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ABSTRACT 

Gene expression is subject to stochastic noise, but to what extent and by which means 

such stochastic variations are coordinated among different genes are unclear.  We hypothesize 

that neighboring genes on the same chromosome co-fluctuate in expression because of their 

common chromatin dynamics, and verify it at the genomic scale using allele-specific single-cell 

RNA-sequencing data of mouse cells.  Unexpectedly, the co-fluctuation extends to genes that are 

over 60 million bases apart.  We provide evidence that this long-range effect arises in part from 

chromatin co-accessibilities of linked loci attributable to three-dimensional proximity, which is 

much closer intra-chromosomally than inter-chromosomally.  We further show that genes 

encoding components of the same protein complex tend to be chromosomally linked, likely 

resulting from natural selection for intracellular among-component dosage balance.  These 

findings have implications for both the evolution of genome organization and optimal design of 

synthetic genomes in the face of gene expression noise.  
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INTRODUCTION 

Gene expression is subject to considerable stochasticity that is known as expression 

noise, formally defined as the expression variation of a given gene among isogenic cells in the 

same environment [1-3].  Gene expression noise is a double-edged sword.  On the one hand, it 

can be deleterious because it leads to imprecise controls of cellular behavior, including, for 

example, destroying the stoichiometric relationship among functionally related proteins and 

disrupting homeostasis [4-8].  On the other hand, gene expression noise can be beneficial.  For 

instance, unicellular organisms may exploit gene expression noise to employ bet-hedging 

strategies in fluctuating environments [9, 10], whereas multicellular organisms can make use of 

expression noise to initiate developmental processes [11-13]. 

By quantifying protein concentrations in individual isogenic cells cultured in a common 

environment, researchers have measured the expression noise for thousands of genes in the 

bacterium Escherichia coli [14] and unicellular eukaryote Saccharomyces cerevisiae [15].  

Nevertheless, because genes are not in isolation, one wonders whether and to what extent 

expression levels co-vary among genes at a steady state, which unfortunately cannot be studied 

by the above data.  By simultaneously tagging two genes with different florescent markers, 

Stewart-Ornstein et al. discovered strong co-fluctuation of the concentrations of some 

functionally related proteins in yeast such as those involved in the Msn2/4 stress response 

pathway, amino acid synthesis, and mitochondrial maintenance, respectively[16], and the 

expression co-fluctuation of these genes is facilitated by their sharing of transcriptional 

regulators [17].   

Here we explore yet another mechanism for expression co-fluctuation.  We hypothesize 

that, due to the sharing of chromatin dynamics [18], a key contributor to gene expression noise 

[18-20], genes that are closely linked on the same chromosome should exhibit a stronger 

expression co-fluctuation when compared with genes that are not closely linked or unlinked (Fig. 

1).  We refer to this potential influence of chromosomal linkage of two genes on their expression 

co-fluctuation as the linkage effect.  The linkage-effect hypothesis is supported by a pioneering 

study demonstrating that the correlation in expression level between two reporter genes across 

isogeneic cells in the same environment is much higher when they are placed next to each other 

on the same chromosome than when they are placed on separate chromosomes [21].  However, 

neither the generality of the linkage effect nor the chromosomal proximity required for this effect 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569004doi: bioRxiv preprint 

https://doi.org/10.1101/569004
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

are known.  Furthermore, the biological significance of the linkage effect and its potential impact 

on genome organization and evolution have not been investigated.  In this study, we address 

these questions by analyzing allele-specific single-cell RNA-sequencing (RNA-seq) data from 

mouse cells [22].  We demonstrate that the linkage effect is not only general but also long-range, 

extending to gene pairs that are tens of millions of bases apart.  We provide evidence that three-

dimensional (3D) chromatin proximities are responsible for the long-range co-fluctuation 

through mediating chromatin accessibility covariations.  Finally, we show theoretically and 

empirically that the linkage effect has likely impacted the evolution of the chromosomal 

locations of genes encoding members of the same protein complex.  

 

RESULTS 

Linkage effect on gene expression co-fluctuation is general and long-range 

Let us consider two genes A and B each with two alleles respectively named 1 and 2 in a 

diploid cell.  When A and B are chromosomally linked, without loss of generality, we assume 

that A1 and B1 are on the same chromosome whereas A2 and B2 are on its homologous 

chromosome (Fig. 2A).  Expression co-fluctuation between one allele of A and one allele of B 

(e.g., A1 and B2) is measured by Pearson's correlation (re, where the subscript "e" stands for 

expression) between the expression levels of the two alleles across isogenic cells under the same 

environment.  Among the four possible pairs of alleles A1-B1, A2-B2, A1-B2, and A2-B1, the former 

two pairs are physically linked whereas the latter two pairs are unlinked.  The linkage-effect 

hypothesis asserts that, at a steady state, expression correlations between linked alleles (cis-

correlations) are greater than those between unlinked alleles (trans-correlations).  That is, 𝛿

𝑟 𝐴 , 𝐵 𝑟 𝐴 , 𝐵 𝑟 𝐴 , 𝐵 𝑟 𝐴 , 𝐵 /2 0.  Note that this formulation is valid 

regardless of whether the two alleles of the same gene have equal mean expression levels.  While 

each of the four correlations could be positive or negative, in the large data analyzed below, they 

are mostly positive and show approximately normal distributions across gene pairs examined.   

To verify the above prediction about 𝛿 , we analyzed a single-cell RNA-seq dataset of 

fibroblast cells derived from a hybrid between two mouse strains (CAST/EiJ × C57BL/6J) [22].  

Single-cell RNA-seq profiles the transcriptomes of individual cells, allowing quantifying 

stochastic gene expression variations among isogenic cells in the same environment [23-25].  

DNA polymorphisms in the hybrid allow estimation of the expression level of each allele for 
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thousands of genes per cell.  The dataset includes data from seven fibroblast clones and some 

non-clonal fibroblast cells of the same genotype.  We focused our analysis on clone 7 (derived 

from the hybrid of CAST/EiJ male × C57BL/6J female) in the dataset, because the number of 

cells sequenced in this clone is the largest (n = 60) among all clones.  We excluded from our 

analysis all genes on Chromosomes 3 and 4 due to aneuploidy in this clone and X-linked genes 

due to X inactivation.  To increase the sensitivity of our analysis and remove imprinted genes, 

we focused on the 3405 genes that have at least 10 RNA-seq reads mapped to each of the two 

alleles.  These genes form 3404×3405/2 = 5,795,310 gene pairs, among which 377,584 pairs are 

chromosomally linked.  

For each pair of chromosomally linked genes, we computed their δe by treating the allele 

from CAST/EiJ as allele 1 and that from C57BL/6J as allele 2 at each locus.  The fraction of 

gene pairs with δe > 0 is 0.61 (Fig. 2B), significantly exceeding the null expectation of 0.5 (P < 

2.4×10-16, binomial test).  Because a gene can appear in multiple gene pairs, in the above 

binomial test, we considered a subset of gene pairs where each gene appears only once. 

Specifically, we randomly shuffled the orders of all genes on each chromosome and considered 

from one end of the chromosome to the other end non-overlapping consecutive windows of two 

genes.  That most gene pairs exhibit δe > 0 holds in each of the 17 chromosomes examined, with 

the trend being statistically significant in 6 chromosomes (nominal P < 0.05; Fig. 2C).  As a 

negative control, we analyzed gene pairs located on different chromosomes, treating alleles the 

same way as described above.  As expected, this time the fraction of gene pairs with δe > 0 is not 

significantly different from 0.5 (P = 0.25; Fig. 2B).  The fraction of gene pairs with δe > 0 

appears to vary among chromosomes (Fig. 2C).  To assess the significance of this variation, we 

compared the fraction of independent gene pairs with δe > 0 between every two chromosomes by 

Fisher's exact test.  After correcting for multiple testing, we found no significant difference 

between any two chromosomes. 

To examine the generality of the findings from clone 7, we also analyzed clone 6 (derived 

from the hybrid of C57BL/6J female × CAST/EiJ male), which has 28 cells with RNA-seq data.  

