
PAGE 1 OF 17 
 

Clustering co-abundant genes identifies components of the gut 1 

microbiome that are reproducibly associated with colorectal 2 

cancer and inflammatory bowel disease 3 
 4 
Samuel S. Minot, Ph.D.* 5 
Microbiome Research Initiative 6 
Fred Hutchinson Cancer Research Center 7 
Seattle, Washington, USA 8 
sminot@fredhutch.org 9 
ORCID: 0000-0003-1639-3905 10 
 11 
Amy D. Willis, Ph.D. 12 
Department of Biostatistics 13 
University of Washington 14 
Seattle, Washington, USA 15 
adwillis@uw.edu  16 
ORCID: 0000-0002-2802-4317 17 
 18 
* Corresponding author 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/567818doi: bioRxiv preprint 

https://doi.org/10.1101/567818
http://creativecommons.org/licenses/by-nc-nd/4.0/


PAGE 2 OF 17 
 

 49 
Abstract 50 
 51 
Background: Whole-genome ‘'shotgun” (WGS) metagenomic sequencing is an increasingly widely 52 
used tool for analyzing the metagenomic content of microbiome samples. While WGS data 53 
contains gene-level information, it can be challenging to analyze the millions of microbial genes 54 
which are typically found in microbiome experiments. To mitigate the ultrahigh dimensionality 55 
challenge of gene-level metagenomics, it has been proposed to cluster genes by co-abundance to 56 
form Co-Abundant Gene groups (CAGs). However, exhaustive co-abundance clustering of 57 
millions of microbial genes across thousands of biological samples has previously been intractable 58 
purely due to the computational challenge of performing trillions of pairwise comparisons.  59 
Results: Here we present a novel computational approach to the analysis of WGS datasets in 60 
which microbial gene groups are the fundamental unit of analysis. We use the Approximate 61 
Nearest Neighbor heuristic for near-exhaustive average linkage clustering to group millions of 62 
genes by co-abundance. This results in thousands of high-quality CAGs representing complete 63 
and partial microbial genomes. We applied this method to publicly available WGS microbiome 64 
surveys and found that the resulting microbial CAGs associated with inflammatory bowel disease 65 
(IBD) and colorectal cancer (CRC) were highly reproducible and could be validated independently 66 
using multiple independent cohorts. 67 
Conclusions: This powerful approach to gene-level metagenomics provides a powerful path 68 
forward for identifying the biological links between the microbiome and human health. By 69 
proposing a new computational approach for handling high dimensional metagenomics data, we 70 
identified specific microbial gene groups that are associated with disease that can be used to 71 
identify strains of interest for further preclinical and mechanistic experimentation. 72 
 73 
 74 
Background 75 
 76 
Metagenomic analysis of the microbiome typically falls into the categories of taxonomic 77 
classification, metabolic pathway reconstruction, or genome reconstruction. While each has been 78 
used to good effect, each also has its own limitations. Taxonomic analysis is constrained by the 79 
size and quality of reference databases, which have started to provide decreasing taxonomic 80 
precision as the number of sequenced genomes grows [1]. Metabolic analysis is limited by our 81 
ability to annotate biochemical function from primary sequence, with only a minority of genes 82 
receiving any sort of annotation. Genome reconstruction (or “genome-resolved metagenomics”) 83 
has made immense contributions to our understanding of microbial diversity and evolution, but is 84 
challenging to exhaustively characterize environments like the human gut, which contain hundreds 85 
or thousands of strains. In contrast, we took the approach of quantifying each individual gene de 86 
novo from a given metagenome. While this approach presented considerable computational 87 
challenges, it is unconstrained by the limitations of reference databases or annotation systems 88 
and therefore presents the possibility of discovering novel biological patterns in the human 89 
microbiome. 90 
 91 
While the microbiome has been implicated in a number of human diseases, we chose to focus on 92 
CRC and IBD because of the availability of metagenomic data from multiple independent 93 
cohorts[2–8]. Associative studies characterizing differences in the microbiome as a function of 94 
disease status are complicated by the effect of disease and treatment process on the microbiome 95 
[9–12] but it is still possible that some of the differences in the microbiome may play some causal 96 
role or implicate a causal biological process. 97 
 98 
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The approach of gene-level metagenomics is not new to this study and has been proposed 99 
previously as an alternative to taxonomic or metabolic pathway analysis [13]. Indeed even the 100 
