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Abstract9

Heterogeneity plays an important role in the emergence, persistence and control of10

infectious diseases. Metapopulation models are often used to describe spatial hetero-11

geneity, and the transition from random- to heterogeneous-mixing is made by incor-12

porating the interaction, or coupling, within and between subpopulations. However,13

such couplings are difficult to measure explicitly; instead, their action through the cor-14

relations between subpopulations is often all that can be observed. We use moment-15

closure methods to investigate how the coupling and resulting correlation are related,16

considering systems of multiple identical interacting populations on highly symmetric17

complex networks: the complete network, the k-regular tree network, and the star18

network. We show that the correlation between the prevalence of infection takes a19

relatively simple form and can be written in terms of the coupling, network parame-20

ters and epidemiological parameters only. These results provide insight into the effect21

of metapopulation network structure on endemic disease dynamics, and suggest that22

detailed case-reporting data alone may be sufficient to infer the strength of between23

population interaction and hence lead to more accurate mathematical descriptions of24

infectious disease behaviour.25

Keywords: mathematical epidemiology, metapopulation, networks, moment closure ap-26

proximation, coupling27

1 Introduction28

Heterogeneity is an increasingly important feature of epidemiological models, with spatial29

structure (Grenfell and Bolker, 1998; Xia et al., 2004; Viboud et al., 2006), risk structure30

(Baguelin et al., 2010; Datta et al., 2018; Rock et al., 2018) and age structure (Schenzle,31
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1984; Keeling and Grenfell, 1997; Keeling and White, 2010) widely considered. The incor-32

poration of various forms of heterogeneity is crucial to capture many important observed33

epidemiological dynamics, such as: clustering of cases, either spatially or in high-risk de-34

mographics (Schenzle, 1984); unexpected endemic behaviour, as heterogeneity breaks down35

the simple formulation of the basic reproduction number (Keeling and Rohani, 2008); and36

persistence, where heterogeneity generally acts to increase persistence (Keeling, 2000; Ha-37

genaars et al., 2004). Heterogeneity also has a marked influence on the control of infectious38

diseases, as a result of increased persistence or driven by targeted interventions (Keeling39

and White, 2010; Christley et al., 2005; Wallinga et al., 2010).40

One modelling framework that can capture multiple forms of heterogeneity is the41

metapopulation-type model (Gilpin and Hanski, 1991; Hanski, 1998; Hanski and Gag-42

giotti, 2004), whereby the population is divided into multiple interacting, or ‘coupled’,43

subpopulations, and where within-population interactions typically occur at a higher rate44

than between-population interactions. Metapopulation models usually describe spatially45

distributed communities, but could also represent risk groups (e.g. high and low risk) or46

age groups (e.g. adults and children).47

Quantifying between-population interactions is one of the key challenges of metapopu-48

lation infectious disease modelling (Ball et al., 2014). The individual-level behaviour that49

determines such interactions is highly complex and is dependent on social, cultural, envi-50

ronmental and economic factors (Wesolowski et al., 2015). Even with access to good data51

on relevant interactions, it is unclear how this should translate into a single phenomeno-52

logical transmission parameter; current approaches to spatially structured metapopulation53

models typically combine theoretical models of human mobility with highly detailed data.54

Models of human mobility characterise the distribution of contacts between populations55

based on the population sizes and the distances between them (Hanski, 1998). The gravity56

model, originally formulated for transportation analysis (Erlander and Stewart, 1990), and57

later modified for infectious disease modelling, has been widely used in combination with58

commuter mobility data (Viboud et al., 2006; Balcan et al., 2009), mobile phone data,59

used as a proxy for human mobility (Tizzoni et al., 2014; Wesolowski et al., 2015; Kraemer60

et al., 2016), or spatiotemporal time series of disease incidence, where coupling parameters61

are estimated so that simulated epidemics match observed case numbers (Xia et al., 2004).62

However, good data on relevant movements between populations are rare, particularly in63

developing countries where epidemiological models are more likely to be applied. The64

parameter-free radiation model (Simini et al., 2012) and variants thereof (Yan et al., 2014;65

Kang et al., 2015) offer alternative models for human mobility that only requires the spatial66

distribution of the population to estimate coupling. However, comparisons between both67

the gravity and radiation models, and mobile call data records show that these models fail68

to fully describe human mobility outside of high-income countries, such as in Sub-Saharan69

Africa (Wesolowski et al., 2015).70

The interaction between subpopulations is often represented as a matrix of transmission71

rates, where diagonal elements represent within-population rates and off-diagonal elements72
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represent between-population rates. When considering P populations, this matrix has P 2
73

elements, which leads to unidentifiability problems if attempting to estimate parameters74

from endemic equilibria. On the other hand, in a stochastic system, the 1
2P (P−1) pairwise75

correlations between the levels of infection in pairs of populations may help to mitigate76

this unidentifiability, particularly if the transmission matrix is sparse or can be assumed77

to have some sort of symmetry. Long-term data on disease incidence is more frequently78

available (Olsen and Schaffer, 1990; Grenfell and Harwood, 1997), from which we can esti-79

mate the correlation between epidemics in distinct subpopulations; then, given an analytic80

relationship between the coupling and the correlation, we can infer interaction parameters.81