Similar results were obtained (Fig. S1A and S1B).  Because clone 6 was from a male whereas 

clone 7 was from a female, our results apparently apply to both sexes.  We also analyzed 47 non-

clonal fibroblast cells with the same genetic background (cell IDs from 124 to 170, derived from 

the hybrid of C57BL/6J female × CAST/EiJ male), and obtained similar results (Fig. S1C and 
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Fig. S1D).  These findings establish that the linkage effect on expression co-fluctuation is 

neither limited to a few genes in a specific clone nor an epigenetic artifact of clonal cells, but is 

general.  The linkage effect on co-fluctuation (and the decrease of the effect with genomic 

distance shown below) is robust to the definition of δe, because similar results are obtained when 

correlation coefficients are replaced with squares of correlation coefficients in the definition of 

δe.    

We next investigated how close two genes need to be on the same chromosome for them 

to co-fluctuate in expression.  We divided all pairs of chromosomally linked genes into 100 

equal-interval bins based on the genomic distance between genes, defined by the number of 

nucleotides between their transcription start sites (TSSs).  The median δe in a bin is found to 

decrease with the genomic distance represented by the bin (Fig. 2D).  Furthermore, even for the 

unbinned data, δe for a pair of linked genes correlates negatively with their genomic distance 

(Spearman's ρ = -0.029).  To assess the statistical significance of this negative correlation, we 

randomly shuffled the genomic coordinates of genes within chromosomes and recomputed the 

correlation.  This was repeated 1000 times and none of the 1000 ρ values were equal to or more 

negative than the observed ρ.  Hence, the linkage effect on expression co-fluctuation of two 

linked genes weakens significantly with their genomic distance (P < 0.001). 

Surprisingly, however, median δe exceeds 0 for every bin except when the genomic 

distance exceeds 150 Mb (Fig. 2D).  Hence, the linkage effect is long-range.  To statistically 

verify the potentially chromosome-wide linkage effect, we focused on linked gene pairs that are 

at least 63 Mb apart, which is one half the median size of mouse chromosomes.  The median δe 

for these gene pairs is 0.017, or 68% of the median δe for the left-most bin in Fig. 2D.  We 

randomly shuffled the genomic positions of all genes and repeated the above analysis 1000 

times.  In none of the 1000 shuffled genomes did we observe the median δe greater than 0.017 for 

linked genes of distances >63 Mb, validating the long-range expression co-fluctuation in the 

actual genome.  The above observations are not clone-specific, because the same trend is 

observed for cells of clone 6 (Fig. S1B).  

Notably, a previous experiment in mammalian cells [21] detected a linkage effect for 

chromosomally adjacent reporter genes (δe = 0.834) orders of magnitude stronger than what is 

observed here.  This is primarily because expression levels estimated using single-cell RNA 

fluorescence in situ hybridization in the early study [21] are much more precise than those 
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estimated using allele-specific single-cell RNA-seq [26] here.  We thus predict that the linkage 

effect detected will be more pronounced as the expression level estimates become more precise.  

As a proof of principle, we gradually raised the required minimal number of reads per allele in 

our analysis, which should increase the precision of expression level estimation but decrease the 

number of genes that can be analyzed.  Indeed, as the minimal read number rises, the fraction of 

chromosomally linked gene pairs with a positive δe (Fig. 2E), median δe for all chromosomally 

linked gene pairs (Fig. 2F), and median δe for the left-most bin (Fig. 2F) all increase.   

Because what matters to a cell is the total number of transcripts produced from the two 

alleles of a gene instead of the number produced from each allele, we also calculated the 

pairwise correlation in expression level between genes using either the total number of reads 

mapped to both alleles of a gene or normalized expression level of the gene.  We similarly found 

a long-range linkage effect (Fig. S2), with trends and effect sizes close to the observations based 

on allele-specific expressions.  

Previous studies reported that the relative transcriptional orientations of neighboring 

genes influence their expression co-fluctuation [27].  This impact, however, is unobserved in our 

study (Fig. S4), which may be due to the limited precision of the expression estimates and the 

fact that only 422 pairs of neighboring genes satisfy the minimal read number requirement.   

 

Shared chemical environment for transcription results in the long-range linkage effect 

What has caused the chromosome-wide expression co-fluctuation of linked genes?  

Individual chromosomes in mammalian cells are organized into territories with a diameter of 1~2 

μm [28], whereas the diameter of the nucleus is ~8 μm [28].  Thus, the physical distance between 

chromosomally linked genes is below 1~2 μm, whereas that between unlinked genes is usually > 

1~2 μm and can be as large as ~8 μm.  Because it takes time for macromolecules to diffuse in the 

nucleus, linked genes tend to have similar chemical environments and hence similar 

transcriptional dynamics (i.e., promoter co-accessibility and/or co-transcription) when compared 

with unlinked genes.  We thus hypothesize that the linkage effect is fundamentally explained by 

the 3D proximity of linked genes compared with unlinked genes (Fig. 3A).  Below we provide 

evidence for this model.  

We started by comparing the 3D distances between linked alleles with those between 

unlinked alleles.  The 3D distance between two genomic regions can be approximately measured 
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by Hi-C, a high-throughput chromosome conformation capture method for quantifying the 

number of interactions between genomic loci that are nearby in 3D space [29].  The smaller the 

3D distance between two genomic regions, the higher the interaction frequency between 

them[30].  It is predicted that the interaction frequency between the physically linked alleles of 

two genes (cis-interaction) is greater than that between the unlinked alleles of the same gene pair 

(trans-interaction).  To verify this prediction, we analyzed the recently published allele-specific 

500kb-resolution Hi-C interaction matrix [31] of mouse neural progenitor cells (NPC).  For any 

two linked loci A and B as depicted in the left diagram of Fig. 2A, we computed 𝛿

𝐹 𝐴 , 𝐵 𝐹 𝐴 , 𝐵 𝐹 𝐴 , 𝐵 𝐹 𝐴 , 𝐵 /2, where F is the interaction frequency 

between the two alleles in the parentheses and the subscript "i" refers to interaction.  We found 

that 99% of pairs of linked loci have a positive 𝛿  (P < 2.2×10-16, binomial test on independent 

locus pairs; Fig. 3B).  By contrast, among unlinked gene pairs, the fraction with a positive 𝛿  is 

not significantly different from that with a negative 𝛿  (P = 0.90, binomial test on independent 

locus pairs; Fig. 3B).  In the analysis of unlinked loci, we treated all alleles from one parental 

species of the hybrid as alleles 1 and all alleles from the other parental species of the hybrid as 

alleles 2 in the above formula of 𝛿 .  These results clearly demonstrate the 3D proximity of genes 

on the same chromosome when compared with those on two homologous chromosomes.    

To examine if the above phenomenon is long-range, we plotted 𝛿  as a function of the 

distance (in Mb) between two linked loci considered.  Indeed, even when the distance exceeds 63 

Mb, one half the median size of mouse chromosomes, almost all locus pairs still show positive 𝛿  

(Fig. 3C).  Similar to the phenomenon of the linkage effect on gene expression co-fluctuation, 

we observed a negative correlation between the genomic distance between two linked loci and 𝛿  

(ρ = -0.81 for unbinned data).  This correlation is statistically significant (P < 0.001), because it 

is stronger than the corresponding correlation in each of the 1000 negative controls where the 

genomic positions of all genes are randomly shuffled within chromosomes. 

  As mentioned, 3D proximity should synchronize the transcriptional dynamics of linked 

alleles.  Based on the bursty model of gene expression [32], transcription involves two primary 

steps.  In the first step, the promoter region switches from the inactive state to the active state 

such that it becomes accessible to the transcriptional machinery.  In the second step, RNA 

polymerase binds to the activated promoter to initiate transcription.  In principle, the 

synchronization of either step can result in co-fluctuation of mRNA concentrations.  Because the 
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accessibility of promoters can be detected using transposase-accessible chromatin using 

sequencing (ATAC-seq) [33] in a high-throughput manner, we focused our empirical analysis on 

promoter co-accessibility.  

