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One Sentence Summary: Properly analyzed, fluidics based single cell RNASeq is a robust 

analytical tool even in complex clinical settings.  

Abstract: Fluidics based single cell RNASeq (scRNASeq) provides a high throughput method 

for quantifying gene expression at single cell resolution.  However, it remains unclear whether 

this approach is robust in dynamic clinical settings—including the extent to which new analytic 

tools required by the unique characteristics of scRNASeq are effective in such contexts. We 

report scRNASeq analysis of ~1,000 cells from each of 38 patients requiring veno-arterial 

extracorporeal life support (VA-ECLS)—a diverse group of critically ill patients experiencing 

circulatory collapse as a common endpoint to wide ranging diseases. Using existing tools 

including Alra for technical drop out imputation and Harmony for batch effect removal, we 

established an analysis pipeline capturing major biological signals from theses samples as 

confirmed by flow cytometry. We demonstrate that even in this very complicated clinical setting, 

scRNASeq can reveal novel aspects of disease biology that can be translated to and validated in 

subsequent patient cohorts.  
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Microfluidics based single cell transcriptional profiling enables study of cell biology at 

higher resolution and throughput than previously possible (1, 2). This approach has led to studies 

deepening our understanding of development (3, 4), as well as animal models of disease (5). 

Initial efforts to apply this technology clinically have shown promise in the contexts of infectious 

disease (6) and tumor biology (7, 8). Moreover, transcriptomics has been shown to be a powerful 

tool in repurposing drugs (9, 10) and single cell transcriptomics may reveal novel therapeutic 

targets in this clinical context. The extent to which high throughput, microfluidics based single 

cell RNASeq (scRNASeq) can be applied to complex clinical questions—including patient 

survival—remains largely undefined, as does the optimal approach to such analysis.  

As both sentinels and effectors of disease response, peripheral blood mononuclear cells 

(PBMCs) are an accessible and attractive target for clinical application of scRNASeq. However, 

PBMCs represent a hetergenous and dynamic cell population. Further complicating such analysis 

is the fact that the data produced by microfluidics scRNASeq represents a “sparse matrix” with 

only a fraction of known genes exhibiting detectable expression. This represents a combination 

of genes that are not expressed—biological dropouts—as well as genes that are expressed but 

failed to be detected—technical dropouts. As a result of this and other unique features of the data 

produced by high throughput scRNASeq, specialized tools have been developed (11-15). But it 

remains to be determined to what extent an analytical pipeline can be identified that can extract 

clinically useful information from single cell RNASeq analysis of circulating PBMCs in a 

dynamic clinical setting.  

In an effort to address this question, we performed fluidics based scRNASeq analysis of 

PBMCs from critically ill patients being initiated on venous-arterial extracorporeal life support 

(VA-ECLS). Patients requiring VA-ECLS represent a heterogeneous population with a wide 

range of disease states including myocardial infarction, primary graft dysfunction, myocarditis, 
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and acutely deteriorated heart failure (16). However, these patients exhibit a common 

pathophysiologic endpoint: circulatory collapse (17). For some patients, VA-ECLS support 

provides life support while failing organs recover and regain function, while in others it provides 

a life support bridge until definitive intervention—such as organ transplantation or implantation 

of mechanical assist devices—can be achieved. VA-ECLS continues to be associated with 

mortality rates of around 60% (18), due mainly to unrelenting progression of the underlying 

disease process, but also complication of VA-ECLS itself (19).  

 

Results  

Confounding impact of batch effects 

We performed scRNASeq based transcriptional profiling of a total of 40,000 peripheral 

blood mononuclear cells from 38 patients at the time of initiation of VA-ECLS (mean time 

between sample acquisition and VA-ECLS, ±79 minutes) on the inDrop microfluidics 

encapsulation platform (1). The study design and approach to analysis are summarized in Figure 

1, and the clinical characteristics of these patients are summarized in Table 1. Not surprisingly, 

non-surviving patients exhibited significantly more acidosis and poorer renal function at baseline 

than survivors, but no other clinical parameters were predictive. We were interested in 

identifying whether scRNASeq analysis could provide additional predictors of—and potentially 

mechanistic insights into—survival in these patients. 

While unsupervised, genome-wide clustering of the expression data demonstrated a 

number of cell clusters comprised solely of cells from deceased patients, it was apparent that this 

was an artefact of batch effect as these clusters were each comprised of cells from a single 

patient (Fig 2A-C). It is well established that microfluidics based scRNASeq approaches are 

subject to technical dropouts—failure to detect transcripts that are present due to technical 
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factors including low efficiency of RNA capture by the oligo-dT primers in the droplets (13). 

Imputation of technical dropouts via the ALRA algorithm (14) ameliorated the batch effects to 

some extent (Fig 2D-F). Explicit regression of the batch effects via the Harmony algorithm (15) 

homogenized the data with respect to donor/batch, while improving clustering by PBMC subtype 

(Fig 2G-I) as determined by expression of genes encoding canonical surface markers 

(supplemental Table S2). 

 Unsupervised clustering based on genome wide gene expression after removal of batch 

effects and imputation of technical dropouts demonstrated that the cells tended to cluster by 

major PBMC subtypes (Fig 3A), based on expression of established markers of these cell 

populations (Fig 3B). This observation suggests that scRNASeq can capture the major themes of 

cellular biology even in this clinically complex and dynamic setting—provided appropriate steps 

are taken to account for technical dropouts and batch effects.  