Whilst computer simulations are commonly used and clearly useful, analytic results82

allow us to develop intuition about the infection dynamics; however, exact analysis of83

stochastic epidemiological models is often mathematically intractable, due to the nonlin-84

earity of the transmission process. In such cases, approximation methods may be used to85

derive results about the expected behaviour and variability of the infection process. One86

such approximation method is a moment closure approximation, whereby the stochastic87

system is approximated by a deterministic system of differential equations for the moments88

(mean, variance, covariance, etc.). The most commonly used moment closure approxima-89

tion, and the one used throughout this paper, is the multivariate normal approximation,90

which assumes that third-order cumulants and higher are equal to zero or, equivalently,91

that the distribution of states follows a multivariate normal (MVN) distribution (Whittle,92

1957).93

In this paper we derive an approximation for the correlation between the level of infec-94

tion in two subpopulations as a function of the coupling between them. Our results extend95

the analysis of Meakin and Keeling (2018) for a simple two subpopulation system. Using96

a multivariate normal approximation we derive results for subpopulations arranged on the97

complete network, the k-regular tree network and the star network. We also numerically98

validate our model by comparing our analytic approximations to stochastic simulations.99

These results also provide some insight into the effect of metapopulation network structure100

on network correlations.101

2 Methods102

2.1 A stochastic endemic infection model for interacting populations on103

a general graph104

We begin by introducing a simple stochastic SIR model in a population of size N , with105

births, deaths, transmission and recovery. At any time t ∈ [0,∞), individuals are in one of106

three states: susceptible, infected or recovered. A given susceptible individual meets other107

individuals at rate m > 0. We assume that these encounters are sufficiently close that if the108

other individual is infected, then transmission of infection occurs with probability τ and the109

susceptible individual immediately becomes infected and infectious to others. We therefore110
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define the transmission rate be β = mτ . Susceptible individuals can also succumb to111

infection independent of contact with infected individuals in the modelled populations; this112

occurs at rate ε > 0, the external import rate. Infected individuals recover from infection113

at rate γ > 0, after which they become immune to further infection. Susceptible, infected114

and recovered individuals all die at rate µ > 0, independent of infection status; we assume115

that a death is immediately followed by the birth of a susceptible individual, and hence the116

total population size remains constant. The basic reproductive ratio, the expected number117

of secondary cases produced by a single infectious individual in a susceptible population,118

for this process is R0 = β/(γ + µ).119

We extend the above model to P identical populations of size N . The assumption that120

the population sizes are equal is for mathematical tractability; a discussion of the effects of121

relaxing this assumption for P = 2 can be found in Meakin and Keeling (2018). Each popu-122

lation exhibits the same population dynamics as described above, plus pairwise interaction123

between the populations: we assume that in population i, a proportion σij ∈ [0, 1] of an124

individual’s contacts are with individuals in population j. We insist that
∑

j σij = 1 and125

so σii = 1−
∑

j σij . The matrix Σ = (σij) therefore describes the interaction or ’coupling’126

between all possible pairs of populations, and the force of infection in each subpopulation127

depends on the number of infected individuals in all other subpopulations. Changing Σ128

does not change the basic reproductive ratio, but instead determines the distribution of129

secondary cases between the P subpopulations.130

We let Si(t), Ii(t), Ri(t) ∈ {0, 1, 2, . . .} denote the number of susceptible, infected and131

recovered individuals, respectively, in population i = 1, 2, . . . , P at time t ≥ 0. As the popu-132

lation sizeN is constant then Si(t)+Ii(t)+Ri(t) = N, ∀t ≥ 0, i = 1, 2, . . . , P . The transition133

rates for the resulting 2P -dimensional Markov chain from state (s1, i1, s2, i2, . . . , sP , iP ) at134

time t are summarised in Table 1.135

The metapopulation structure can be described by a weighted network G = (V,E)136

with vertex set V = {1, 2, . . . , P} and edge set E, where edge e = ij has weight σij : the137

coupling matrix Σ therefore represents the weighted adjacency matrix for the graph G.138

For mathematical tractability we restrict our analysis to networks for which we can derive139

analytic results, namely graphs that are highly symmetric; a discussion of the effect of140

relaxing this assumption is provided in the Supplementary Information. In the following141

analysis we consider the complete network, the k-regular tree network and the star network.142

In addition, we assume that σij = σ, ∀ij ∈ E. We note that for k-regular tree network and143

the star network, the weighted adjacency matrix Σ is sparse, that is, most of the elements144

are zero.145

2.2 Moment closure approximations146

Even with constraints on the metapopulation network structure and the coupling matrix147

Σ, an exact analysis of the full stochastic model is mathematically intractable. Instead we148

consider the approximate behaviour of the first- and second-order central moments of the149
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Population Event Transition Rate

j = 1, 2, . . . , P Infection sj → sj − 1, ij → ij + 1 βsj
∑

l σjlil/N + εsj
Recovery ij → ij − 1, rj → rj + 1 γij
Death of infected sj → sj + 1, i1 → ij − 1 µij
Death of recovered sj → sj + 1, rj → rj − 1 µ(N − sj − ij)