To verify the potential long-range linkage effect on chromatin co-accessibility, we should 

ideally use single-cell allele-specific measures of chromatin accessibility.  However, such data 

are unavailable.  We reason that, the accessibility covariation of genomic regions among cells 

may be quantified by the corresponding covariation among populations of cells of the same type 

cultured under the same environment.  In fact, it can be shown mathematically that, under certain 

conditions, chromatin co-accessibility of two genomic regions among cells equals the 

corresponding chromatin co-accessibility across cell populations (see Methods).  Based on this 

result, we analyzed a dataset collected from allele-specific ATAC-seq in 16 NPC cell 

populations [34].  We first removed sex chromosomes and then required the number of reads 

mapped to each allele of a peak to exceed 50 for the peak to be considered.  This latter step 

removed imprinted loci and ensured that the considered peaks are relatively reliable.  About 

3500 peaks remained after the filtering.  This sample size is comparable to the number of genes 

used in the analysis of expression co-fluctuation.  For each pair of ATAC peaks, we computed 

𝛿 𝑟 𝐴 , 𝐵 𝑟 𝐴 , 𝐵 𝑟 𝐴 , 𝐵 𝑟 𝐴 , 𝐵 /2, where ra is the correlation in 

ATAC-seq read number between the alleles specified in the parentheses (following the left 

diagram in Fig. 2A) across the 16 cell populations and the subscript "a" refers to chromatin 

accessibility.  The fraction of peak pairs with a positive 𝛿  is significantly greater than 0.5 for 

linked peak pairs but not significantly different from 0.5 for unlinked peak pairs (binomial test 

on independent peak pairs; Fig. 3D).  Furthermore, after grouping ATAC peak pairs into 100 

equal-interval bins according to the genomic distance between peaks, we observed a clear trend 

that 𝛿  decreases with the genomic distance between peaks (ρ = -0.05 for unbinned data, P < 

0.001, within-chromosome shuffling test; Fig. 3E).  In addition, even for linked peak pairs with a 

distance greater than 63 Mb, their median 𝛿  is significantly greater than that of unlinked peak 

pairs (P < 0.001, among-chromosome shuffling test).  Together, these results demonstrate a long-

range linkage effect on chromatin co-accessibility.   

Because we hypothesize that the linkage effect on expression co-fluctuation is via 3D 

chromatin proximity that leads to chromatin co-accessibility (Fig. 3A), we should verify the 

relationship between 3D proximity and chromatin co-accessibility for unlinked genomic regions 
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to avoid the confounding factor of linkage.  To this end, we converted ATAC-seq read counts to 

a 500kb resolution by summing up read counts for all allele-specific chromatin accessibility 

peaks that fall within the corresponding Hi-C bin, because the resolution of the Hi-C data is 

500kb.  Because alleles from different parents are unlinked in the hybrid used for ATAC-seq, for 

each pair of bins, we computed the mean correlation in chromatin accessibility between the 

alleles derived from different parents among the 16 cell populations, or trans-ra = ra(A1, B2)/2 + 

ra(A2, B1)/2.  For the same reason, we computed the sum of Hi-C contact frequency between the 

alleles derived from different parents, trans-F = 𝐹 𝐴 , 𝐵 𝐹 𝐴 , 𝐵 .  Because interaction 

frequencies in Hi-C data are generally low for unlinked regions, we separated all pairs of bins 

into two categories, contacted (i.e., trans-F > 0) and uncontacted (i.e., trans-F = 0).  We found 

that trans-ra values for contacted bin pairs are significantly higher than those for uncontacted bin 

pairs (P < 0.0001; Fig. 3F), consistent with our hypothesis that 3D chromatin proximity induces 

chromatin co-accessibility.  The above statistical significance was determined by performing a 

Mantel test using the original trans-ra matrix of the aforementioned allele pairs and the 

corresponding trans-F matrix.  Corroborating our finding, a recent study of single-cell (but not 

allele-specific) chromatin accessibility data also found that the co-accessibility of two loci rises 

with their 3D proximity [35].  

To test the hypothesis that chromatin co-accessibility leads to expression co-fluctuation 

(even for unlinked alleles) (Fig. 3A), we analyzed the allele-specific ATAC-seq data and single-

cell allele-specific RNA-seq data together.  Although these data were generated from different 

cell types in mouse, we reason that, because the 3D chromosome conformation is highly similar 

among tissues [36], chromatin co-accessibility, which is affected by 3D chromatin proximity 

(Fig. 3F), may also be similar among tissues.  Hence, it may be possible to detect a correlation 

between chromatin co-accessibility and expression co-fluctuation.  To this end, we used 

unbinned ATAC-peak data to compute trans-ra but limited the analysis to those peaks with at 

least 10 reads per allele.  We used the allele-specific RNA-seq data to compute trans-𝑟

𝑟 𝐴 , 𝐵 /2 𝑟 𝐴 , 𝐵 /2 for pairs of linked genes.  We then assigned each gene to its nearest 

ATAC peak and averaged trans-re among gene pairs assigned to the same pair of ATAC peaks.  

We subsequently grouped ATAC peak pairs into 100 equal-interval bins according to their co-

accessibilities, and observed a clear positive correlation between median trans-ra and median 
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trans-re across the 100 bins (Fig. 3G).  For unbinned data, trans-ra and trans-re also show a 

significant, positive correlation (ρ = 0.021, P = 0.027, Mantel test).   

 The above results support our hypothesis that, compared with unlinked genes, linked 

genes have a shared chemical environment due to their 3D proximity and hence chromatin co-

accessibility, which leads to their expression co-fluctuation (Fig. 3A).  However, 3D proximity 

can lead to promoter co-accessibility by several means, which have been broadly summarized 

into three categories of mechanisms [28]: 1D scanning, 3D looping, and 3D diffusion.  1D 

scanning refers to the spread of chromatin states along an entire chromosome.  However, 1D 

scanning is rare, with only a few known examples such as X-chromosome inactivation [28].  

Hence, 1D scanning is unlikely to be the mechanism responsible for the broad linkage effect 

discovered here.  3D looping refers to the phenomenon that a chromosome often forms loops to 

bring far-separated loci into contact, whereas 3D diffusion refers to chromosome communication 

by local diffusion of transcription-related proteins.  For tightly linked loci, our data do not allow 

a clear distinction between 3D looping and 3D diffusion in causing the linkage effect discovered 

here.  But 3D diffusion seems more likely for the long-range effect, because the range of 3D 

looping seems limited to loci separated by no more than 200 kb simply due to the rapid decrease 

of the contact frequency with the physical distance between two loci [37], evident in Fig. 3C 

(note the log scale of the Y-axis).  It has been estimated that loci separated by 10 Mb behave 

essentially the same as two loci that are on different chromosomes in terms of the contact 

frequency [28], and any contact-based mechanism is unlikely to be long-range (e.g., 

topologically associating domains) [36].  Therefore, the most likely cause of our observed long-

range linkage effect is 3D diffusion.   

In the 3D diffusion mechanism, which molecule is most likely responsible for the 

observed long-range linkage effect on expression co-fluctuation?  If the chemical influencing 

transcription has a diffusion time in the nucleus much shorter than the interval between 

transcriptional bursts, two genes have essentially the same environment with respect to that 

chemical regardless of their 3D distance [38] and hence no linkage effect is expected (top cell in 

Fig. 3H).  On the contrary, if the chemical diffuses too slowly to even distribute evenly in a 

chromosomal territory in a time comparable to the interval between transcriptional bursts, the 

linkage effect will be local [38] and hence cannot be chromosome-wide (bottom cell in Fig. 3H).  