popular HUMAnN2 tool [14] includes gene-family abundance estimation using the UniRef 101 
database of proteins [15]. We took the previously-described approach of grouping together genes 102 
that are consistently found at a similar level of abundance across multiple samples [13]. Such co-103 
abundant genes are likely to be found on the same chromosome or piece of DNA across multiple 104 
samples, such as in the core genome for a bacterial species or consortium, on a plasmid that may 105 
move between strains, or as part of an operon in the accessory genome of a species that is only 106 
found in a subset of strains. Biologically speaking, co-abundant genes are not independent 107 
entities, and can be grouped together for purposes of inferring their relationship with human health 108 
and disease. In addition, grouping genes by co-abundance finds low-dimensional structure in 109 
high-dimensional gene-level data, mitigating challenges with the statistical analysis of high-110 
dimensional metagenomics data. 111 
 112 
 113 
Results and Discussion 114 
 115 
The primary analytical challenge that we encountered in this project was that of efficiently 116 
clustering microbial genes based on co-abundance. This general approach has been proposed 117 
and implemented previously [13, 16], but existing implementations do not perform exhaustive 118 
searches for co-abundant genes because performing all pairwise comparisons of millions of genes 119 
in large microbiome datasets [17] is computationally intractable. To overcome this obstacle we 120 
took advantage of the Approximate Nearest Neighbor (ANN) heuristic, which is able to robustly 121 
identify candidate subsets of co-abundant genes without having to perform all pairwise 122 
comparisons [18, 19]. We implemented a Python package (“ann_linkage_clustering”) to perform 123 
exhaustive average linkage clustering using the cosine distance metric on any dataset containing 124 
gene abundance data across a set of samples. While this method is relatively computationally 125 
intensive, we were able to execute it in a reasonable amount of time using commodity “cloud” 126 
computational resources (e.g., 17 hours for a set of 5 million genes across 199 samples with a 127 
256GB RAM node). While this clustering procedure is not expected to be deterministic, our 128 
experience has been that clusters are generally reproduced across replicates and we are actively 129 
studying the generalizability of gene clustering as a function of input data and clustering 130 
thresholds. In the ideal case this approach improves the precision of estimating gene-level 131 
abundance by combining data from multiple correlated observations, as well as reducing the 132 
number of hypotheses to test in an association study, while maintaining the interpretation 133 
advantages of distinct genetic elements (core genome, plasmid, virus, etc.).  134 
 135 
We applied this novel approach to gene-level metagenomics to test for an association of the gut 136 
microbiome across two distinct human diseases: IBD and CRC. We selected these diseases 137 
because each has been studied by multiple groups who have collected stool samples and 138 
performed metagenomic WGS sequencing (Table S1) [2–8]. Because each of these previous 139 
studies used slightly different protocols for selecting patients, collecting samples, and performing 140 
sequencing, an integrated analysis of these datasets should serve to identify those signals in the 141 
microbiome which are most robust to the methodological and experimental confounders.  142 
 143 
The CAGs identified in this project contained 2-23,856 genes, with the majority of genes found in 144 
CAGs ranging between 10 and 2,000 genes in size and containing the range of metabolic 145 
functions expected from complete and partial microbial genomes (Fig. S1). Visual inspection of 146 
the genes making up these CAGs also demonstrated the highly consistent patterns of abundance 147 
displayed by the genes which were ultimately grouped into these CAGs (Fig. 1). We also analyzed 148 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/567818doi: bioRxiv preprint 

https://doi.org/10.1101/567818
http://creativecommons.org/licenses/by-nc-nd/4.0/


PAGE 4 OF 17 
 

a published single-cell sequencing dataset from the stool microbiome [20] and found that genes 149 
from the same CAG were found in the same physical cell at 3-9X the rate expected by chance 150 
(Fig. S2). The size, functional content, and clear pattern of co-abundance displayed by the genes 151 
in this analysis suggest that the CAGs used for statistical analysis represent biological units that 152 
are meaningful reflections of the composition of the microbiome across multiple independent 153 
datasets. 154 
 155 