Cell type assignment validation by flow cytometry 

Previous work has indicated that the expression of genes encoding surface markers is 

highly correlated to protein levels of those surface markers (20). To verify that this was the case 

in this clinical context of patients under extreme physiological stress, we also analyzed these 

samples by conventional flow cytometry (FC). We compared the proportions of cells in the 

major lymphocyte subtypes as defined by the gene expression data vs. direct measurement of 

surface markers by FC. Cell assignments between the two methodologies correlated well (Fig 

3C). Prior to imputation of technical dropouts, only 54% of cells could be unambiguously 

assigned to a specific PBMC subtype, compared to 81% after imputation. Notably, imputation 

had no significant effect on either the slope of the regression line or the R2 between the 

proportion of lymphocytes assigned to each subclass by either FACS or scRNASeq (in fact, both 

values increased slightly after imputation—supplemental Table S3). The fact that the correlation 
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between lymphocyte subset proportions as defined by FACS and scRNASeq did not deteriorate 

following imputation suggests that the substantial increase in cell assignment achieved by 

imputation identified the true biological type of these cells as opposed to random noise.  

Conventional cell types not predictive 

After imputation of technical zeros and removal of batch effects, there were no obvious 

survival-related clusters of cells upon UMAP visualization of the data (figure 2I), suggesting that 

processes related to survival were not the dominant sources of gene expression variation between 

these heterogeneous cells.  This prompted us to interrogate each PBMC subtype to look for 

survival signals within each subtype.  First we sought to determine whether conventional PBMC 

classification could predict outcome. Using our gene expression-based cell type assignments, we 

looked for differences in proportions of these cell types in surviving vs. non-surviving patients. 

Although some trends were apparent, none of the observed differences were statistically 

significant after adjustment for multiple comparisons (Fig. 4A). This suggested we needed to 

look deeper into each major cell type to try to identify novel sub-populations that may relate to 

survival. 

Biological processes associated with survival 

The batch-effect corrected data showed no survival related cell clusters. Harmony 

produces a batch effect corrected matrix of principle components. To identify genes associated 

with survival within subtypes,  we identified the set of highly variable genes (Supplemental Data 

S2) within our dataset based on normalized dispersion (2) from the ALRA imputed data. For 

each patient, we then quantified the proportion of cells of each subtype that expressed each of 

these genes. For each gene, the proportions among surviving patients were compared to the 

proportions among non-surviving patients using the Wilcoxon rank sum test. This allowed us to 

identify genes within each PBMC subtype that were associated with survival (blue bars in Fig 
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4B) or non-survival (red bars in Fig 4B). We clustered the genes based on this measure of 

differential expression, and annotated the resulting gene clusters based on their enrichment (21) 

for Gene Ontology biological process terms (Fig 4B, left panel, and Supplemental Table 4). 

Within multiple PBMC subtypes, patients who died exhibited higher proportions of cells 

expressing genes associated with GO terms related to inflammation including antigen binding, 

cytokine activity, and heat shock protein binding. This suggests a wide spread increase in 

inflammatory response across cell types in these non-surviving patients.  

However, other processes appeared to have more discreet patterns of activation within 

specific cell types. Genes associated with S100 protein and actin binding—perhaps related to the 

cytoskeletal rearrangement essential to antigen presentation and effector cell activation (22)—

exhibited an inverse relationship between CD8+ naïve T cells compared to CD8+ natural killer T 

(NKT) cells. Non-surviving patients exhibited higher proportions of CD8+ naïve T cells 

expressing genes related to these biological processes at the time of initiation of VA-ECLS, 

while the inverse was true of CD8+ NKT cells.  

Novel surface markers associated with survival 

Future measurement and/or isolation of novel subpopulations of survival-related cells 

would be facilitated by identifying surface markers that identify these cells. Therefore, we next 

focused our differential gene analysis on surface markers (Fig 4B, left panel). After control for 

multiple comparisons, two surface markers stood out. Surviving patients had significantly higher 

proportions of CD8+ NKT cells (CD3+/CD8+/CD19-/CD56+) that were CD52+ or CD3G+ (p < 

0.001, FDR < 0.05 for both markers). We stratified the patients based on their CD52 +/- 

proportions and CD3G+/- proportions (among all CD8+ NKT cells), using the median proportion 

as the cutoff in each case. This stratification identified patients with significantly different 

mortality risks on VA-ECLS during the first 72 hours of support (Fig 4C,D). We hypothesized 
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that immune response at VA-ECLS initiation would be predictive of early survival, and this was 

confirmed by this analysis. After this initial period, however, we expected that other factors 

related to the underlying disease process would be more important than the initial inflammatory 

response. It was surprising, therefore, that CD3G expression levels were predictive not only of 

72-hour survival, but also of 30-day survival (Fig. 4E) among these patients. 

Validation of CD52+/CD8+ NKT Cells as predictors of outcome 

The preceding analysis relied on FDR adjustment of p-values to control the family wise 

error rate of our identified survival markers. Based on this measure, there is less than a 5% 

chance that the predictive nature of CD52+/CD8+ NKT cells was due to random noise in the data. 

Nevertheless, it remains possible that this observation represents a biological reality for these 

patients that cannot be generalized to other patients. To evaluate this possibility, we performed 

FC analysis of a second cohort of 20 patients that were not included in the original scRNASeq 

analysis (Fig. 5A,B). For each patient, we quantified the proportion of CD8+ NKT cells that were 

CD52+. Again using the median proportion as the cutoff, we found that a high proportion of 

CD52+ cells among CD8+ NKT cells was predictive of 48 hour survival (p=0.024, Fig 5C). By 

72 hours, this association was no longer statistically significant (p=0.06, Fig 5D). We were 

interested to note that a single patient with a high proportion of CD8+NKT that were CD52+ died 

in the first 48 hours. When we examined this patient’s case further, we found that this was one of 

only two patients in the cohort who presented with an infectious etiology to their cardiac 

collapse, whereas the vast majority of these patients had experienced an acute cardiovascular 

event (myocardial infection, pulmonary embolism, or massive hemorrhage). Upon removal of 

patients with a known acute infectious process at presentation, the proportion of CD52+ cells 

among CD8+ NKT D52 was again a significant predictor of survival at 72 hours (Fig 5E). 