Therefore, the diffusion rate of the chemical responsible for the long-range linkage effect cannot 
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be too low or too high such that they become evenly distributed in a chromosome territory but 

not the whole nucleus in a time comparable to the interval between transcriptional bursts (middle 

cell in Fig. 3H).  The typical transcriptional burst interval is 18-50 minutes in mammalian cells 

[39, 40].  The time for a chemical to distribute evenly in a given volume with radius R is on the 

order of R2/D, where D is the diffusion coefficient of the chemical [32].  Most molecules in the 

nucleus are rapidly diffused.  For example, transcription factors typically have a diffusion 

coefficient of 0.5-5 μm2/s in the nucleus [32, 41], meaning that they can diffuse across the whole 

nucleus in ~3~30 seconds.  By contrast, core histone proteins such as H2B proteins diffuse 

extremely slowly due to their tight binding to DNA.  They are usually considered immobilized 

because diffusion is rarely observed during the course of an experiment [41, 42].  Therefore, 

none of these molecules are responsible for the long-range linkage effect observed.  

Interestingly, linker histones, which include five subtypes of H1 histones in mouse that play 

important roles in chromatin structure and transcription regulation [43], have a diffusion 

coefficient of ~0.01μm2/s [44].  Thus, it takes H1 proteins 25-100 seconds to diffuse through a 

chromosome territory, but ~30 minutes to diffuse across the whole nucleus.  The former time but 

not the latter is much smaller than the typical transcriptional burst interval.  Hence, it is possible 

that H1 diffusion in the nucleus is the ultimate cause of the linkage effect.  We provide empirical 

evidence for this hypothesis in a later section.  

 

Beneficial linkage of genes encoding components of the same protein complex 

Our finding that chromosomal linkage leads to gene expression co-fluctuation implies 

that linkage between genes could be selected for when expression co-fluctuation is beneficial.  

Due to the complexity of biology, it is generally difficult to predict whether the expression co-

fluctuation of a pair of genes is beneficial, neutral, or deleterious.  However, the expression co-

fluctuation of genes encoding components of the same protein complex is likely advantageous.  

To see why this is the case, let us consider a dimer composed of one molecule of protein A and 

one molecule of protein B; the heterodimer is functional but monomers are not.  We denote the 

concentration of dissociated protein A as [A], the concentration of dissociated protein B as [B], 

and the concentration of protein complex AB as [AB].  At the steady state, [AB] = K[A][B], 

where K is the association constant [45].  Furthermore, the total concentration of protein A, [A]t, 

equals [A] + [AB], and the total concentration of protein B, [B]t, equals [B] + [AB].  Based on 
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these relationships, we simulated 10,000 cells, where the mean and coefficient of variation (CV) 

are respectively 1 and 0.2 for both [A]t and [B]t (see Methods).  We assumed K = 105 based on 

empirical K values of protein complexes [46].  We found that, as the correlation between [A]t 

and [B]t increases, mean [AB] of the 10,000 cells rises (Fig. 4A).  If we assume that fitness rises 

with [AB], the co-fluctuation of [A]t and [B]t is beneficial, compared with independent 

fluctuations of [A]t and [B]t.  Furthermore, because mean [A] and mean [B] must decrease with 

the rise of mean [AB], the co-fluctuation of [A]t and [B]t could also be advantageous because it 

lowers the concentrations of the unbound monomers that may be toxic.  Indeed, past studied 

found better expression co-fluctuations of genes encoding members of the same protein complex 

than random gene pairs [47, 48], suggesting a demand for expression co-fluctuation of members 

of the same protein complex. 

 To test if genes encoding components of the same protein complex tend to be linked, we 

used the mouse protein complex data from CORUM and downloaded the chromosomal positions 

of all mouse protein-coding genes from Ensembl [49].  Because genes may be linked due to their 

origins from tandem duplication, the data were pre-processed to produce a set of duplicate-free 

mouse protein-coding genes (see Methods).  We then randomly shuffled the genomic positions 

of the retained genes encoding protein complex components among all possible positions of the 

duplicate-free mouse protein-coding genes.  The observed number of linked pairs of genes 

encoding components of the same protein complex is significantly greater than the random 

expectation (Fig. 4B).  For comparison, we also computed the number of linked pairs of genes 

encoding components of different protein complexes.  This number is not significantly greater 

than the random expectation (Fig. 4C).  Thus, the enrichment in gene linkage is specifically 

related to coding for components of the same protein complex.  Interestingly, the observed 

median distance between the TSSs of two linked genes encoding protein complex components is 

not significantly different from the random expectation, regardless of whether components of the 

same (Fig. 4D) or different (Fig. 4E) protein complexes are considered.   

The phenomenon that members of the same protein complex tend to be encoded by 

linked genes could have arisen for one or both of the following reasons.  First, selection for co-

fluctuation among proteins of the same complex has driven the evolution of gene linkage.  

Second, due to their co-fluctuation, products of linked genes may have been preferentially 

recruited to the same protein complex in evolution.  Under the first hypothesis, originally 
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unlinked genes encoding members of the same protein complex are more likely to become linked 

in evolution than originally unlinked genes that do not encode members of the same complex.  

To verify this prediction, we examined mouse genes using rat and human as outgroups (Fig. 4F).  

We obtained pairs of genes encoding components of the same protein complex in both human 

and mouse.  Hence, these pairs likely encode members of the same protein complex in the 

common ancestor of the three species.  Among them, 875 pairs are unlinked in human and rat, 

suggesting that they were unlinked in the common ancestor of the three species.  Of the 875 

pairs, 25 pairs become linked in the mouse genome, significantly more than the random 

expectation under no requirement for gene pairs to encode members of the same complex (P = 

0.005; Fig. 4F; see Methods).  Therefore, the first hypothesis is supported.  Under this 

hypothesis, the result in Fig. 4D may be explained by the long-range linkage effect on expression 

co-fluctuation, such that once two genes encoding components of the same protein complex 

move to the same chromosome, selection is not strong enough to drive them closer to each other.  

To test the second hypothesis, we need gene pairs encoding proteins that belong to the same 

protein complex in mouse but not in human nor rat, which require such low false negative errors 

in protein complex identification that no current method can meet.  Hence, we leave the 

validation of the second hypothesis to future studies.  

As mentioned, our theoretical consideration suggests that, due to their intermediate 

diffusion coefficient, H1 histones may be responsible for the observed chromosome-wide 

expression co-fluctuation.  Because the local H1 concentration fluctuates more when its cellular 

concentration is lower, we predict that the benefit of and the coefficient of selection for linkage 

of genes encoding members of the same protein complex is greater in tissues with lower H1 

concentrations.  Given that gene expression is costly, for a given gene, it is reasonable to assume 

that the relative importance of its function in a tissue increases with its expression level in the 

tissue [50, 51].  Hence, we predict that, the more negative the across-tissue expression 

correlation is between a protein complex member gene and H1 histones, the higher the likelihood 

that the gene is driven to be linked with other genes encoding members of the same protein 

complex.  To verify the above prediction, we used a recently published RNA-seq dataset [52] to 

measure Pearson's correlation between the mRNA concentration of a gene that encodes a protein 

complex member and the mean mRNA concentration of all H1 histone genes across 13 mouse 

tissues.  Indeed, the linked protein complex genes show more negative correlations than the 
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unlinked protein complex genes (P = 0.012, one-tailed Mann-Whitney U test; Fig. 4G).  The 

disparity is even more pronounced when we compare linked protein complex genes that become 

linked in the mouse lineage with unlinked protein complex genes (P = 0.00068, one-tailed Mann-

Whitney U test; Fig. 4G).  This is likely owing to the enrichment of genes that are linked due to 

the linkage effect in the group of evolved linked protein complex genes 

(
 

 
92%  when compared with the group of linked protein 

complex genes (
 

 
24% .  The above three groups of genes 

(evolved linked protein complex genes, linked protein complex genes, and unlinked protein 

complex genes) were constructed using stratified sampling so that their mean expression levels 

across tissues are not significantly different (see Methods).  For comparison, we performed the 

same analysis but replaced H1 histones with TFIIB, a general transcription factor that is involved 

in the formation of the RNA polymerase II preinitiation complex and has a high diffusion rate 

[53].  The trends shown in Fig. 4G no longer holds (unlinked vs. linked: P = 0.11, one-tailed 

Mann-Whitney U test; unlinked vs. evolved linked: P = 0.63, one-tailed Mann-Whitney U test).  