 156 
Figure 1. Patterns of gene-level co-abundance across all microbiome samples from a subset of 157 
CAGs. Each row represents a single microbial gene, each column represents a single biological 158 
sample, and pixel color reflects the gene’s relative abundance (sequencing depth) in the sample. 159 
A subset of CAGs and genes was randomly selected for display from the CRC datasets (A) and 160 
the IBD datasets (B). Unsupervised hierarchical clustering was used to group the rows and 161 
columns, and the left-hand color bar indicates the CAG assignment for each gene.  162 
 163 
Our approach to the bioinformatic and statistical analysis was to select a single study for each 164 
disease as the “discovery” cohort, and to use that dataset to build a de novo catalog of microbial 165 
genes and identify CAGs. That gene catalog and CAG grouping generated from the discovery 166 
cohort was subsequently used to analyze the additional validation cohorts. Our statistical model 167 
was relatively straightforward and used random effects modeling to estimate the difference in the 168 
centered-log ratio of the relative abundance of each CAG in the samples from people with and 169 
without the disease state (accounting for multiple sampling of some individuals with random 170 
effects models). We chose to group together all participants with any form of the disease state, as 171 
the criteria for disease classification was not consistent across studies. In this discovery-validation 172 
approach, those CAGs which had a q-value of < 0.2 in the discovery cohort were subsequently 173 
tested in an additional “validation” cohort, and those CAGs which also had a q-value < 0.2 in that 174 
second step and the same direction of effect were considered to be associated with disease. 175 
  176 
We found with this approach that the estimated coefficient of disease status in the set of CAGs 177 
associated with disease in the discovery cohort was significantly associated with the estimated 178 
coefficient in the validation cohort (Fig. 2A-B; CRC r=0.36 p<2E-16; IBD r=0.30 p<2E-16). Within 179 
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the set of CAGs that were associated with disease in the discovery dataset, 44.0% and 97.2% 180 
were significantly associated in the validation dataset for CRC and IBD, respectively. When 181 
performing the same analysis with unclustered gene-level abundances (a single gene randomly 182 
selected from each CAG), we found a roughly 20-40% lower correlation between the estimated 183 
coefficient of disease status (Fig 2C-D) and a much lower validation rate of 9.8% and 76.0%, 184 
respectively. We believe that this evidence supports the proposed utility of CAGs for detecting 185 
reproducible biological associations of the microbiome with host disease.  Furthermore, 186 
24,502/36,871 CRC-associated CAGs had the same sign of the estimated coefficient in the 187 
validation cohort as in the discovery cohort (p < 1E-200, see Methods), and 28,629/31,895 IBD-188 
associated CAGs had the same signed estimated coefficient (p < 1E-200). We further 189 
demonstrated the extent of this association by displaying the abundance of the most strongly 190 
associated CAGs across a total of 3 (IBD) or 4 (CRC) cohorts (Fig 2E-F), suggesting that this 191 
association is not limited to the cohorts selected for discovery and validation. Over and above the 192 
claim that the microbiome is associated with disease in both cohorts, we believe that these results 193 
indicate that a substantial number of elements of the microbiome that are associated with disease 194 
in a given discovery cohort will also be associated with disease in a corresponding validation 195 
cohort.  196 
 197 
The pattern of association for the IBD datasets was dominated by the 98.5% of CAGs which had a 198 
positive coefficient, indicating that they were more abundant in participants without IBD (Fig 2B). 199 
We therefore investigated the gene-level richness, finding a lower level of gene richness observed 200 
in IBD samples compared to healthy controls (Fig S3) [21], corroborating previous observations of 201 
lower alpha diversity in IBD [22, 23]. Without our use of the centered log-ratio to adjust for the 202 
compositional nature of these datasets the decreased abundance of a large fraction of the 203 
microbiome may have resulted in a spurious finding that the remainder had increased in 204 
abundance [24], but in fact we found that very few CAGs were consistently increased in 205 
abundance in IBD relative to the geometric mean of each sample. In addition to the decrease of 206 
overall gene richness, the lower number of CAGs found to be consistently enriched in IBD may 207 
also be due to an overall heterogeneity or ‘dispersion’ in the organisms which are positively 208 
associated with IBD across different people at a given point in time [14, 25]. However, there was a 209 
subset of CAGs which were consistently found to be more abundant in IBD, which may represent 210 
those bacteria which are able to thrive in the environment of the inflamed gut. Indeed, the 211 
taxonomic annotation of the genes in these CAGs is enriched for organisms which have been 212 
implicated in some previous studies of IBD and gut pathogens, including Enterobacteriaceae such 213 
as Escherichia/Shigella and Salmonella [3, 22, 23] which may exhibit some growth advantage in 214 
the context of either the increased oxygen content of the inflamed intestine or the antibiotics used 215 
in IBD treatment [9, 10]. Other organisms, such as Ruminococcus gnavus, were only enriched in 216 
IBD for a subset of genes (n=77), supporting the previous hypothesis of a strain-specific 217 
association with IBD [4]. There was also a set of KEGG annotations that were weakly but 218 
consistently enriched in this set of IBD-associated genes related to colonization and pathogenesis, 219 
such as fimbriae genes fimA (K07345) and fimD (K07347), iron transport (K02010), and 220 
putrescine transport (K02052; K11072; K11076).  221 
 222 
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 223 