Discussion  
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In this study we present single cell RNASeq analysis of PBMCs from patients being put 

on VA-ECLS due to circulatory collapse in the context of acute illness. Single cell 

transcriptomics was developed over 25 years ago (23-25, reviewed in 26), but the technology 

made a quantum advance in terms of throughput in the last several years as a result of 

development of microfluidics based cell encapsulation systems (1, 2, 27). The ability to quantify 

the transcriptomes of thousands of individual cells holds the promise to reveal new information 

about heterogeneous disease states, enabling tuning personalized medicine efforts to target 

specific cell populations (28). Initial efforts in this direction with human material have focused 

on cancer (7, 29-31), although examples in other diseases are emerging (32, 33) including one 

example of identification of a PBMC repertoire associated with survival in acute infectious 

disease based on analysis of ~100 cells from 2 patients (6).   

Thus, the extent to which scRNASeq is both feasible and informative in the dynamic 

setting of critical illness remains largely unknown. Our results provide evidence that not only can 

this technology detect biological signal in a heterogeneous and rapidly changing clinical context, 

but can do so in a way that reveals deeper understanding of physiologic events associated with—

and potentially driving—clinical outcomes. 

ECLS is a powerful stimulator of the immune response against a background of already 

tenuous perfusion and end organ function (19). Whether this immune response is adaptive or 

mal-adaptive remains unclear.  On the one hand, immunoparalysis was associated with worse 

outcomes (though not in a statistically significant fashion) in one small series (34). Furthermore, 

the 2006 ARDS Network Trial (35) found worse outcomes when steroids were started late in the 

disease course, and no change in outcomes when they were started earlier (despite short term 

improvements in physiologic measures of ventilation and perfusion). On the other hand, the use 

of steroids has been associated with survival in elderly patients in one registry based review (36) 
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as well as dramatic clinical improvement on ECLS in a number of case reports (37-40). It is 

important to note that all of this evidence comes from the setting of acute respiratory failure. 

There little or no data to inform us about the role of inflammation with respect to survival among 

patients undergoing VA-ECLS for acute decompensated heart failure.  

Our analysis identified activation of immune response across cell types among non-

surviving patients.  However, we also observed cell type specific effects including activation of 

S100 protein and actin binding signatures in CD8+ naïve T cells.  Although the CD8+ naïve T 

cells constituted a small cell population, these cells can proliferate rapidly when they encounter 

their target antigens. The extensive synthetic surfaces of the VA-ECLS circuit can induce 

significant inflammatory responses (19). The presence of CD8+ naïve T cells with activating 

gene signatures among non-surviving patients—as identified here—may be indicative of an 

immune system poised to have a maladaptive inflammatory response to VA-ECLS. 

In contrast, we also found that higher proportions of CD8+ NKT cells that were either 

CD3G+ and CD25+ was associated with improved survival.  CD52+ cells have been implicated 

in autoimmune disease, and this surface marker is the target of a therapeutic agent used to treat 

both some leukemias and multiple sclerosis (41, 42).  However, there is evidence suggesting that 

a there is a subset of CD8+ cells that are protective against autoimmune disease (43), and that 

these protective cells may be CD52+ (44). Similarly, CD3G has been demonstrated to play an 

essential role in restraining auto-immune reactivity (45). Thus, the CD52+ and/or CD3G+ NKT 

cells we identified here may be indicative of an immune system poised for a more permissive 

response to the inflammatory stimulation of VA-ECLS. 

Insofar as these cells promote a permissive (rather than reactive) immune state, this 

observation is consistent with the hypothesis that attenuating the immune response to VA-ECLS 

may be beneficial in heart failure patients.  However, our current study does not allow us to 
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determine whether this association is cause or effect. Notably, non-surviving patients in our 

study were also more ill at initiation of VA-ECLS as manifest by more pronounced acidosis and 

poorer renal function. Whether this signifies a maladaptive immune response that can be treated 

or an irrevocably dysregulated physiology resistant to any therapy whatsoever remains to be 

determined. 

Fluidics based scRNASeq enables transcriptomic characterization of individual patient 

cells at high throughput. The resulting data presents specific challenges and pitfalls. However, 

we have demonstrated that these factors can be overcome through appropriate analysis 

techniques and that this technology allows detection of biologically meaningful signals in these 

cells even in a dynamic and complex clinical setting. We anticipate that future applications of 

this approach will continue to reveal new information about the roles of both known and novel 

cells populations in human disease, and this information will continue to establish new 

biomarkers and therapies to the benefit of our patients. 

 

Materials and Methods 

Patient materials   

This study was approved by our institution’s Institutional Review Board, and all patients gave 

informed consent to participate.  All samples and data were anonymized prior to the analysis 

described here.   