Table 1. A summary of the transition rates of the 2P -dimensional Markov chain en-
demic infection model {(Sj(t), Ij(t))Pj=1 : t ≥ 0} from state (s1, i1, s2, i2, . . . , sP , iP ) with
birth/death rate µ > 0, contact rate β > 0, external import rate ε > 0, recovery rate γ > 0
and coupling matrix Σ.

process. The ODE for E[X] can be calculated from first principles using:150

dE[X]

dt
=
∑

events

rate of event× change in X due to event. (1)

Alternatively, these ODEs can be derived from the Kolmogorov forward equation; details151

of this method can be found in existing literature on moment closure approximations in152

infectious disease modelling (Keeling and Rohani, 2002; Lloyd, 2004).153

Due to the nonlinearity of the infection term in the model, the ODE for an nth-order154

moment will depend on one or more (n+1)th order moments: to fully describe the stochas-155

tic process would therefore require an infinite set of ODEs. To circumvent this problem,156

we use a moment closure approximation, which truncates the set of ODEs at some order.157

Throughout this paper, we use a second-order moment closure approximation, which as-158

sumes that third- and higher-order cumulants are equal to zero. As a result, third- and159

higher-order moments can be written in terms of the means, variances and covariances160

only.161

Throughout this paper we will use the following notation for the first- and second-order162

central moments:163

S̄j = E[Sj ]

Īj = E[Ij ]

CSjSj = Cov(Sj , Sj) = Var(Sj)

CIjIj = Cov(Ij , Ij) = Var(Ij)

CSjIj = Cov(Sj , Ij)

ĈSjSk
= Cov(Sj , Sk)

ĈIjIk = Cov(Ij , Ik)

ĈSjIk = Cov(Sj , Ik).
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For a metapopulation network on P populations, the set of ODEs approximating the164

stochastic process has at most 3P 2 + 2P equations: P for each of the two first order165

moments and P 2 for each of the three covariances. However, for the networks that we166

consider in this paper, symmetries in the structure of the network mean that the number167

of ODEs is considerably fewer. In some cases we will simplify the notation: we outline168

simplifications to the notation at the start of the results section for each network.169

2.3 Deriving an equation for the correlation170

In each metapopulation network (the complete network, the k-regular tree network and the171

star network), we derive an analytic approximation for the correlation between the number172

of infected individuals in a pair of populations as a function of the coupling σ. We define173

the correlation between the number of infected individuals in population i and the number174

of infected individuals in population j at endemic equilibrium as:175

ρij =
Cov(Ii, Ij)√
V ar(Ii)V ar(Ij)

=
ĈIiIj√
CIiIiCIjIj

.

We derive an approximate equation for the correlation ρij by considering the ODE176

for the covariance ĈIiIj at endemic equilibrium. We then evaluate our approximation177

numerically, for which we need to define a set of base parameters. We utilise parameters178

for a highly-transmissible measles-like endemic disease in the UK (Anderson and May,179

1992), although we note that a full model of measles requires both seasonality (Earn et al.,180

2000; Rohani et al., 2002; Grenfell and Bolker, 1995) and age-structure (Schenzle, 1984;181

Keeling and Grenfell, 1997; Bolker, 1993). We consider the effect of both the coupling and182

other parameters on the correlation; we also evaluate the accuracy of our approximation183

by comparing our results to simulations.184

3 Results185

3.1 The complete network186

3.1.1 Network definition and notation187

First we consider P identical populations on the complete network, where each population188

interacts with the other k = P − 1 populations: a visual representation of the complete189

network for P = 3 and P = 5 populations is given in Figure 1. The coupling matrix190

Σ = (σij) is defined as191

σij =

{
1− kσ, for i = j

σ, for i 6= j.
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1

2 3

σ

1− 2σ

(a)

1

2 3

4 5

σ

1− 4σ

(b)

Figure 1. The complete network on (a) P = 3 and (b) P = 5 populations. The coupling
between any pair of populations coupling is σ ∈ [0, 1/(P −1)] and so the within-population
coupling is 1− (P − 1)σ.

192

In the complete network metapopulation all subpopulations are epidemiologically and193

spatially identical: epidemiologically in the sense that all subpopulations are of equal194

size and have identical epidemiological parameters, and spatially in the sense that all195

nodes are isomorphic within the network and the coupling is the same between any pair196

of subpopulations. As a result, the expected behaviour is the same within all populations,197

and between any pair of populations. In our notation, we can therefore drop dependency198

on the population and simplify it to the following: X̄ = E[Xj ], CXY = Cov(Xj , Yj) and199

ĈXY = Cov(Xi, Yj), i 6= j.200

Using the second-order moment closure approximation, and with these simplifications,201

the stochastic process on the complete network can be approximated by a set of eight ODEs:202

five for the within-population moments, and three for the between-population moments.203