We also performed the same analysis but replaced H1 histones with core histone proteins, which 

are immoblized [42].  Again, the trends in Fig. 4G disappeared (unlinked vs. linked: P = 0.48, 

one-tailed Mann-Whitney U test; unlinked vs evolved linked: P = 0.89, one-tailed Mann-

Whitney U test).  These results support our hypothesis about the role of H1 histones in the 

linkage effect of expression co-fluctuation. 

 

DISCUSSION 

Using allele-specific single-cell RNA-seq data, we discovered chromosome-wide 

expression co-fluctuation of linked genes in mammalian cells.  We hypothesize and provide 

evidence that genes on the same chromosome tend to have close 3D proximity, which results in a 

shared chemical environment for transcription and leads to expression co-fluctuation.  While the 

linkage effect on expression co-fluctuation is likely an intrinsic cellular property, when the 

expression co-fluctuation of certain genes improves fitness, natural selection may drive the 

relocation of these genes to the same chromosome.  Indeed, we provide evidence suggesting that 

the chromosomal linkage of genes encoding components of the same protein complex is 

beneficial owing to the resultant expression co-fluctuation that minimizes the dosage imbalance 
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among these components and has been selected for in genome evolution.   

Although many statistical results in this study are highly significant, the effect sizes 

appear small in several analyses, most notably the δe and δa values for linked genes.  The small 

effect sizes are generally due to the large noise in the data, less ideal types of data used, and 

mismatches between the data sets co-analyzed.  For instance, δe between linked genes estimated 

here (Fig. 2D) is much smaller than what was previously estimated for a pair of linked florescent 

protein genes [21], due in a large part to the inherently large error in quantifying mRNA 

concentrations by single-cell RNA-seq [54].  The small size of δa (Fig. 3E) is likely caused at 

least in part by the low efficiency of ATAC-seq in detecting open chromatins (see Methods).  

The positive correlation between trans-ra and trans-re (Fig. 3G) is likely an underestimate due to 

the use of different cell types in RNA-seq and ATAC-seq.  As shown in Figs. 2E and 2F, the 

actual effect sizes would be much larger should better experimental methods and/or data become 

available.  Hence, it is likely that many effects are underestimated in this study.  In addition, the 

co-fluctuation effect detected by Raj et al. may be unusually large because in that study the 

chromosomal distance between the two genes was extremely small and the two genes used 

identical regulatory elements [21].  Regardless, the effects appear visible to natural selection, as 

reflected in the preferential chromosomal linkage of genes encoding members of the same 

protein complex. 

Because we used RNA-seq to measure expression co-fluctuation, our results apply to the 

co-fluctuation of mRNA concentrations.  In the case of protein complex components, it is 

presumably the co-fluctuation of protein concentrations rather than mRNA concentrations that is 

directly beneficial.  Although the degree of covariation between mRNA and protein 

concentrations is under debate [55, 56], the two concentrations correlate well at the steady state 

[21].  One key factor in this correlation is the protein half-life, because, when the protein half-life 

is long, mRNA and protein concentrations may not correlate well due to the delay in the effect of 

a change in mRNA concentration on protein concentration [21].  It is interesting to note that in 

Raj et al.'s study [21], mRNA and protein concentrations still correlate reasonably well (r = 0.43) 

when the protein half-life is 25 hours, which is much longer than the reported mean protein half-

life of 9 hours in mammalian cells [57].  Corroborating this finding is the recent report [58] that 

mRNA and protein concentrations correlate well across single cells in the steady state (mean r = 

0.732).  Note that, although the correlation between mRNA and protein concentrations measured 
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at the same moment may not be high when the protein half-life is long, the current protein level 

can still correlate well with a past mRNA level [59].  Because our study focuses on cells at the 

steady state, co-fluctuation of mRNA concentrations is expected to lead to co-fluctuation of 

protein concentrations.   

We attributed the preferential linkage of genes encoding components of the same protein 

complex to the benefit of expression co-fluctuation, while a similar phenomenon of linkage was 

previously reported in yeast and attributed to the potential benefit of co-expression of protein 

complex components across environments [60], where co-expression refers to the correlation in 

mean expression level.  In mammalian cells, our hypothesis is more plausible than the co-

expression hypothesis for five reasons.  First, across-environment (or among-tissue) variation in 

mean mRNA concentration does not translate well to the corresponding variation in mean 

protein concentration [56, 61], while mRNA concentration fluctuation explains protein 

concentration fluctuation quite well [21, 58].  Hence, gene linkage, which enhances mRNA 

concentration co-fluctuation and by extension protein concentration co-fluctuation, may not 

improve protein co-expression across environments.  Second, co-expression of linked genes 

appears to occur at a much smaller genomic distance than the linkage effect on co-fluctuation 

reported here [62].  Thus, if selection on co-expression were the cause for the non-random 

distribution of genes encoding members of the same protein complex, these genes should be 

closely linked.  This, however, is not observed (Fig. 4D).  Hence, the previous finding that genes 

encoding members of (usually not the same) protein complexes tend to be clustered is best 

explained by the fact that certain chromosomal regions have inherently low expression noise and 

that these regions attract genes encoding protein complex members because stochastic 

expressions of these genes are especially harmful (i.e., the noise reduction hypothesis) [4, 63].  

Third, the protein complex stoichiometry often differs among environments, which makes co-

expression of complex components disfavored in the face of environmental changes [64, 65].  

Nonetheless, under a given environment, protein concentration co-fluctuation remains beneficial 

because of the presence of an optimal stoichiometry at each steady state.  Fourth, gene linkage is 

not necessary for the purpose of co-expression, because the genes involved can use similar cis-

regulatory sequences to ensure co-expression even when they are unlinked.  In fact, a large 

fraction of co-expression of linked genes is due to tandem duplicates [62], which have similar 

regulatory sequences by descent.  However, even for genes with the same regulatory sequences, 
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linkage improves expression co-fluctuation at the steady state.  Finally, the co-expression 

hypothesis or noise reduction hypothesis cannot explain our observation of the relationship 

between the expression levels of H1 histones and those of linked genes encoding protein 

complex members across tissues (Fig. 4G).  Taken together, these considerations suggest that it 

is most likely the selection for expression co-fluctuation rather than co-expression across 

environments that has driven the evolution of linkage of genes encoding members of the same 

protein complex.   

Several previous studies reported long-range coordination of gene expression [56, 66-73], 

but most of them was about co-expression.  As discussed, co-expression is the correlation in 

mean expression level across different tissues or environments and differs from expression co-

fluctuation across single cells in the same environment.  One study used fluorescent in situ 

hybridization of intronic RNA to detect nascent transcripts in individual cells [66].  The authors 

reported independent transcriptions of most linked genes with the exception of two genes about 

14 million bases apart that exhibit a negative correlation in transcription.  Their observations are 

not contradictory to ours, because they measured the nearly instantaneous rate of transcription, 

whereas we measured the mRNA concentration that is the accumulated result of many 

transcriptional bursts.  As explained, having a similar biochemical environment makes the 

activation/inactivation cycles of linked genes coordinated to some extent, even though the 

stochastic transcriptional bursts in the activation period may still look independent.  