Approximately 10ml of whole blood from ECLS patients at time of boarding (mean 

difference from pump start time: + 79 minutes) were collected in EDTA Vacutainers. Peripheral 

blood mononuclear cells (PBMC) were isolated by density centrifugation using Ficoll-Paque 

PLUS (GE Healthcare) and cryopreserved in CryoStor (Sigma-Aldrich) at approximately 4x106 

cells per vial.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


11 
 

Flow cytometry  

Cryopreserved PBMCs were rapidly thawed at 37 ºC, washed in RPMI (10% FBS, 2mM 

L-glutamine, 1:10000 Benzonase), and rested overnight in 200µl of RPMI (10% FBS, 2mM L-

glutamine) in a 96 well plate at a concentration of 1.0x106 cells per well. Prior to surface 

staining non-viable cells were labelled with Fixable Viability Stain 450 (FVS450) and Fc 

receptors were blocked. A multiparameter flow cytometry panel was designed for detection of 

surface antigens. The panel consisted of directly conjugated anti-human antibodies; CD3-BB515, 

CD4-BUV395, CD8-APC-H7, CD19-APC, CD56-APC-R700, and CD16-BV510. For cell 

surface markers, cells were stained in PBS supplemented with 2% FBS and 2mM EDTA for 35 

minutes at 4 ºC. Stained cells were analyzed on a BD Influx flow cytometer equipped with 

488nm, 355nm, 561nm, 405nm, and 640nm lasers, using a 100µM nozzle, at 20 psi, and an 

offset of 1.0. All flow experiments included single-stained controls, fluorescence minus one 

controls, and well-characterized healthy control. Acquisition of flow cytometry data was 

performed using Sortware v1.2 and analyzed with FlowJo v10.0.8. 

Single cell encapsulation and reverse transcription 

At the time of cell encapsulation for single cell RNASeq, cryopreserved PBMCs were 

rapidly thawed at 37 ºC, washed in twice in RPMI (10% FBS, 2mM L-glutamine, 1:10000 

Benzonase) and 2x105 cells were resuspended in 1x PBS. To exclude non-viable cells from 

sorting, 3 nM of SYTOX Green (Thermo Fisher Scientific) was added to each sample tube. Cells 

were sorted on a BD Influx flow cytometer using a 100µM nozzle, at 20 psi, and an offset of 1.0. 

The following gating hierarchy was used: PBMCs were separated from debris based on 

distribution of light scatter by SSC/FSC; cell doublets were excluded by signal pulse 

characteristics of FSC-W/FSC-H and SSC-H/SSC-A. Viable cells with intact cell membranes 
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were gated as SYTOX Green negative. For each patient sample 20,000 events were sorted 

(51.2ul) directly in 112.8µl of 1xPBS. Prior to InDrop 36ul of optiprep was added to each tube. 

Thawed, sorted and diluted cells were encapsulated along with barcoded beads and 

reverse transcription reagents using the inDrop platform (1CellBio, Watertown, MA).  Flow rates 

were adjusted periodically throughout the experiment, with the help of high speed video 

microscopy, to ensure that the number of droplets containing one bead was maximized while 

minimizing droplets with two or more beads.  Run times were calculated to capture 1500 cells 

per sample.  Each sample was run on a separate, freshly silanized microfluidics device.  Reverse 

transcription was performed following the manufacturer’s protocol.  Briefly, barcoding oligo 

were cleaved by exposing each droplet emulsion aliquot to UV light for 10 minutes. The 

emulsions were then incubated at 50°C for one hour, and then 70°C for 15 minutes.  The 

emulsion was then broken, and the aqueous phase containing the cDNA removed. The cDNA 

was cleaned up MinElute columns (Qiagen, Hilden, Germany) and excess barcodes 

enzymatically removed.  Second strand synthesis was performed using the NEBNext Ultra II 

second strand synthesis kit (NEB, Ipswich, MA) according to the manufacturer’s protocol. The 

samples were then again cleaned up on MinElute columns, and sample integrity confirmed by 

Bioanalyzer (Agilent, Santa Clara, CA).  In vitro transcription was then performed using the 

NEB HiScribe High Yield RNA synthesis kit according to the manufacturer’s instructions.  

Sample integrity was again verified by Bioanalyzer. The IVT products were then reverse 

transcribed using random hexamers. Amplifciation cycles were optimized by diagnostic qPCR, 

and then the samples were amplified using unique PE1/PE2 indexing primers such that samples 

could be pooled prior to sequencing. Amplified cDNA was then cleaned up using AMPure beads 

(Beckman Coulter, Indianapolis, IN).  Library integrity and fragment size was confirmed by 

BioAnalyzer prior to sequencing. 
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Sequencing 

Prepared libraries were normalized and pooled, and sequenced on a NovaSeq 6000 

sequencer (Illumina, San Diego, CA) using the S2 100 cycle kit. Read one was 36 cycles, the 

index read was 6 cycles, and Read 2 was 50 cycles.  Cells were sequenced to an approximate 

detah of 90,000 reads per cell. Resulting sequencing data was converted to demultiplexed 

FASTQ files prior to downstream analysis. 

Data processing 

The sequencing data was aligned to the human genome  (assembly GRCh38) and unique 

feature counts obtained using the software pipeline developed by the inDrop manufacturer 

(https://github.com/indrops/indrops).  The raw count data was then filtered, normalized, imputed, 

and batch corrected using tools for the R statistical analysis platform.  Full details of the data 

processing and analysis are presented in Supplemental datafile S1, and is also available as an R 

markdown document at https://github.com/vanandelinstitute/va_ecls 

Statistical analysis 

For differential gene expression analysis, the expression matrix was filtered to include 

only variably expressed genes as described (46).  Briefly, for each gene, the mean was calculated 

across all cells.  The dispersion of (variance / mean) was also calculated for each gene across all 

cells.  The genes were then split into 20 bins based on mean expression.  Within each bin, 

dispersions were converted to robust z-scores (the absolute difference between each dispersion 

and the median dispersion for that bin, divided by the median absolute deviation for that bin).  