These can be found in the Supplementary Information. We use these equations in both204

the analytic and the numerical results.205

3.1.2 Analytic results206

For P populations on the complete network, we define the correlation between any pair of207

populations as208
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ρ =
Ĉ∗II
C∗II

,

and show that this is equal to209

ρ =
σ

ξ + σ
−∆, (2)

where210

ξ =
N(γ + µ)− βS̄∗

βS̄∗
(3)

and211

∆ =
(βĪ∗ +Nε)

Ĉ∗
SI

C∗
II

β(1− σ)S̄∗ −N(γ + µ)
. (4)

We derive this result by taking the moment equation for ĈII at equilibrium and dividing212

through by 2C∗II/N , following the same approach as Meakin and Keeling (2018); full details213

of this derivation can be found in the Supplementary Information. Moreover, if ∆� 1 then214

we can further simplify the approximation for the correlation to the following expression:215

ρ ≈ σ

ξ + σ
. (5)

We can also use an alternative approximate expression for ξ that is independent of216

S̄∗, which eliminates the need to find the equilibrium of the 8-dimensional ODE model.217

Meakin and Keeling (2018) show that by ignoring the effects of imports and correlations218

and taking the large population limit, then219

ξ ≈ ξ′ = ε(γ + µ)

µ(β − γ − µ)
=

ε

µ(R0 − 1)
. (6)

Given the simpler form of Equation (6) compared to the original expression for ξ given by220

Equation (3), in remainder of the analysis we evaluate σ/(ξ′ + σ) as an approximation for221

the MVN correlation ρ.222

This approximation is independent of the number of populations P. In short, this is223

due to the balance between two competing influences: the addition of an extra external224

coupling would normally weaken the correlation between two connected populations, but225

the fact that this additional population is itself correlated with the original populations226

nullifies this effect. In the Supplementary Information, we make this argument explicit by227

adding a third population (with variable coupling) to an interacting pair of populations.228
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3.1.3 Numerical results229

We first explore the effect of the number of subpopulations P and coupling σ on the230

equilibrium values of the first-order central moments S̄∗ and Ī∗ and the second-order central231

moments C∗II and Ĉ∗II (Figure 2a). We consider P = 3, 5, 10 and σ ∈ [0, 1/k], k = P − 1,232

and include P = 2 for comparison. These results are obtained by the numerical integration233

of the system of ODEs given in the Supplementary Information, and so only introduce234

an error due to the MVN moment closure approximation. For all values of P , all curves235

show a sigmoidal pattern, with S̄∗ and C∗II decreasing with the coupling, and Ī∗ and Ĉ∗II236

increasing with the coupling. As the number of populations P increases the magnitude of237

change in C∗II increases, since reducing the within-population coupling (either by increasing238

the between-population coupling σ or increasing the number of populations P ) reduces the239

variance CII . However, the magnitude of change in Ĉ∗II decreases, because as P increases,240

then the effect of interaction between a subpopulation and its neighbour is damped by the241

other P − 2 neighbours. In the previous section we noted that our approximation for the242

correlation is independent of the number of populations P : we also calculate the MVN243

correlation Ĉ∗II/C
∗
II (Figure 2b) and note that this also appears independent of P . The244

correlation follows a sigmoidal relationship, increasing from zero for very low coupling.245

Next we compare the MVN correlation ρ (Equation (2)) and our simplified approx-246

imation σ/(ξ′ + σ), ξ′ = 0.0625 (Equation (5)) to stochastic simulations for P = 3, 5247

subpopulations (Figure 3). The close agreement between ρ and the simulation results sug-248

gests that our use of the MVN moment closure approximation is justified. There is also249

little difference between the MVN correlation and our approximation (that is, ∆ is small),250

so σ/(ξ′ + σ) is a good approximation for the correlation ρ. Therefore, we can relate the251

phenomenological coupling parameter σ to the correlation between the number of infected252

individuals in any pair of populations for P populations arranged on the complete network253

by ρ ≈ σ/(ξ′ + σ).254

3.2 The tree network255

3.2.1 Network definition and notation256

Next, we consider infinitely many populations on a k-regular tree network, where each257

subpopulation has k neighbours: a visualisation of the k-regular tree network for k = 2258

and k = 4 neighbours is given in Figure 4. The coupling matrix Σ = (σij) is defined as259

σij =


1− kσ, for i = j

σ, for i, j neighbours, i 6= j

0, otherwise.

(7)

260
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(a)

(b)

Figure 2. The effect of the coupling σ on (a) the key mean variables S̄∗, Ī∗, C∗II and

Ĉ∗II and (b) the correlation Ĉ∗II/C
∗
II , for P populations arranged on the complete network.