 Our work suggests several future directions of research regarding expression co-

fluctuation and its functional implications.  First, it would be interesting to know if the linkage 

effect on expression co-fluctuation varies across chromosomes.  Although we analyzed 

individual chromosomes (Fig. S3), addressing this question fully requires better single-cell 

expression data, because the current single-cell RNA-seq data are noisy.  This also makes it 

difficult to detect any unusual chromosomal segment in its δe distribution.  Second, our results 

suggest that 3D proximity is a major cause for the linkage effect on expression co-fluctuation.  In 

particular, diffusion of proteins with intermediate diffusion coefficients such as H1 histones is 

likely one mechanistic basis of the effect.  However, the diffusion behaviors of most proteins 

involved in transcription are largely unknown.  A thorough research on the diffusion behaviors 

of proteins inside the nucleus will help us identify other proteins that are important in the linkage 

effect.  As mentioned, our data do not allow a clear distinction between 3D looping and 3D 
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diffusion in causing the linkage effect on tightly linked genes.  To distinguish between these two 

mechanisms definitively, we would need allele-specific models of mouse chromosome 

conformation [74], which require more advanced algorithms and more sensitive allele-specific 

Hi-C methods.  Third, our study highlights the importance of the impact of sub-nucleus spatial 

heterogeneity in gene expression.  This can be studied more thoroughly via real-time imaging 

and spatial modeling of chemical reactions [38, 75].  The lack of knowledge about the details of 

transcription reactions prevents us from constructing an accurate quantitative model of gene 

expression, which can be achieved only by more accurate measurement and more advanced 

computational modeling.  Fourth, we used protein complexes as an example to demonstrate how 

the linkage effect on expression co-fluctuation influences the evolution of gene order.  But, to 

understand the broader evolutionary impact of the linkage effect, a general prediction of the 

fitness consequence of expression co-fluctuation is necessary.  To achieve this goal, whole-cell 

modeling may be required [76].  Note that some other mechanisms such as cell cycle [77] can 

also lead to gene expression co-fluctuation and so should be considered when predicting the 

relationship between gene expression and fitness.  Fifth, because expression co-fluctuation could 

be beneficial or harmful, an alteration of expression co-fluctuation should be considered as a 

potential mechanism of disease caused by mutations that relocate genes in the genome.  Sixth, 

our analysis focused primarily on highly expressed genes due to the limited sensitivity of single-

cell RNA-seq.  Because lowly expressed genes are affected more than highly expressed genes by 

expression noise [78], expression co-fluctuation may be more important to lowly expressed 

genes than highly expressed ones.  More sensitive and accurate single-cell expression profiling 

methods are needed to study the expression co-fluctuation of lowly expressed genes.  Seventh, 

we focused on mouse fibroblast cells because of the limited availability of allele-specific single-

cell RNA-seq data.  To study how expression co-fluctuation impacts the evolution of gene order, 

it will be important to have data from multiple cell types and species.  Last but not least, as we 

start designing and synthesizing genomes [79], it will be important to consider how gene order 

affects expression co-fluctuation and potentially fitness.  It is possible that the fitness effect 

associated with expression co-fluctuation is quite large when one compares an ideal gene order 

with a random one.  It is our hope that our discovery will stimulate future researches in above 

areas.  
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METHODS 

High-throughput sequencing data  

The processed allele-specific single-cell RNA-seq data were downloaded from 

https://github.com/RickardSandberg/Reinius_et_al_Nature_Genetics_2016?files=1 

(mouse.c57.counts.rds and mouse.cast.counts.rds).  The Hi-C data [31] were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72697, and we analyzed the 500kb-

resolution Hi-C interaction matrix with high SNP density (iced-snpFiltered). The processed 

ATAC-seq data were provided by authors[34], and the data from 16 NPC cell populations were 

analyzed.  All analyses were performed using custom programs in R or python. 

 

Protein complex data and pre-processing 

The mouse protein complex data were downloaded from the CORUM database 

(http://mips.helmholtz-muenchen.de/corum/) [80].  The coordinates for all mouse protein-coding 

genes were downloaded from Ensembl BioMart (GRC38m.p5) [49].  To produce duplicate-free 

gene pairs, we also downloaded all paralogous gene pairs from Ensembl BioMart.  Note that 

these gene pairs can be redundant, meaning that a gene may be paralogous with multiple other 

genes and appear in multiple gene pairs.  We then iteratively removed duplicate genes based on 

the following rules.  First, if one gene in a pair of duplicate genes has been removed, the other 

gene is retained.  Second, if neither gene in a duplicate pair has been removed and neither 

encodes a protein complex component, one of them is randomly removed.  Third, if neither gene 

in a duplicate pair has been removed and only one of them encodes a protein complex member, 

we remove the other gene.  Fourth, if neither gene in a duplicate pair has been removed and both 

genes encode protein complex components, one of them is randomly removed.  Applying the 

above rules resulted in a set of duplicate-free genes with as many of them encoding protein 

complex members as possible. 

 

Gibbs sampling for testing protein complex-driven evolution of gene order 

We obtained all mouse genes that have one-to-one orthologs in both human and rat, and 

acquired from Ensembl their chromosomal locations in human, mouse, and rat.  Gene pairs are 

formed if their products belong to the same protein complex in human as well as mouse, based 

on protein complex information in the CORUM database mentioned above.  Among them, 875 
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gene pairs from 342 genes are unlinked in both human and rat, of which 25 pairs become linked 

in mouse.  To test whether the number 25 is more than expected by chance, we compared these 

342 genes with a random set of 342 genes that also form 875 unlinked gene pairs in human and 

rat.  These unlinked pairs are highly unlikely to encode members of the same complex, so serve 

as a negative control.  Because of the difficulty in randomly sampling 342 genes that form 875 

unlinked gene pairs, we adopted Gibbs sampling [81], one kind of Markov-Chain Monte-Carlo 

sampling [82].  The procedure was as follows.  Starting from the observed 342 genes, 

represented by the vector of (gene 1, gene 2, …, gene 342), we swapped gene 1 with a randomly 

picked gene from the mouse genome such that the 342 genes still satisfied all conditions of the 

original 342 genes described above.  We then similarly swapped gene 2, gene 3, ..., and finally 

gene 342, at which point a new gene set was produced.  To allow the Markov chain to reach the 

stationary phase, we discarded the first 1000 gene sets generated.  Starting the 1001st gene set, 

we retained a set every 50 sets produced until 1000 sets were retained; this ensured relative 

independence among the 1000 retained sets.  In each of these 1000 sets, we counted the number 

of gene pairs that are linked in mouse.  The fraction of sets having the number equal to or greater 

than 25 was the probability reported in Fig. 4F.  

 

Chromatin co-accessibility among cells vs. among cell populations 

Let us consider the chromatin accessibilities of two genomic regions, A and B, in a 

population of N cells (N = 50,000 in the data analyzed) [34].  Let us denote the chromatin 

accessibilities for the two regions in cell i by random variables Ai and Bi, respectively, where 

i=1, 2, 3, ..., and N.  We further denote the corresponding total accessibilities in the population as 

random variables AT and BT, respectively.  We assume that Ai follows the distribution X, while 

Bi follows the distribution Y.  We then have the following equations. 

𝐴𝑇 ∑ 𝐴   and  𝐵𝑇 ∑ 𝐵  .                 (1) 

Pearson's correlation between AT and BT across cell populations all of size N is 

𝐶𝑜𝑟𝑟 𝐴𝑇, 𝐵𝑇 ∙ ∑ ∑  
   

     
∑ ∑

 .                                      (2) 

Because cells are independent from one another, when 𝑖 𝑗,      

  𝐸 𝐴 𝐵 𝐸 𝐴 𝐸 𝐵 .                    (3) 
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Thus,              

  ∑ ∑ 𝐸 𝐴 𝐵 ∑ 𝐸 𝐴 𝐵 ∑ ∑ 𝐸 𝐴 𝐸 𝐵  

                                                        𝑁𝐸 𝑋𝑌 𝑁 𝑁 𝐸 𝑋 𝐸 𝑌 .                             (4) 

Combining Eq. (2) with Eq. (4), we have  

𝐶𝑜𝑟𝑟 𝐴𝑇, 𝐵𝑇  
∙ ∙

𝐶𝑜𝑟𝑟 𝑋, 𝑌 .                  (5) 

Hence, if the number of cells per population is a constant and there is no measurement error, 

correlation of chromatin accessibilities of two loci among cells is expected to equal the 

correlation of total chromatin accessibilities per population of cells among cell populations. 

 To examine how violations of some of the above conditions affect the accuracy of Eq. 

(5), we conducted computer simulations.  We assume that the accessibility of a genomic region 

in a single cell is either 1 (accessible) or 0 (inaccessible).  This assumption is supported by 

previous single-cell ATAC-seq data [35], where the number of reads mapped to each peak in a 

cell is nearly binary.  Now let us consider two genomic regions whose chromatin states are 

denoted by A and B, respectively.  The probabilities of the four possible states of this system are 

as follows.  