Genes with a dispersion z-score > 2.0 were retained for further analysis. 

Given that the single cell RNASeq expression data was a sparse matrix, we compared 

patients in terms of proportions of cells expressing genes of interest.  For any given gene, the 

proportion of cells (of a given subtype of interest) was calculated.  Surviving patient and non-
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suviving patients were then compared in terms of median proportion, and difference between 

patient groups was tested by mean of Wilcoxon rank sum analysis of the proportions in each 

group.  Given the large number of genes under analysis, all p-values were adjusted using the 

false discovery rate method (47). 

When comparing proportions of cells in each of the major subtypes between outcome 

groups (figure 4A), the same approach was used, but since the number of comparisons was 

relatively small and we wanted to avoid any type I errors (as opposed to simply constraining the 

family wise error rate), p-values were adjusted using the method of Holmes.  

 Survival analysis was performed by plotting Kaplan Meijer curves and comparing the 

curves using the log-rank test.  Given that only 3 survival curves were analyzed, no p-value 

adjustment was performed (although the results would have remained significant even under the 

most stringent adjustment including Bonferroni correction). 

Data availability 

The single cell RNASeq expression data (as a matrix of raw counts) and supporting 

metadata is available from GEO (GSE127221).  

Code availability  

Code used to perform the analysis and generate the figures, with accompanying 

documentation and explanation including system requirements and dependencies, is available 

from Github at http://github.com/vanandelinstitute/va_ecls. 
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List of Supplementary Materials (included at end of this document) 

Table S1. Classification scheme for PBMC subsets based on scRNASeq expression 

Table S2. Impact of imputation on slope and R2 of correlation between FACS and scRNASeq 

Table S3. Significantly enriched GO terms 

Table S4. List of surface markers analyzed. 

Figure S1: Representative scatter plots depicting the gating strategy used for FACS analysis  

 

List of Supplementary Materials (separate files) 

Data S1 (final_analysis.html). Detailed description of the data analysis including annotated code 

to reproduce figures 2-4 from the manuscript is provided in the file 

“final_analysis.html”. Reproducing the analysis can be facilitated by downloading the 

github repository https://github.com/vanandelinstitute/va_ecls. 

Data S2 (variable_gene_list.xls). The list of highly variable genes as defined by normalized 

dispersion used for the analysis shown in Figure 4B is provided in the file 

“variable_gene_list.xls” 
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Fig. 1. Overview of study design, including the work flow used for data processing. 
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Fig. 2. Unsupervised clustering of the profiled cells in two dimensions by Uniform Manifold 
Approximation and Projection (UMAP). Cells are color coded by patient study identifier 
(A,D,G), cell type as assigned by expression of surface marker genes (B,E,H) or 72 hour 
mortality status (C,F,I). Systematic removal of artefactual clustering is demonstrated by 
imputation of technical dropouts by the ALRA algorithm (14) (D-F), followed by batch (donor) 
effect removal by Harmony (15) (G-I).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 15, 2019. ; https://doi.org/10.1101/568659doi: bioRxiv preprint 

https://doi.org/10.1101/568659


23 
 

 
Fig. 3. Cell subtypes and concordance with flow cytometric analysis. (A) After data processing, 
cells clustered predominantly by cell type as defined by expression of surface marker genes. In 
addition to major PBMC populations, a small number of contaminating erythrocytes can also be 
seen. (B) The expression of surface markers themselves show distinct patterns of expression, 
suggesting that the cells are clustering by biological class rather than other technical or clinical 
factors. (C) Proportions of cells in each major lymphocyte subgroup as defined by scRNASeq 
correlate well with results of flow cytometric analysis of these same samples.  
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Fig. 4. Identification of factors associated with survival (A) Proportions of all cells in each 
patient that were classified as each of the major PBMC subtypes, stratified by patent outcome at 
72 hours. After adjustment for multiple comparisons, none of these conventional subtypes could 
significantly predict survival. (B) Expression patterns of highly variable genes (defined by 
normalized dispersion (2)) and cell surface markers. For each patient, the proportion of cells in 
each PBMC subtype that expressed each gene was calculated. The median proportion was then 
compared between survived vs. deceased patients by Wilcoxon rank sum test. Red bars indicate 
the genes that were expressed more frequently in cells of a given subtype from deceased patients. 
Blue bars indicate the genes that were expressed more frequently in cells for a given subtype in 
patients who survived. The intensity of the color corresponds to 1-FDR, such that the darkest 
colors indicate the most significant genes. Those clusters containing genes enriched for specific 
Gene Ontology Biological Process terms are annotated. Up to two significant terms are listed for 
each cluster. A complete list of enriched terms is provided in Supplemental Table S4. (C-E) 72 
hour (C,D) or 30 day (E) survival based expression of surface markers. Patients were stratified 
using median expression level as the cutoff based on proportion of CD8+ NKT cells that were 
positive for CD52 (C) or CD3G  (D,E).  
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Fig. 5. Validation of CD52 as a survival marker. Flow cytometric analysis was performed on 
PBMCs from 20 additional VA-ECLS patients. (A,B) Representative scatter plots of the 
percentage of CD52+ CD8+ NKT cells from ECLS patients that died (A) and survived (B). The 
following gating was used for flow cytometry analysis; gates were drawn to exclude debris and 
select lymphocytes based on FSC vs. SSC, doublets were excluded based on a FSC-w vs. FSC-h 
plot, live cells were identified as Fixable Viability Stain 450 negative, a gate was drawn for 
CD3+ and CD19- (T cells), NKT cells were CD3+ CD56+, NKT cells were plotted based CD4+ 
and CD8+ NKT cell populations (left panels within both A and B) with CD8+ CD4- gated, and 
CD52+ cells were gated (right panels of A and B). (C-E) Kaplan-Meier plots of survival 
proportion (y-axis) vs. survival time in days (x-axis). (C) The proportion of CD8+ NKT cells that 
were CD52+ was predictive of 48 hours survival, using the median proportion as the cutoff 
between “low” and “high”. (D) This difference was no longer significant at 72 hours until (D) 
removal of the two patients with infectious etiologies for their cardiovascular collapse.  
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Table 1. Clinical features of patient cohort included in the study. Clinical characteristics of 
patients, stratified by 30 day survival.  Factors with statistically significant differences between 
survivors and non-survivors are bolded. P-value is for two sided t-test where the distribution was 
near-normal, two sided Wilcoxon rank sum test otherwise. 
 