Parameter values represent a measles-like endemic disease in the UK (N = 105, µ = 5.5×
10−5, R0 = 17, γ−1 = 13 and ε = 5.5× 10−5). These values are calculated from the system
of ODEs given in the Supplementary Information.
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Figure 3. Comparing analytic and numerical correlation between any pair of populations
from P = 3, 5 populations arranged on the complete network. We compare the analytic
correlation ρ and our approximation σ/(ξ′ + σ), ξ′ = 0.0625, to stochastic simulations for
a measles-like endemic disease in the UK (N = 105, µ = 5.5 × 10−5, R0 = 17, γ−1 = 13
and ε = 5.5 × 10−5). Each population is coupled to the k = P − 1 other populations.
The between-population coupling is fixed as σ ∈ [0, 1/k] and within-population coupling
is therefore 1 − kσ. We generate 1000 realisations of the process for each value of σ and
calculate the correlation as a time-weighted Pearson correlation coefficient for 50 ≤ t ≤ 200;
error bars represent ±2 standard deviations.
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(a)

1 1 1. . . . . .σ σ

1− 2σ

(b)

1

2

. . .

. . .

. . .

5

. . .

. . .

. . .

4

. . .

. . .

. . .

3

. . .

. . .

. . .
1− 4σ

σ

σ

σ

σ

Figure 4. The k-regular tree network for (a) k = 2 and (b) k = 4 neighbours. The coupling
between any pair of neighbouring populations is σ ∈ [0, 1/k] and so the within-population
coupling is 1− kσ.

12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2019. ; https://doi.org/10.1101/568667doi: bioRxiv preprint 

https://doi.org/10.1101/568667
http://creativecommons.org/licenses/by-nd/4.0/


As with the complete network, all subpopulations in the k-regular tree network are261

epidemiologically and spatially identical, so the expected behaviour is the same within all262

subpopulations. In addition, in a tree network, there is a unique path between any pair of263

subpopulations, and so we can define the distance dij ∈ N between subpopulations i and264

j to be the length of the path between the subpopulations. For the notation for within-265

population moments we can again drop dependency on the subpopulation: X̄ = E[Xj ] and266

CXY = Cov(Xj , Yj). For the between-population moments, we only need to denote the267

distance d between the subpopulations: Ĉ
(d)
XY = Cov(Xi, Yj), i 6= j, where dij = d.268

Finite subgraph approximation of the k-regular tree network We cannot per-269

form stochastic simulations of the infection process on infinitely many subpopulations. In270

addition, we can use a second-order moment closure approximation to derive a system of271

ODEs that approximate the stochastic process on the network, but this system comprises272

infinitely many equations: five equations for the within-population moments, and infinitely273

many equations for the between-population moments (3 for each d ≥ 1).274

To overcome these problems, we consider a finite subgraph of the k-regular tree net-275

work. We define the D-truncated k-regular tree network to be the network of subpopula-276

tions distance less than or equal to D from some arbitrarily chosen origin node; since all277

subpopulations are identical and the k-regular tree network is infinite, the choice of origin278

node is irrelevant. The total number of subpopulations in the D-truncated k-regular tree279

network is280

T = 1 + k
D−1∑
i=0

(k − 1)i. (8)

We can also write down a finite set of ODEs that approximate the stochastic process on281

the D-truncated k-regular tree network. If D is sufficiently large, then we can make some282

further simplifying assumptions. First, we can assume that Ĉ
(d)
XY = 0, ∀d > D. Secondly,283

we can assume that the expected behaviour of the first- and second-order central moments284

in the origin node, and between the origin node and subpopulations at distance d � D285

will be the same as in the full k-regular tree network. In the full k-regular tree network we286

had that Ĉ
(d)
XY is the same for any pair of subpopulations distance d apart: we continue to287

make this simplification in the truncated network. Given these assumptions, and making288

a second-order MVN moment closure approximation, the stochastic process on the D-289

truncated k-regular tree network can be approximated by a set of 5 + 3D equations: five290

equations for the within-population moments and 3D equations for the between-population291

moments. These can be found in the Supplementary Information.292
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3.2.2 Analytic results293

We can derive analytic results for the full k-regular tree network. We define the correlation294

between the number of infected individuals in a pair of subpopulations distance d ≥ 1295

apart as296

ρd =
Ĉ

(d)∗
II

C∗II
,

where ρ0 = 1 and lim
d→∞

ρd = 0. We can show that ρd is the solution to297

ρd =
σ

ξ + kσ
(ρd−1 + (k − 1)ρd+1)−∆(d), (9)

where298

ξ =
N(γ + µ)− βS̄∗

βS̄∗
(10)

and299

∆
(d)
k =

(βĪ∗ +Nε)

β(1− kσ)S̄∗ −N(γ + µ)

Ĉ
(d)∗
SI

C∗II
. (11)

We derive this result from the moment equation for Ĉ
(1)
II at equilibrium and dividing300

through by 2C∗II/N ; full details of this derivation can be found in the Supplementary301

Information. Moreover, if ∆(d) � 1,∀d then ρd is the solution to the recurrence relation302

(k − 1)ρd+1 =
ξ + kσ

σ
ρd − ρd−1, (12)

where ρ0 = 1 and limd→∞ ρd = 0. Since |ρd|≤ 1 then the solution is given by303

ρd =

(
kσ + ξ −

√
ξ2 + 2kξσ + (k − 2)2σ2

2(k − 1)σ

)d

=

(
kσ + ξ −

√
σ2k2 + (2ξσ − 4σ2)k + 4σ2 + ξ2

2(k − 1)σ

)d

. (13)