Figure 2. Reproducible association of CAG abundance with disease status for CRC (A, E) and 224 
IBD (B, F). The estimated coefficient plotted in A-D represents the log10 change in relative 225 
abundance associated with health (positive values) or disease (negative values), for each disease 226 
state. The estimated coefficient for the discovery dataset is on the horizontal axis, and the 227 
estimated coefficient for the validation dataset is on the vertical axis. The results from CAG-based 228 
analysis are shown in A-B, while the results calculated from unclustered gene-level abundances 229 
are shown in C-D. The abundance of four representative CAGs are shown in E-F across all 230 
available datasets, with colors indicating the health status associated with each sample. 231 
 232 
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The pattern of association for the CRC datasets was generally balanced between CAGs that were 233 
more abundant in healthy participants and those that were more abundant in disease (Fig 2A). Of 234 
the largest CAGs that were reproducibly associated with disease, those which were more 235 
abundant in healthy participants tended to be classified as Clostridia (via alignment to NCBI 236 
RefSeq), while those which were more abundant in participants with CRC were more 237 
taxonomically diverse (Fig 3A-B). Moreover, we found the functional annotations of the genes in 238 
those CAGs to be particularly interesting. There were four KEGG annotations that were 239 
significantly enriched in the set of CAGs found to be more abundant in CRC samples (Fisher’s 240 
exact test, Holm-Sidak alpha=0.01): 1) grdA (K10670) is involved in metabolism of 241 
glycine/sarcosine/betaine, and higher levels of glycine is a recognized hallmark of cancer cells 242 
[26, 27]; 2) oxyR (K04761) is a transcriptional regulator which regulates genes protecting from the 243 
biochemical damage induced by reactive oxygen species, of which markedly higher levels are 244 
associated with progressive tumors [28, 29]; 3) abgT (K12942) is a transporter responsible for 245 
uptake of p-aminobenzoyl-glutamate, and may also import other dipeptides [30]; and 4) afuA/fbpA 246 
(K02012) are transporters responsible for importing iron [31], which is likely to be more abundant 247 
in the gastrointestinal lumen of individuals with CRC due to bleeding. Three of these four 248 
annotated functions have clear links to the altered environment of the gut microbiome expected 249 
during CRC, and likely promote the growth of these organisms in that setting. It remains to be 250 
seen whether those organisms which are able to thrive in the CRC gut microbiome also contribute 251 
to progression of disease.  252 
 253 
One advantage of a gene-based approach to metagenomic analysis is that any CAG of interest 254 
can be directly compared with the genomes of bacterial isolates in order to identify strains 255 
containing each gene. Of the set of genes that we identified as consistently associated with CRC 256 
and IBD, we found a number of strains containing large fractions of these genes (Fig 3C-D). We 257 
furthermore propose that this approach of aligning disease-associated genes to whole microbial 258 
genomes may be used to identify the members of any culture collection which are likely to have 259 
the largest effect in an experimental model of these human diseases. 260 
 261 
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 262 
Figure 3. Association of individual microbes with CRC (A & C) and IBD (B & D). A & B show the 263 
estimated coefficient of abundance for individual CAGs with disease status (log10 mean and 90% 264 
confidence intervals, left panel), the taxonomic assignment (middle panel) and functional 265 
assignment (right panel) of genes within each of those CAGs. C & D show the number of genes 266 
from disease-associated CAGs that are found within bacterial genomes from NCBI RefSeq, 267 
showing both the total number of genes for each genome, as well as a heatmap showing which 268 
disease-associated genes are found in which genomes.  269 
 270 
 271 
 272 
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Conclusions 273 
 274 
Having identified microbial protein-coding genes that are associated with CRC and IBD, we 275 
anticipate that other researchers may build on these findings in multiple ways. Researchers may 276 
compare this list of disease-associated genes to any genomes of interest in order to identify 277 
specific isolates and/or genes which may be perturbed in a controlled experimental setting to test 278 
the effect of microbes on host disease. Additionally, researchers may apply this general approach 279 
(quantification of CAGs from a de novo gene catalog) to their own metagenomic datasets in order 280 
to identify additional genes associated with any outcome of interest. While latter use-case may be 281 
implemented using the computational tools and associated Docker images described in the 282 
Methods, we are hoping to further support this methodological approach by developing 283 
reproducible analytical workflows that are more easily executed by the general microbiome 284 
research community. 285 
 286 
By proposing an approach to the analysis of metagenomic data that produces consistent results 287 
across multiple heterogeneous datasets, we are addressing one of the most important challenges 288 
in metagenomics, namely, reproducibility. Our findings suggest that indeed co-abundant gene 289 
groups are a reproducible and biologically meaningful unit of analysis. In addition, microbial genes 290 
are a meaningful and useful unit of analysis because they can be linked to individual microbial 291 
genomes, taxonomic annotations, and predicted metabolic functionality. Using this approach, we 292 
identify a list of gene groups that are associated with human diseases in multiple cohorts, and we 293 
identify specific microbial isolates that contain these genes. The development of diagnostics or 294 
therapeutics based on this list of genes and genomes is left to future work. 295 
 296 
 297 
Methods 298 
 299 
Datasets 300 
 301 