  30 Day Outcome   
  Survived (N = 20)   Died (N = 18)   

Variable Mean ± SD Max - Min  Mean ± SD Max - Min p-value 

Height (cm) 174.41 ± 7.78 190.25 - 157  173.89 ± 11.53 193.02 - 147.32 0.874 

Weight (kg) 90.75 ± 13.12 123 - 70  94.37 ± 20.72 141 - 60.8 0.521 

BMI (kg/m^2) 29.91 ± 4.38 40.2 - 20.9  31.07 ± 5.48 44.5 - 24.9 0.478 

Albumin (g/dL) 3.04 ± 0.64 4.2 - 2  2.88 ± 0.65 4.2 - 1.6 0.469 

AST (IU/L) 383.83 ± 
1105.94 4767 - 21  477.3 ± 908.81 3834 - 18 0.405 

ALT (IU/L) 276.39 ± 776.32 3317 - 10  346.15 ± 724.8 2945 - 14 0.726 
Bilirubin Total 

(mg/dL) 0.78 ± 0.65 2.7 - 0.3  1.8 ± 2.41 10.2 - 0.2 0.283 

pH Arterial 7.34 ± 0.08 7.47 - 7.2  7.2 ± 0.17 7.57 - 6.91 0.003 

Lactate (mmol/L) 4.67 ± 3.5 13.5 - 1  8.84 ± 4.92 19.8 - 1.5 0.006 

Creatinine (mg/dL) 1.15 ± 0.37 1.77 - 0.57  1.46 ± 0.53 2.71 - 0.77 0.121 

MDRD eGFR 
(ml/min/1.73 m^2) 72.56 ± 32.5 141.32 - 29  52.33 ± 20.57 103.77 - 22 0.026 

Sodium (mmol/L) 139.22 ± 7.46 154 - 121  142.05 ± 6.35 155 - 131 0.215 

Potassium (mmol/L) 4.56 ± 0.61 5.6 - 3.6  4.42 ± 0.91 6.5 - 2.7 0.598 

Magnesium (mg/dL) 2.29 ± 0.43 3.4 - 1.5  2.37 ± 0.49 3.6 - 1.6 0.605 

Glucose (mg/dL) 153 ± 64.15 331 - 83  197.25 ± 124.23 463 - 8 0.388 

LVEF Measurement 55.41 ± 37.31 113.21 - 14.28  52.38 ± 20.32 70.58 - 25.44 0.883 

LVIDd Measurmt 4.73 ± 0.83 6.72 - 3.65  4.96 ± 1.17 7.89 - 3.17 0.559 

CVP(RAP) (mmHg) 15.17 ± 6.26 25 - 6  12.94 ± 7.48 26 - 0 0.341 
MAP Arterial 

(mmHg) 72.61 ± 16.93 105 - 34  66.85 ± 20.84 106 - 0 0.588 

SVR 1436 ± 1057.25 3509 - 568  1083.25 ± 
597.44 1854 - 295 0.600 

Perfusion 57.78 ± 8.54 69 - 42  57.58 ± 25.12 149 - 26 0.308 

SBP Arterial (mmHg) 106.72 ± 24.96 159 - 65  99.05 ± 28.95 200 - 67 0.157 

DBP Arterial (mmHg) 59.5 ± 17.15 87 - 13  63.53 ± 17.06 107 - 34 0.479 
Core Temperature 

(0C) 36.95 ± 0.89 38.6 - 34.5  36.66 ± 0.87 38.7 - 34.5 0.330 

Inotrope Score 16.22 ± 10.04 30 - 0  26.31 ± 26.46 120 - 4 0.248 

SOFA score 9.94 ± 2.9 14 - 3  11.42 ± 2.14 15 - 7 0.086 
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Supplementary Materials: 

Table S1. 

Classification scheme for PBMC subsets based on scRNASeq expression 

  CD19 CD3 CD4 CD8 CD2 CD57 CD25 FOXP3 CD56 CD14 CD16 
HLA-
DRA HBA1   

B Cells + -                         

CD4 Naïve T   + + - -   +/-* +/-* -         * Cannot be CD25/FOXP3 double positive 

CD4 Memory T   + + - + - +/-* +/-* -         * Cannot be CD25/FOXP3 double positive 

CD4 Effector T   + + - + + +/-* +/-* -         * Cannot be CD25/FOXP3 double positive 
CD4 Regulatory T   + + -     + + -           

CD8 Naïve T   + - + -       -           
CD8 Memory T   + - + + -     -           
CD8 Effector T   + - + + +     -           

CD4+ NKT - + + -         +           
CD8+ NKT - + - +         +           

CD4- CD8- NKT - + - -         +           
Natural Killer - -             +           

Monocyte                   + +/-       
Dendritic Cell - -             - -   +     

Erythrocyte                         ++   
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Table S2. 
Impact of imputation on slope (beta) and R2 of correlation between FACS and scRNASeq based 
assignment of cells to major lymphocyte classes, as a proportion of all lymphocytes.  Beta and R2 
are as calculated by R’s “lm” function.  P-value listed is for two-tailed t-test for difference 
between either Beta or R2 pre- and post-imputation. 
 