We note two things: firstly, since ρ1 ≤ 1 then it is trivial that ρd → 0 as d → ∞.304

Secondly, ρd → 0 as k →∞.305
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3.2.3 Numerical results306

We note that the MVN correlation and stochastic simulations have to be performed on307

the D-truncated k-regular tree network, as it is not possible to use the full k-regular tree308

network. If D is sufficiently large, then these correlations will be approximately the same as309

in the full k-regular tree network: we show that for D sufficiently large then the correlation310

converges (Figure S2, Supplementary Information).311

We first numerically evaluate the effect of the number of neighbouring subpopulations312

k and the distance d on the correlation ρd (Figure 5). As with the complete network,313

the correlation follows a sigmoidal shape, increasing from zero correlation from very low314

coupling. For fixed coupling σ, as the number of neighbours k increases then the correlation315

ρd decreases; similarly, for a fixed number of neighbours k, as the distance d increases then316

the correlation ρd also decreases. This all agrees with expected behaviour from Equation317

(13).318

Figure 5. The effect of the number of neighbouring subpopulations k in the k-regular
tree network on the correlation between the number of infected individuals in adjacent
populations, ρ1 (left), and populations with a common neighbour, ρ2 (right). Parameter
values represent a measles-like endemic disease in the UK (N = 105, µ = 5.5 × 10−5,
R0 = 17, ε = 5.5×10−5, γ = 1/13). The MVN correlation is calculated on the D-truncated
k-regular tree network for D = 50 from the system of ODEs given in the Supplementary
Information.

Next, we compare our approximations to the results of stochastic simulations for k =319

2, 4 (Figure 6), where stochastic simulations are performed on the D-truncated k-regular320

tree network and D = 5, 3 for k = 2, 4, respectively. For all combinations of k and d321

there is close agreement between the MVN correlation and stochastic simulations, which322

justifies our use of the MVN moment closure approximation; we can show that increasing323

D further does not significantly change the correlations in the system (Supplementary324

Information, Figure S2). There is also little difference between the MVN correlation and325
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our approximation (that is, ∆(1) is small) and so approximating the MVN correlation by326

Equation (13) is reasonable.

Figure 6. Comparing the MVN correlation ρd and our approximation to stochastic sim-
ulations for a measles-like endemic disease in the UK in T populations arranged on the
D-truncated k-regular tree network (N = 105, µ = 5.5×10−5, β = 17/13, ε = 5.5×10−5, γ =
1/13). The coupling between interacting populations is σ ∈ [0, 1/k]. The stochastic pro-
cess is simulated on the D-truncated k-regular tree network, with D = 5 and D = 3 for
k = 2, 4, respectively. The process is simulated over a 200 year period using the Gillespie
algorithm, with a burn-in period of 50 years, and generate 100 realisations of the process
for each value of σ. The correlation is calculated as a time-weighted Pearson correlation
coefficient for 50 ≤ t ≤ 200; error bars represent ±2 standard deviations.

327

3.3 The star network328

3.3.1 Network definition and notation329

Finally, we consider the star network on P subpopulations, where there is a central ‘hub’330

subpopulation (labelled as subpopulation 1) and k = P − 1 ‘leaf’ populations; there is no331

direct interaction between the leaf populations. A visualisation of the star network for332
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P = 3 and P = 5 subpopulations is given in Figure 7. The coupling matrix Σ = (σij) is333

defined as334

σij =


1− kσ, for i = j = 1

1− σ, for i = j 6= 1

σ, for i = 1, j 6= 1 and i 6= 1, j = 1

0, otherwise.

(14)

(a)

1

2

3

σ

1− 2σ

1− σ

(b)

1

2

5

4

3
σ

1− 4σ

1− σ

Figure 7. The star network on (a) P = 3 and (b) P = 5 populations. The coupling
between any pair of neighbouring populations is σ ∈ [0, 1/(P − 1)] and so the within-
population coupling is 1−(P−1)σ for the hub population and 1−σ for any leaf population.

Unlike the complete network and the k-regular tree network, the expected behaviour335

of the stochastic process is not the same within and between all subpopulations. This336

is because the hub subpopulation has k neighbours, whereas each leaf subpopulation has337

only one neighbour. However, we can still make some simplifications to the notation: the338

expected behaviour of the infection process is the same within any leaf subpopulation,339

or between any pair of leaf subpopulations, or between a leaf subpopulation and the hub340

subpopulation. We can therefore simplify our notation to distinguish between hub and leaf341

subpopulations. For the within-population moments, the superscript indicates whether the342

subpopulation is a hub (H) or a leaf (L) subpopulation:343

X̄H = E[X1]

X̄L = E[Xi], i = 2, . . . , P

CH
XY = cov(X1, Y1)

CL
XY = cov(Xi, Yi), i = 2, . . . , P.
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For the between-population moments, the superscript indicates whether one of the subpop-344

ulation is a hub (H) or if they are both leaf subpopulations (L); for ĈSiIj we distinguish345

between ĈS1Ii and ĈSiI1 :346

ĈH
XX = cov(X1, Xi), i = 2, . . . , P

ĈL
XX = cov(Xi, Xj), i, j = 2, . . . , P, i 6= j

ĈXHYL
= cov(X1, Yi), i = 2, . . . , P.