  Pr 𝐴 0, 𝐵 0 𝑝,        

  Pr 𝐴 0, 𝐵 1 𝑞, 

  Pr 𝐴 1, 𝐵 0 𝑟,       

 and       Pr 𝐴 1, 𝐵 1 𝑠,         (6) 

where p + q + r + s = 1.  Hence, we have         

  𝐸 𝐴 𝑟 𝑠,          

  𝐸 𝐵 𝑞 𝑠,          

  E 𝐴𝐵 𝑠,           

  𝑉𝑎𝑟 𝐴 𝑟 𝑠 𝑝 𝑞 ,         

  𝑉𝑎𝑟 𝐵 𝑞 𝑠 𝑝 𝑟 .       (7) 

With Eq. (7), we can compute 𝐶𝑜𝑟𝑟 𝐴, 𝐵 .  In other words, for any given set of p, q, r, and s, 

we can compute the among-cell correlation in chromatin accessibility between the two regions.  

 We then generated 10,000 random sets of p, q, r, s from a Dirichlet distribution.  For each 

set of p, q, r, and s, we simulated the state of a cell by a random sampling from the four possible 

states.  We did this for 16 cells as well as 16 cell populations each composed of 50,000 cells.  
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We computed the total accessibility of each region in each cell population by summing up the 

corresponding accessibility of each cell.  As expected, the among-cell correlation between the 

two regions in accessibility matches the true correlation (Fig. S5A).  The deviation from the true 

correlation is due to sampling error.  Based on Eq. (5), the among-cell-population correlation 

between the two regions in total accessibility approximates the true correlation, which is indeed 

observed in our simulation (Fig. S5B).  

 Nevertheless, accessibility of a region may be undetected due to low detection 

efficiencies of high-throughput methods, which makes the observed correlation between the 

accessibilities of two regions lower than the true correlation.  To assess the impact of such low 

detection efficiencies on the correlation, we simulated a scenario with a 10% detection 

efficiency, which is common in high-throughput methods [54].  That is, for every accessible 

region, it is detected as accessible with a 10% chance and inaccessible with a 90% chance; every 

inaccessible region is detected as inaccessible with a 100% chance.  Our simulation showed that 

the observed correlation between the accessibilities of two regions is weaker than the true 

correlation regardless of whether the data are from individual cells (Fig. S5C) or cell populations 

(Fig. S5D).  

 

Simulation of protein complex concentrations  

Let the concentration of protein complex AB be [AB].  To study the average [AB] across 

cells in a population, we first simulated the concentrations of subunit A and subunit B in each 

cell.  We assumed that the total concentrations of A and B, denoted by [A]t and [B]t respectively, 

are both normally distributed with mean = 1 and CV = 0.2.  We used CV = 0.2 because this is the 

median expression noise measured by CV for enzymes in yeast[6], the only eukaryote with 

genome-wide protein expression noise data [15].  Thus, the joint distribution of [A]t and [B]t is 

multivariate normal, which can be specified if the correlation (r) between [A]t and [B]t is known.  

With a given r, we simulated [A]t and [B]t for 10,000 cells by sampling from the joint 

distribution.  We set the concentration to 0 if the simulated value is negative.  We computed 

[AB] in each cell by solving the following set of equations.  

𝐴 𝐴 𝐴𝐵 , 𝐵 𝐵 𝐴𝐵 , and 𝐴𝐵 𝐾 𝐴 𝐵 ,                   (8) 
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where we used K = 105 based on the empirical values of association constants of protein 

complexes [46].  We then took the average [AB] among all cells to acquire the mean complex 

concentration. 

 

Analysis of the relationship in expression level between protein complex genes and linker 

histone genes across tissues 

This analysis used the RNA-seq data from 13 mouse tissues [52] as well as the protein 

complex data aforementioned.  We divided all protein complex genes into three groups: unlinked 

genes, linked genes, and evolved linked genes.  The first two groups are from duplicate-free 

protein complex gene pairs.  A gene is assigned to the "linked" group if it is linked with at least 

one gene that encodes a member of the same protein complex.  We found that the gene 

expression levels tend to be higher for the "linked" group than the "unlinked" group.  To allow a 

fair comparison between these two groups, we computed the mean expression level of each gene 

across tissues and performed a stratified sampling as follows.  We lumped all genes from the two 

groups and divided them into 20 bins based on their expression levels.  For each bin, we counted 

the numbers of linked and unlinked genes respectively, and randomly down-sampled the larger 

group to the size of the smaller group.  After the downsampling, the expression levels of the two 

groups of genes are comparable (P = 0.9, two-tailed Mann-Whitney U test).  The third gene 

group contains genes that are linked in mouse but not in human nor in rat (i.e., "evolved linked").  

We did not require them to be duplicate-free, but they were ancestrally unlinked so could not 

have resulted from tandem duplication.  The expression levels of the third group of genes are not 

significantly different from those of the first two groups after the stratified sampling (P = 0.68).  

After obtaining the three groups of genes, we examined the among-tissue correlation 

between the expression level of each of these genes and the total expression level of all 11 H1 

histone genes in mouse [83].  For control, we performed the same analysis but replaced H1 

histones with TFIIB, a rapidly diffused transcription factor.  In another control, we replaced H1 

histones with immobilized core histones (H2A, H2B, H3, and H4).  H2A, H2B, H3, and H4 

genes are obtained from Mouse Genome Informatics (http://www.informatics.jax.org/) [84]: 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002048 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002050 

http://www.informatics.jax.org/vocab/pirsf/PIRSF002051 
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http://www.informatics.jax.org/vocab/pirsf/PIRSF002052 
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FIGURE LEGENDS 

Fig. 1.  The hypothesized linkage effect on gene expression co-fluctuation.  The cellular 

mRNA concentrations of two genes should be better correlated among isogenic cells in a 

population under a constant environment (A) when the two genes are chromosomally linked than 

(B) when they are unlinked.  In the dot plot, each dot represents a cell. 

 

Fig. 2.  Chromosome-wide linkage effects on gene expression co-fluctuation in mouse 

fibroblast cells.  (A) The logic of the method for testing the linkage effect.  When gene A and 

gene B are linked, the correlations between the mRNA concentrations of the alleles of A and B 

that are physically linked (cis-correlations) should exceed the corresponding correlations of the 

alleles that are physically unlinked (trans-correlations).  That is, δe = (sum of cis-correlations − 

sum of trans-correlations)/2 should be positive.  This relationship should disappear if gene A and 

gene B are unlinked.  (B) Fraction of gene pairs with positive δe.  The red line represents the null 

expectation under no linkage effect.  P-values from binomial tests on independent gene pairs are 

presented.  (C) Fraction of gene pairs with positive δe in each chromosome.  Binomial P-values 

are indicated as follows.  NS, not significant; *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, 

0.0001 < P < 0.001; ****, P < 0.0001.  The red line represents the null expectation under no 

linkage effect.  The control (Ctl) shows the fraction of unlinked gene pairs with positive δe.  (D) 

Median δe in a bin decreases with the median genomic distance of linked genes in the bin.  All 

bins have the same genomic distance interval.  TSS, transcription start site.  The blue line shows 

the linear regression of the binned data.  Spearman's ρ from unbinned data and associated P-

value determined by a shuffling test are presented.  (E) Fraction of linked gene pairs showing 

positive δe increases with the minimal number of reads per allele required.  (F) Median δe for all 

linked gene pairs (red) and median δe in the left-most bin of panel D (blue) increase with the 

minimal read number per allele required.   