 
Pre-imputation Post-imputation 

 
Beta R2 Beta R2 

B Cells 0.95578 0.57140 0.82673 0.61830 
T Cells 0.95161 0.75850 0.86627 0.70840 

CD4+ 0.56471 0.61950 0.82542 0.70800 
CD8+ 0.97919 0.41240 0.71510 0.36410 

NK 0.90466 0.57290 1.12664 0.56950 

     Average 0.87119 0.58694 0.87203 0.59366 
P-value  0.99371 0.93832 
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Table S3. 
Significantly enriched GO terms (if any) for the nodes of the cluster dendrogram from Figure 4B.  
The top 2 terms (if any) for each node are presented in Figure 4B.  The table below presents the 
complete list of terms for each node.  Enriched terms were identified using the ClusterProfiler 
package for R, with an FDR cutoff of 0.05. 
 

Node GO_Term FDR 
1 C-C chemokine binding 0.019535 

1 transcriptional repressor activity, RNA polymerase II transcription regulatory 
region sequence-specific DNA binding 0.037386 

1 chemokine binding 0.037386 
1 14-3-3 protein binding 0.037386 
2 phosphatidylinositol-4,5-bisphosphate 3-kinase activity 0.030782 
2 phosphatidylinositol bisphosphate kinase activity 0.030782 
2 phosphatidylinositol 3-kinase activity 0.030782 
2 signaling adaptor activity 0.030846 
2 ATPase activity 0.044250 
2 transmembrane receptor protein tyrosine kinase adaptor activity 0.044250 
3 heat shock protein binding 0.000001 
3 unfolded protein binding 0.000006 
3 glucocorticoid receptor binding 0.000026 
3 ATPase regulator activity 0.000067 
3 misfolded protein binding 0.000259 
3 MAP kinase tyrosine/serine/threonine phosphatase activity 0.000865 
3 oxygen carrier activity 0.000865 
3 MAP kinase phosphatase activity 0.000865 
3 protein binding involved in protein folding 0.000876 
3 ATPase activator activity 0.005345 
3 histone acetyltransferase binding 0.006033 
3 antioxidant activity 0.009264 
3 nuclear hormone receptor binding 0.009264 
3 steroid hormone receptor binding 0.010581 
3 chaperone binding 0.011905 
3 molecular carrier activity 0.011905 
3 nucleoside-triphosphatase regulator activity 0.011905 
3 peroxidase activity 0.011905 
3 oxygen binding 0.011905 
3 adenyl-nucleotide exchange factor activity 0.011905 
3 hormone receptor binding 0.011905 
3 protein tyrosine/serine/threonine phosphatase activity 0.011905 
3 nuclear receptor activity 0.012184 
3 oxidoreductase activity, acting on peroxide as acceptor 0.012184 
3 transcription factor activity, direct ligand regulated sequence-specific DNA binding 0.012184 
3 protein N-terminus binding 0.012184 
3 3',5'-cyclic-AMP phosphodiesterase activity 0.017975 
3 transcriptional activator activity, RNA polymerase II transcription regulatory 0.018155 
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Node GO_Term FDR 
region sequence-specific DNA binding 

3 steroid hormone receptor activity 0.018597 
3 cytokine activity 0.021507 
3 G-protein alpha-subunit binding 0.030804 
3 virus receptor activity 0.031151 
3 hijacked molecular function 0.031151 
3 phosphoric ester hydrolase activity 0.033644 
3 ATPase binding 0.033644 
3 3',5'-cyclic-nucleotide phosphodiesterase activity 0.033644 
3 cAMP binding 0.033644 
3 iron ion binding 0.034600 
3 cyclic-nucleotide phosphodiesterase activity 0.034600 
3 protein heterodimerization activity 0.034645 
3 mitogen-activated protein kinase binding 0.038298 
3 cytokine receptor binding 0.041055 

3 transcriptional activator activity, RNA polymerase II proximal promoter sequence-
specific DNA binding 0.041055 

3 RNA polymerase II transcription corepressor activity 0.041055 
3 tumor necrosis factor receptor binding 0.045727 

3 transcription factor activity, RNA polymerase II proximal promoter sequence-
specific DNA binding 0.047962 

4 transcriptional repressor activity, RNA polymerase II transcription regulatory 
region sequence-specific DNA binding 0.006489 

4 cytokine activity 0.006489 
4 1-acylglycerol-3-phosphate O-acyltransferase activity 0.006489 
4 lysophosphatidic acid acyltransferase activity 0.006489 
4 lysophospholipid acyltransferase activity 0.006489 

4 transcriptional repressor activity, RNA polymerase II proximal promoter sequence-
specific DNA binding 0.015766 

4 chemokine activity 0.015766 
4 acylglycerol O-acyltransferase activity 0.018333 
4 receptor ligand activity 0.019458 
4 antigen binding 0.019920 
4 epidermal growth factor receptor binding 0.022161 
4 chemokine receptor binding 0.036808 

4 transcription factor activity, RNA polymerase II proximal promoter sequence-
specific DNA binding 0.037468 