Using the second-order moment closure approximation, the stochastic process on the347

star network for P subpopulations can be approximated by a set of seventeen ODEs:348

ten equations for the within-population moments, and seven equations for the between-349

population moments. These can be found in the Supplementary Information. We use these350

equations in both the analytic and the numerical results.351

3.3.2 Analytic results352

For P identical subpopulations on the star network, we define the correlation between the353

number of infected individuals in the hub population and the number of infected individuals354

in a leaf population as355

ρH =
ĈH∗
II√

CH∗
II C

L∗
II

,

and the correlation between the number of infected individuals in two leaf subpopulations356

as357

ρL =
ĈL∗
II

CL∗
II

.

We can show that ρH and ρL are solution to the following pair of simultaneous equations:358

ρH =

√
CH∗
II

CL∗
II

σ
S∗
H

S∗
L

(ξH + kσ) + ξL + σ
+

√
CL∗
II

CH∗
II

σ

ξH + kσ +
S∗
L

S∗
H

(ξL + σ)
(1− (k − 1)ρL) + ∆H

(15)

ρL =

√
CH∗
II

CL∗
II

σ

ξL + σ
ρH + ∆L, (16)
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where359

ξH =
N(γ + µ)− βS̄∗H

βS̄∗H
, (17)

ξL =
N(γ + µ)− βS̄∗L

βS̄∗L
(18)

and360

∆H =
β(1− kσ)Ī∗H + kβσĪ∗L +Nε

2N(γ + µ)− β(1− kσ)S̄∗H − β(1− σ)S̄∗L

ĈSHIL√
CH∗
II C

L∗
II

+
β(1− σ)Ī∗L + βσĪ∗H +Nε

2N(γ + µ)− β(1− kσ)S̄∗H − β(1− σ)S̄∗L

ĈSLIH√
CH∗
II C

L∗
II

(19)

∆L =
β(1− σ)Ī∗L + βσĪ∗H +Nε

N(γ + µ)− β(1− σ)S̄∗L

ĈL
SI

CL
II

. (20)

We derive this result by taking the moment equation for ĈH
II and ĈL

II at equilibrium; full361

details of this derivation can be found in the Supplementary Information. Moreover, if362

∆H ,∆L � 1 then we can further simplify this result to the following pair of simultaneous363

equations:364

ρH ≈

√
CH∗
II

CL∗
II

σ
S∗
H

S∗
L

(ξH + kσ) + ξL + σ
+

√
CL∗
II

CH∗
II

σ

ξH + kσ +
S∗
L

S∗
H

(ξL + σ)
(1− (k − 1)ρL)

(21)

ρL ≈

√
CH∗
II

CL∗
II

σ

ξL + σ
ρH . (22)

3.3.3 Numerical results365

We first numerically evaluate the effect of the number of leaf subpopulations k on the366

correlations ρH and ρL (Figure 8). Firstly, we note that, as with the complete and tree367

network, both ρH and ρL exhibit a sigmoidal shape, increasing from zero correlation from368

very low coupling. Secondly, the correlation between two leaf nodes is lower than between369

the hub and a leaf node; this is to be expected, as the leaf nodes are not directly connected370

to each other. Finally for a given coupling σ as the number of neighbours k increases then371

the correlation decreases; this holds for both ρH and ρL.372
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Figure 8. The effect of the number of leaf subpopulations k in the star network on the
correlation between the number of infected individuals in the hub and a leaf population,
ρH (left), and two leaf populations, ρL (right). Parameter values represent a measles-like
endemic disease in the UK (N = 105, µ = 5.5 × 10−5, R0 = 17, ε = 5.5 × 10−5, γ =
1/13). These values are calculated from the system of ODEs given in the Supplementary
Information.

Next, we compare the MVN correlation and our approximation to the results of stochas-373

tic simulations (Figure 9). Firstly, we observe a close agreement between the MVN cor-374

relation and the stochastic simulations, which suggests that our use of the MVN moment375

closure approximation is justified. Secondly, there is little difference between the MVN cor-376

relation and our approximation (that is, ∆H and ∆L are small), and so our approximation377

is reasonable.378

3.4 Comparison of networks379

We now compare our approximations to the correlation between the number of infected380

individuals in adjacent subpopulations for all three networks (Figure 10). All networks are381

chosen to have the same k external connections: the complete network with P = k + 1382

populations, the k-regular tree network, and the star network with P = k+ 1 populations.383

We observe that the correlation is highest in the complete network and lowest in the tree384

network. Moreover, the difference between the approximations increases as k increases.385