Group  Used For Name NCBI BioProject 

IBD Discovery Schirmer, et al. [2] PRJNA389280 

IBD Validation Lewis, et al. [3] SRP057027 

IBD Validation Hall, et al. [4] PRJNA385949 

CRC Discovery Zeller, et al. [5] PRJEB6070 

CRC Validation Feng, et al. [8] PRJEB7774 

CRC Validation Yu, et al. [7] PRJEB10878 

CRC Validation Vogtmann, et al. [6] PRJEB12449 
Table S1. Published datasets analyzed in this study. 302 
 303 
Gene-level metagenomic analysis pipeline 304 
 305 
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All microbiome WGS data was analyzed using a Docker-based workflow, with each individual step 306 
executed inside a Docker image. The workflow outlined below was executed independently for the 307 
set of samples from Schirmer, et al., as well as for the set of samples from Zeller, et al.   308 
 309 
The sequence of analyses is as follows: 310 
 311 

1. Each sample was individually downloaded from NCBI SRA with Entrez Direct  312 
• Docker image: quay.io/fhcrc-microbiome/get_sra:v0.4 313 
• Code: https://github.com/FredHutch/docker-sra 314 
• Wrapper script: get_sra.py 315 
• Software version(s):  316 

• sratoolkit.2.8.2-ubuntu64 317 
• CMake3.11 318 
• fastq-pair 4ae91b0d9074410753d376e5adfb2ddd090f7d85 319 

 320 
2. Each sample was individually assembled with metaSPAdes  321 

• Docker image: quay.io/fhcrc-microbiome/metaspades:v3.11.1--10 322 
• Code: https://github.com/FredHutch/docker-metaspades 323 
• Wrapper script: run_metaspades.py 324 
• Software version(s): SPAdes-3.11.1-Linux 325 

 326 
3. Each sample’s metagenomic assembly was annotated using Prokka  327 

• Docker image: quay.io/fhcrc-microbiome/metaspades:v3.11.1--8 328 
• Code: https://github.com/FredHutch/docker-metaspades 329 
• Software version(s): Prokka v1.12; barrnap v0.9 330 
• Wrapper script: run_prokka.py 331 

 332 
4. The protein-coding sequences from all of the metagenomic assemblies for a given dataset 333 

were clustered at 90% amino acid identity using mmSeqs2 to create a set of non-redundant 334 
protein sequences  335 
• Docker image: quay.io/fhcrc-microbiome/integrate-metagenomic-assemblies:v0.4 336 
• Code: https://github.com/FredHutch/integrate-metagenomic-assemblies 337 
• Software version(s): biopython==1.70; MMseqs2 v2-23394 338 
• Wrapper script: integrate_assemblies.py 339 