4 G-protein coupled receptor binding 0.039338 
4 cytokine receptor binding 0.039598 
4 CCR chemokine receptor binding 0.039598 
4 MHC protein complex binding 0.039598 
4 immunoglobulin binding 0.049673 
6 actin binding 0.000001 
6 S100 protein binding 0.000295 
6 calcium-dependent protein binding 0.005046 
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Node GO_Term FDR 
6 structural constituent of cytoskeleton 0.006768 
6 cell adhesion molecule binding 0.007205 
6 protease binding 0.014859 
6 cadherin binding 0.015653 
6 phosphatidylinositol 3-kinase binding 0.038133 
7 antigen binding 0.000000 
7 serine-type endopeptidase activity 0.000000 
7 serine-type peptidase activity 0.000000 
7 serine hydrolase activity 0.000000 
7 endopeptidase activity 0.000000 
7 chemokine activity 0.000288 
7 cytokine activity 0.000322 
7 peptide antigen binding 0.000684 
7 CXCR chemokine receptor binding 0.000684 
7 chemokine receptor binding 0.001667 
7 immunoglobulin receptor binding 0.002400 
7 receptor ligand activity 0.003933 
7 peptide binding 0.007930 
7 glycosaminoglycan binding 0.007930 
7 signaling pattern recognition receptor activity 0.007930 
7 pattern recognition receptor activity 0.007930 
7 MHC class II receptor activity 0.020911 
7 cytokine binding 0.020911 
7 amide binding 0.020911 
7 heparin binding 0.021573 
7 complement receptor activity 0.024457 
7 carbohydrate binding 0.038787 
9 rRNA binding 0.001915 
9 protein phosphorylated amino acid binding 0.002787 
9 phosphoprotein binding 0.002787 
9 phosphotyrosine residue binding 0.012008 
9 cadherin binding 0.012713 
9 cell adhesion molecule binding 0.018160 
9 actin filament binding 0.018160 
9 actin binding 0.049849 
10 antigen binding 0.035457 
10 immunoglobulin receptor binding 0.035457 
10 oxygen carrier activity 0.046695 
11 cytokine binding 0.002900 
11 superoxide-generating NADPH oxidase activity 0.002900 
11 MHC class II protein complex binding 0.004831 
11 oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor 0.004831 
11 MHC protein complex binding 0.007753 
11 chemokine binding 0.012798 
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Node GO_Term FDR 
11 virus receptor activity 0.019466 
11 hijacked molecular function 0.019466 
11 MHC class II receptor activity 0.032282 
11 actin binding 0.032282 
11 cytokine receptor activity 0.033392 
12 oxidoreductase activity, acting on the CH-CH group of donors 0.046343 

12 oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as 
acceptor 0.046343 
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Table S4. 

List of surface markers analyzed. This list was generated by cross referencing the gene symbols 
and Cluster of Differentiation identifiers from the Cell Surface Protein Atlas 
(http://wlab.ethz.ch/cspa/) with the list of highly variable genes identified in our dataset. 
 
ABCB1 CD27 CD7 FCGR3B KIR3DL1 THBD 
ADAM8 CD276 CD72 FCRL5 KLRB1 TLR4 
ATP1B3 CD300A CD74 IFNGR1 KLRC1 TNFRSF17 
BTLA CD300E CD79A IGF1R LILRA1   
CCR7 CD36 CD79B IL17RA LRP1   
CD14 CD37 CD83 IL18R1 MRC1   
CD163 CD3D CD8A IL1R2 MS4A1   
CD164 CD3E CD8B IL2RA NCAM1   
CD180 CD3G CD93 IL2RB NCR3   
CD19 CD4 CD96 IL2RG NT5E   
CD1C CD40LG CD99 IL4R PDGFRA   
CD1E CD44 CR2 IL6ST PLAUR   
CD2 CD48 CSF2RB IL7R PTPRC   
CD200 CD5 CXCR1 ITGA6 SELL   
CD200R1 CD52 CXCR3 ITGAL SELPLG   
CD207 CD53 CXCR5 ITGAM SEMA4D   
CD22 CD55 DPP4 ITGAX SEMA7A   
CD24 CD63 FCER2 ITGB1 SIGLEC6   
CD244 CD68 FCGR2A ITGB2 SIRPB1   
CD247 CD69 FCGR3A KIR2DL3 SIRPG   
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Figure S1: Representative scatter plots depicting the gating strategy used for FACS analysis of 
cells used to validate scRNASeq expression data (Fig. 3C). Non-debris was gated (A), followed 
by exclusion of potential doublets via FSC-w vs. FSC-h plot (B). From the previous gate, live 
cells were identified based on Fixable Viability Stain 450 fluorescence.  From these live cells, a 
gate was drawn to select cells in the lymphocyte region based on FSC vs. SSC in the usual 
fashion (D).  CD3+ (T cells) and CD19+ (B cells) populations were then easily distinguishable 
and gated (E).  CD3+ cells were then divided into CD4+ and CD8+ T cell populations (F), while 
the CD3-/CD19- population was gated to identify CD56+ positive (NK) cells.
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Data S1. (separate file) 
Detailed description of the data analysis including annotated code to reproduce figures 2-4 from 
the manuscript is provided in the file “final_analysis.html”. Reproducing the analysis can be 
facilitated by downloading the github repository https://github.com/vanandelinstitute/va_ecls. 

Data S2. (separate file) 
The list of highly variable genes as defined by normalized dispersion used for the analysis shown 
in Figure 4B is provided in the file “variable_gene_list.xls” 
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