We attribute this behaviour to the total number of neighbour subpopulations that the386

two focal subpopulations have, how many of those neighbours are common neighbours,387

and whether these common neighbours interact. As the total number of neighbours of388

each member of the focal pair increases then the correlation decreases; for a given total389

number of neighbours the correlation is higher when more of these neighbours are common390

between the two focal subpopulations, and is higher yet when these common neighbours391

also interact with each other.392
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Figure 9. Comparing the analytic correlation, ρH and ρL, and our approximation to
stochastic simulations for a measles-like endemic disease in the UK in P +1 populations ar-
ranged on the star network (N = 105, µ = 5.5×10−5, β = 17/13, ε = 5.5×10−5, γ = 1/13).
The between-population coupling is fixed as σ ∈ [0, 1] and within-population coupling is
therefore 1 − σ in the hub population and 1 − σ in any leaf population. The stochastic
process is simulated over a 200 year period using the Gillespie algorithm, with a burn-in
period of 50 years, and generate 1000 realisations of the process for each value of σ. The
correlation is calculated as a time-weighted Pearson correlation coefficient for 50 ≤ t ≤ 200;
error bars represent ±2 standard deviations.
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For a given k, two focal subpopulations in the complete network and the star network393

both have a total of k−1 subpopulations. In the star network, none of these subpopulations394

are common neighbours of the two focal subpopulations; however, in the complete network,395

all these subpopulations are common neighbours and all the common neighbours interact396

with each other, hence the correlation in the star network is lower than in the complete397

network. For the same k, two focal subpopulations in the k-regular tree network have twice398

the total number of neighbours compared to the star network and none of these neighbours399

are common neighbours for either network. As a result, the correlation is lower in the tree400

network than in the star network.

Figure 10. Comparison of our approximation to the correlation between a pair of adjacent
populations in the complete network with P = k+1 populations, the k-regular tree network
and the star network with P = k + 1 populations.

401

4 Discussion402

A limitation of metapopulation models in epidemiological modelling is now to infer the403

coupling between subpopulations: existing models to not accurately describe human mo-404

bility in developing countries, such as Sub-Saharan Africa, and sufficiently detailed data on405

human mobility are often lacking. We propose that data on disease incidence can be used406

to infer the underlying coupling from observed correlations between subpopulations. We407

derive an approximation for the correlation ρ between the number of infected individuals in408

a given pair of subpopulations in certain network structures as a function of the coupling409

parameter σ. This provides a one-to-one mapping between the observable correlation ρ410

and the unknown coupling σ.411

Our results extend the analysis of Meakin and Keeling (2018) from a simple two-412

population system to multiple populations arranged on a complete network, a k-regular413

tree network and a star network. Although we consider highly symmetric metapopulation414

networks, increased network complexity significantly reduces the analytic tractability of415

the model, compared to the two-population system. An alternative analytic relationship416

between the coupling and correlation has previously been derived for more general networks417
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(Rozhnova et al., 2012); however, we believe that our results provide greater intuition and418

analytical traction.419

In addition, these results improve our understanding of how metapopulation network420

structure affects endemic disease dynamics in the metapopulation as a whole, complement-421

ing existing research on epidemic diseases in metapopulation networks (Barthélemy et al.,422

2010; Lahodny and Allen, 2013; Wang and Wu, 2018; Yan et al., 2018). We find that423

network distance between subpopulations and network structure are key drivers of the424

correlation, although, surprisingly, in the complete network the correlation between any425

pair of subpopulations is independent of the total number of subpopulations. We hypoth-426

esise that the correlation between two given subpopulations is driven by the the number427

of neighbour subpopulations they both have, how many of these neighbours are shared428

between both subpopulations, and interactions between the neighbours.429

Our research currently considers the mathematically tractable case of multiple identi-430

cal populations on highly symmetric metapopulation networks. A natural extension of the431

our current results would be to allow heterogeneity in the transmission parameter β, or432

population size, although we have previously showed that heterogeneous population sizes433

significantly impact the tractability of the results (Meakin and Keeling, 2018). In addition,434

the simple network structures we consider here do not fully capture the observed character-435

istics of real-world spatial networks, such as heterogeneous population size, degree or edge436

weight (Guimerà et al., 2005; Colizza et al., 2006). We propose conducting a simulation-437

based study to examine in depth how the correlation between two focal subpopulations438

is affected by their neighbours, their neighbours’ neighbours and possible interactions be-439

tween neighbours. This will allow us to elucidate which are the most important drivers of440

network correlations and overall endemic disease dynamics. A final limitation is that very441

few diseases are captured by the simple SIR compartmental model; however, it would be442

straightforward to extend the results presented here to more realistic models.443

Our results provide a method by which the coupling can be estimated from the corre-444

lation between the number of infected individuals in two populations using data on disease445

incidence, allowing us to estimate the coupling between subpopulations even in the absence446

of mobility data. Our results also offer insight into the effect of metapopulation structure447

on endemic disease dynamics,448

5 Conclusion449

A limitation of metapopulation models in epidemiological modelling is now to infer the cou-450

pling between subpopulations. In this paper we relate the correlation between the number451

of infected individuals in two populations as a function of the coupling, considering sys-452

tems of multiple identical interacting populations on highly-symmetric complex networks.453

Our results provide insight into the effect of metapopulation network structure on endemic454

disease dynamics and, used in combination with disease prevalence data, provide a method455
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by which the coupling between populations can be estimated.456
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