 340 
5. Each sample was aligned against the non-redundant protein sequences using DIAMOND, 341 

with post-alignment filtering using FAMLI. The Docker image associated with this step 342 
includes both the DIAMOND aligner and the FAMLI filtering code.  343 
• Docker image: quay.io/fhcrc-microbiome/famli:v1.1 344 
• Code: https://github.com/FredHutch/famli 345 
• Software version(s): DIAMOND v0.9.10; famli==1.0 346 
• Wrapper script: famli 347 
• Parameters:  348 

• min_qual = 30 349 
• min_score = 20 350 
• query_gencode = 11 351 

 352 
6. The non-redundant protein sequences were functionally annotated via eggNOG-mapper  353 
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• Docker image: quay.io/fhcrc-microbiome/eggnog-mapper:v0.1 354 
• Code: https://github.com/FredHutch/docker-eggnog-mapper 355 
• Software version(s): eggNOG-mapper = 1.0.3--py27_0 356 
• Wrapper script: run_eggnog_mapper.py 357 

 358 
7. The non-redundant protein sequences were analyzed via the taxonomic assignment 359 

functionality of DIAMOND (using NCBI’s RefSeq as the reference database)  360 
• Docker image: quay.io/fhcrc-microbiome/famli:v1.3 361 
• Code: https://github.com/FredHutch/famli 362 
• Software version(s): DIAMOND v0.9.22 363 
• Wrapper script: diamond-tax.py 364 
• Parameters: top_pct = 1 365 

 366 
8. The non-redundant protein sequences were grouped into CAGs based on their abundance 367 

profile across the dataset.  368 
• Docker image: quay.io/fhcrc-microbiome/find-cags:v0.11.1 369 
• Code: https://github.com/FredHutch/find-cags 370 
• Software version(s): nmslib = 1.7.3.5 371 
• Wrapper script: find-cags.py 372 
• Parameters:  373 

• min_samples = 10 374 
• max_dist = 0.3 375 
• normalization = sum 376 

 377 
9. Group the outputs of all previous steps into a single HDF file  378 

• Docker image: quay.io/fhcrc-microbiome/experiment-collection:latest 379 
• Code: https://github.com/FredHutch/minot-experiment-collection 380 
• Wrapper script: make-experiment-collection.py 381 