 

Fig. 3.  Mechanistic basis of the linkage effect on expression co-fluctuation.  (A) A model on 

how chromosomal linkage causes expression co-fluctuation.  (B) Fractions of linked or unlinked 

genomic region pairs with positive, 0, and negative δi values, respectively.  δi = (sum of cis-

interactions − sum of trans-interactions)/2, where chromatin interactions are based on Hi-C 

data.  All fractions are shown, but the blue and red bars for linked regions are too low to be 
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visible.  (C) δi decreases with the genomic distance between the linked regions considered.  Each 

dot represents one pair of linked genomic regions.  Shown here is log10(δi + 5) because δi is 

occasionally negative and it decreases with genomic distance very quickly.  The horizontal red 

line indicates δi = 0.  The blue line is a cubic spline regression of δi on the genomic distance.  

Spearman's ρ from unbinned data and associated P-value determined by a shuffling test are 

presented.  (D) Fraction of linked or unlinked pairs of ATAC peaks with positive δa.  δa = (sum 

of cis-correlations in accessibility − sum of trans-correlations in accessibility)/2.  P-values from 

binomial tests on independent peak pairs are presented.  The red line shows the fraction of 0.5.  

(E) δa decreases with the distance between linked ATAC peaks.  Each dot represents a bin.  All 

bins have the same distance interval.  The red line shows δa = 0.  The blue line shows the linear 

regression of the binned data.  For better viewing, one bin (X=156, Y= -0.02) is not shown; the 

extreme δa of the bin is probably due to the small sample size of the bin (n = 13).  Spearman's ρ 

computed from unbinned data and associated P-value determined from a shuffling test are 

presented.  (F) Co-accessibility (trans-ra) is greater for 3D contacted (trans-F > 0) than 

uncontacted (trans-F = 0) non-allelic genomic regions located on homologous chromosomes.  

The lower and upper edges of a box represent the first (qu1) and third quartiles (qu3), 

respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to 

the most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values 

outside the inner fences (outliers).  P-value is determined by a Mantel test.  (G) Expression co-

fluctuation (trans-re) improves with the co-accessibility (trans-ra) of non-allelic ATAC peaks 

located on homologous chromosomes.  Each dot represents a bin.  All bins have the same 

distance interval.  The blue line shows the linear regression of the binned data.  Spearman's ρ 

computed from unbinned data and associated P-value determined by a Mantel test are presented.  

(H) Diffusion rates for molecules responsible for the chromosome-wide linkage effect should be 

neither too high nor too low.  If the diffusion is too fast, the concentration of the molecule will be 

similar across the nucleus (top); if the diffusion is too slow, the concentration cannot even be 

similar for loci loosely linked on the same chromosome (bottom).  Only when the diffusion rate 

is intermediate, the local chemical environment could be homogeneous for genes on the same 

chromosome but heterogeneous for genes on different chromosomes (middle).  The large oval 

represents the nucleus and each black "S" curve represents a chromosome.  Blue zig-zags show 

molecular diffusions, while the blue area depicts a chemically homogenous environment. 
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Fig. 4.  Genes encoding components of the same protein complex tend to be chromosomally 

linked.  (A) Mean concentration of the protein complex AB ([AB]) in 10,000 cells increases 

with the co-fluctuation of the concentrations of its two components measured by the correlation 

of the total concentration of protein A ([A]t) and that of B ([B]t).  (B-C) The frequency 

distribution of the number of pairs of linked genes encoding components of the same protein 

complex (B) and components of different protein complexes (C) in 10,000 randomly shuffled 

genomes.  Arrows indicate the observed values.  (D-E) The frequency distribution of the median 

distance between two linked genes that encode components of the same protein complex (D) and 

components of different protein complexes (E) in 10,000 randomly shuffled genomes.  Arrows 

indicate the observed values.  (F) Test of the hypothesis of protein complex-driven evolution of 

gene linkage, which asserts that the probability for an originally unlinked pair of genes to 

become linked is higher if they encode members of the same protein complex.  Of 875 pairs of 

genes that are unlinked in both human and rat and encode members of the same protein complex 

in both human and mouse, 25 become linked in mouse, as indicated by the arrow.  The frequency 

distribution of the corresponding expected number is shown by the distribution.  (G) Protein 

complex genes that are linked with at least one gene encoding a member of the same complex 

tend to be highly expressed in tissues with low abundances of linker histones.  Y-axis shows the 

correlation in expression level between protein complex genes and the linker histone genes 

across tissues. 
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LEGENDS OF SUPPLEMENTARY FIGURES 
 
Fig. S1.  The linkage effect on expression co-fluctuation in clone 6 cells and non-clonal cells.  

(A) Fraction of gene pairs with positive δe in clone 6.  The red line represents the null expectation 

under no linkage effect.  P-values from binomial tests on independent gene pairs are presented.  

(B) In clone 6, median δe in a bin decreases as the median genomic distance between linked 

genes in the bin rises.  All bins have the same distance interval.  TSS, transcription start site.  

The red line shows δe = 0.  The blue line shows the linear regression of binned data.  Spearman's 

ρ from unbinned data and associated P-value determined by a shuffling test are presented.  (C) 

Fraction of gene pairs with positive δe in non-clonal mouse fibroblast cells.  The red line 

represents the null expectation under no linkage effect.  P-values from binomial tests on 

independent gene pairs are presented.  (D) In non-clonal cells, median δe in a bin decreases as the 

median genomic distance between linked genes in the bin rises.  All bins have the same distance 

interval.  TSS, transcription start site.  The red line shows δe = 0.  The blue line shows the linear 

regression of binned data.  Spearman's ρ from unbinned data and associated P-value determined 

by a shuffling test are presented. 

 

Fig. S2.  The linkage effect on expression co-fluctuation in clone 7 cells analyzed using total 

reads of two alleles per locus.  (A) Median Δe in a bin decreases with the median genomic 

distance between linked genes in the bin.  Δe for a linked gene pair is the correlation in RNA-seq 

read number between the two genes minus the median correlation for pairs of unlinked genes.  

All bins have the same distance interval.  TSS, transcription start site.  The red line shows Δe = 0.  

The blue line shows the linear regression of binned data.  Spearman's ρ of unbinned data and 

associated P-value determined by a shuffling test ae presented.  (B) Median Δ'e in a bin decreases 
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with the corresponding median genomic distance between linked genes in the bin.  Δ'e for a 

linked gene pair is the correlation in expression level measured by RPKM (Reads Per Kilobase 

per Million mapped reads) between the two genes minus the corresponding median correlation 

for pairs of unlinked genes.  The blue line shows the linear regression of binned data.  

Spearman's ρ from unbinned data and associated P-value determined by a shuffling test are 

presented. 

 

Fig. S3.  δe decreases with distance between genes on each mouse chromosome.  Blue lines 

show linear regressions for binned data.  All bins have the same distance intervals, while 

different chromosomes contain different numbers of bins depending on the chromosome length.  

Spearman's correlations from unbinned data and associated nominal P-values determined by 

shuffling tests are presented.  Upon multiple testing correction, the correlations remain 

significant for chromosomes 1, 2, 5, 6, 11, and 12. 

 

Fig. S4.  δe for pairs of neighboring genes with different orientation types.  The lower and 

upper edges of a box represent the first (qu1) and third quartiles (qu3), respectively, the horizontal 

line inside the box indicates the median (md), the whiskers extend to the most extreme values 

inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences 

(outliers).  The nearest pairs were identified using the coordinates downloaded from Ensembl.  

After requiring a minimal read number of 10 for each allele, we separate neighboring gene pairs 

into three categories according to the orientations of their transcription directions.  NS, P > 0.05, 

Wilcoxon rank-sum test. 
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Fig. S5.  Chromatin co-accessibility between two ATAC peaks quantified using single-cells 

vs. using cell populations.  (A) The correlations quantified using single-cell-based 

measurements are close to their corresponding true correlations when the capturing efficiency is 

100%.  (B) The correlations quantified using cell-population-based measurements are close to 

the true correlations when the capturing efficiency is 100%.  (C) The correlations quantified 

using single-cell-based measurements tend to be weaker than their corresponding true 

correlations when the capturing efficiency is 10%.  (D) The correlations quantified using cell-

population-based measurements tend to be weaker than the true correlations when the capturing 

efficiency is 10%.  
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Figure S4
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Figure S5
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