speed Ωm relative to the body (Hu et al., 2015). Each flagellum by its rotation causes a drag289
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Figure 7. The binding of CheY-p to the flagella motors (depicted as filled in circles) increases the probability of a
transition from CCW to CW rotation of the motor. Correlation between CCW/CW rotation of flagellum and the

number of bound CheY-p. The binding of CheY-p to the flagella motors increases the probability of a transition

from CCW to CW rotation of the motor.

Table 5. Parameters used in Eq. 5
Parameter Value

R(CCW) 0.195 ± 0.25 �m
R(CW) 0.210 ± 0.25 �m
�∕R 11

L∕� (CCW) 2.8

L∕� (CW) 2.7

tan(�) 2�R∕�

force Fi, i ∈ [1 ∶ 6]. For simplicity’s sake, we assume flagella are distributed around the body in290

only two directions relative to the cell surface: 1) when a flagellum rotates CCW, it would be aligned291

parallel to the cell body, as well, its generated force; 2) when it rotates CW, the force is perpendicular292

to the cell body. At low Reynolds numbers (the linear Stokes equations), by applying an external293

force Fi, a solid body will move with velocity U , which is proportional to the angular speed (Lauga294

and Powers, 2009; Lauga, 2016), by assuming L ≫ Rb,295

|Ui| ≈ �
�∥ − �⟂
�∥

(

�r
�⟂

)( R3b
R.L

)

Ωm . (5)

�∥ and �⟂ are drag coefficients on the directions parallel and perpendicular to the flagellum, respec-296

tively (typically �⟂∕�∥ ∼ 2). Movement direction of a cell, subject to applied forces by 6 flagella, is297

determined by the resultant velocity vector, U⃗total =
∑6

i=1 U⃗i.298

299

Therefore, it would be possible to evaluate the direction (�) and step length (l) of the next
foraging step. � is in line with the direction of Utotal and by assuming a fixed speed, l = Utotal × �step
(de Lima Bernardo and Moraes, 2011). According to the experimental results, run and tumble
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duration times are exponentially distributed with mean values ⟨�run⟩ ∼ 1s and ⟨�tumble⟩ ∼ 0.1s,
respectively, (Alon et al., 1998). In our model we have only one type of movement, thus, for each
time interval, we select a random number from the exponential distribution with

⟨

�step
⟩

∼ 1s. By
calculating � and l, the next spatial position is taken as follow,

Xnew = Xold + l × cos(�)

Ynew = Yold + l × sin(�), (6)

and the simulation will be continued the same way.300

Supporting Information301

Non-homogeneous RandomWalk302

In an abstract view, we modeled the chemotaxis of E. coli as a non-homogeneous random walk.303

In this stochastic process, in each simulation step, the probability distribution of speed, direction,304

and time interval for the next step are independent of each other. The time interval of each step305

( or waiting time until the next turning point) comes from an exponential distribution with mean306

value
⟨

�step
⟩

1 ∼ s and a normal distribution governs the speed of each step. In order to derive307

the direction of each step with respect to the previous step, ', which is strongly influenced by the308

concentration of nutrients, we applied a Beta distribution function,309

P (x, �, ) =
x(�−1)(1 − x)(−1)

B(�, )
, (7)

where x depends on the chemoattractant concentrations limited to 0 ≤ x ≤ 1. B(�, ), Beta function310

(Forbes et al., 2010), is the normalization constant,311

B(�, ) =
Γ(�)Γ()
Γ(� + )

, (8)

with �,  > 0. In this model, we limited ' to ['min, 'max]; the selected values for the upper and312

lower limits are according to experimental measurements (Masson et al., 2012). To simplify our313

calculation, we rescaled the limits of ' to [0, 1] range,314

 =
' − 'min
'max − 'min

. (9)

315

To specify the Beta function in Eq. 7, we need to assign � and  values. To achieve the desired316

configuration for the distribution function of angels (Masson et al., 2012), we exerted identical317

values for � and  , dependent on the chemoattractant concentrations,318

� =  = 9 ×
C − Cmin
Cmax − Cmin

+ 1 , (10)

which are in the range of 1 to 10 (Figure 8) illustrates the Beta distribution for different values of �319

and  . Based on Eq. 10, for the minimum values of the chemoattractant concentration, both � and320

 are equal to 1 and the Beta distribution would be equivalent to the uniform distribution; hence,321

all valid angels in the range of ['min, 'max] would have the same chance to be selected.322

323

Whenever E. Coli receives the chemoattractant at the highest value, � and  take the value of324

10 and movements along an straight line are more probable.The receptors sense the intensity of325

glucose concentration by a Monod function (Eq. 3). The inner network determines the rotational326

direction of each flagellum by calculating the number of CheY-p proteins bound to the motors.327

In this model, the nutrient concentration, C , highly affects values of � and . Consequently, any328

variation in � and  will change the probability distribution in Eq. 7. In fact, in the non-homogeneous329

random walk model, the decision-making network is modeled through probability distribution330
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Figure 8. The concentration of chemoattractant strongly affect the distribution of the relative angle between
two consecutive steps '(t). Different values from the Beta distribution result different directions of movement
for the cell (Right). The shapes of Beta distribution for different input sets, � and �, shown by Bi (Left). In an
environment with uniform distribution of nutrients, the distribution of ' is uniform as well, the blue curve; i.e.,
every direction has the same chance of being chosen. As a result of a non-uniform distribution of nutrients, a

normal distribution will emerge (the green curve).

functions. Indeed, to perform the simulation, after generating a random number x from P (x) in Eq.331

7, direction of movement, ', could be derived as follow,332

' = 'min + x × ('max − 'min). (11)

333

A normal distribution (�, 10) with mean �, from Eq. 12, gives the speed of the next step.334

� = 20 + |' −
'max + 'min

2
|. (12)

Knowing the speed, direction and duration of each step, we readily compute the next spatial335

position by Eq. 6.336

flagella-CheY-P concentration changing dynamics337

Acknowledgments338

We would like to thank Dr. Yazdan Asgari for his early works relevant to this study.339

Additional Information340

Author contribution341

MS conceived the model and helped draft the manuscript. KK contributed to the initial idea.342

HS contributed to the physical layer of the model. SV constructed the model, performed the343

simulations, and drafted the manuscript. SV and AK visualized the data. MS and AK contributed to344

the introduction and the discussion. MS, HS, and AK critically revised the manuscript. All authors345

gave final approval for publication.346

Funding347

This research did not receive any specific grant from funding agencies in the public, commercial, or348

not-for-profit sectors.349

13 of 18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 7, 2019. ; https://doi.org/10.1101/569277doi: bioRxiv preprint 

https://doi.org/10.1101/569277
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9. The concentration of the perceived nutrients by the chemotactic network (r) affects the distribution of
angles. As the perceived concentration increases, so does the probability of smaller angels, i.e., movement

closer to an straight line. However, there is not a straightforward linear relation between them since many

parameters, including the sensitivity of the receptor (Eq. 3) play roles.
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Figure 10. There is no absolute correlation between the flagella or the position of the flagella in the SML model.
The diagonal figures are histogram plots of number of each flagella. Each figure in the r the row and c the
column of the matrix shows correlation between flagella r and c.
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