 382 
The validation datasets were analyzed by aligning the raw WGS reads against the non-redundant 383 
protein sequences generated from the relevant discovery dataset as described in Step 5 384 
described above. The final HDF file creation step (9) includes the results of that quantification step 385 
for the validation datasets as well as the discovery datasets. 386 
 387 
Given the difficulty of providing a workflow execution system that can be used effectively by a 388 
broad range of users, we have elected to provide all of the individual tools needed to run a 389 
complete analytical workflow, with public Docker images making up each individual step, instead 390 
of providing a complete workflow system that each user would need to customize for their own 391 
execution engine (Slurm, PBS, Kubernetes, AWS, GCP, Azure, etc.). This approach enables 392 
execution of the exact code that we used in this analysis in a platform-independent manner using 393 
the highest standard of reproducibility (Docker containers).  394 
 395 
Our implementation of the analytical workflow described above relied upon the Amazon Web 396 
Service and its Batch API, which allows users to submit individual jobs for analysis using utilities 397 
from the boto3 library in Python. While this implementation does not represent a complete 398 
workflow management system, the code used for this execution is available at 399 
https://github.com/FredHutch/aws-batch-helpers/ in the batch_helpers/batch_task_manager.py 400 
module.  401 
 402 
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 403 
Grouping genes by co-abundance 404 
 405 
We did not find any public tools for grouping genes by co-abundance that were appropriate to the 406 
scale of our datasets. To implement our own approach for finding CAGs, we utilized the Non-407 
Metric Space Library (`nmslib`, https://pypi.org/project/nmslib/) which implements the Approximate 408 
Nearest Neighbor (ANN) algorithm [18, 19] and obviates the need for calculating the all-by-all 409 
distance matrix typically used by clustering algorithms. The abundance matrix used for clustering 410 
was created by calculating the depth of sequencing for each individual gene within each sample 411 
and normalizing for total sequencing depth. The distance metric used to quantify the dissimilarity 412 
of individual genes was the cosine distance. Gene clusters were identified iteratively by average 413 
linkage clustering and a fixed cophenetic distance threshold. The ANN algorithm was used to 414 
identify subsets of genes which were likely to be highly co-abundant, and which could be clustered 415 
independently of the whole. The code executed for this analysis, as well as a Docker image 416 
containing all required dependencies, can be found in the summary of the complete analysis 417 
workflow (Step 8).  418 
 419 
 420 
Correlating CAGs with health status 421 
 422 
CAG discovery: For every CAG in the validation dataset, we tested the null hypothesis that the 423 
mean difference in CLR abundance between patients with and without disease was zero using the 424 
general linear model framework. Datasets with repeated measurements on subjects were 425 
modelled using a linear mixed effects model with subject as a random effect. We employed the 426 
centered-log ratio to address the compositionality and range constraint of the gene relative 427 
abundances, and it is consistent with the choice to group genes based on cosine distance. Using 428 
the `qvalue` R package (v2.8.0), we calculate the q-values for each CAG. Our set of “discovered 429 
CAGs” for validation is the set of CAGs with calculated q-value of 0.2 or less. These are the CAGs 430 
that would be considered statistically significant while controlling the FDR at 20%.  431 
CAG validation: For only the discovered CAGs, we tested the null hypothesis that the mean 432 
difference in CLR abundance between patients with and without disease was zero in the validation 433 
datasets. Our “validated CAGs” are the CAGs in this set with calculated q-values of 0.2 or less, 434 
and that have an estimated difference in abundance between disease status groups of the same 435 
sign as the estimated difference in the discovery dataset. 436 
The probability of validating discovered CAGs: To calculate the probability of validating C2 or 437 
more out of C1 CAGs under the global null hypothesis of no association between disease status 438 
and any CAG’s abundance, we bounded the p-value for validating discovered CAGs in the 439 
following way. Let X be the number of CAGs with q-values less than 0.2 for the validation data and 440 
with an estimated difference in CLR abundance across disease groups of the same sign in the 441 
validation and discovery datasets, and Y be the number of CAGs with an estimated difference in 442 
CLR abundance across disease groups of the same sign in the validation and discovery datasets. 443 
Since under the null the test statistics are approximately Normal(0,1)-distributed,  444 

  445 
giving us a conservative p-value for the global null of no association.  446 
 447 
 448 
Aligning protein-coding genes against RefSeq genomes 449 
 450 

PrH0(X � C2)  PrH0(Y � C2) = Pr(Binomial(C1, 0.5) � C2) ⇡ Pr

✓
Normal(0, 1) � C2 � C1/2p

C1/2

◆
,
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The alignment of individual protein-coding genes against the RefSeq collection of genomes in 451 
NCBI was executed using the Docker image hosted at quay.io/fhcrc-microbiome/docker-452 
diamond:v0.9.23—0 and built using the Dockerfile hosted at https://github.com/FredHutch/docker-453 
diamond, running DIAMOND v0.9.23. The complete list of Prokaryotic RefSeq genomes was 454 
downloaded from https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/ and the query 455 
proteins were aligned via DIAMOND against the annotated protein-coding sequences from each 456 
genome individually. We implemented this analysis on the Amazon Web Service using the Batch 457 
API for execution and resource management. 458 
 459 
 460 
Quantification of co-abundant genes in uncultured single cells 461 
 462 
Datasets from published single-cell sequencing microbiome experiments [20] were downloaded 463 
and split by 10X barcode (each corresponding to a single cell). The WGS data for each single cell 464 
was aligned against each reference gene catalog (for the CRC and IBD datasets) and filtered with 465 
FAMLI as described in workflow step 5, above. The result of this analysis was a count of the 466 
number of genes that were found in the same cell as another gene that is also part of the same 467 
CAG. As a comparison, we calculated the number of such genes that would be found with a 468 
randomly permuted set of CAG assignments. 469 
 470 
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Supplementary Figures 599 
 600 

 601 
Supplementary Figure S1. The distribution of CAG size (genes per CAG; A & B) and the 602 
functional annotation of genes in CAGs is shown by CAG size (C & D). Each gene can be 603 
annotated with a range of biological functions, and the proportion of CAGs of a given size 604 
containing at least one functional annotation is shown (C & D). The CAGs generated from the 605 
CRC datasets are shown in A & C, while the CAGs generated from the IBD datasets are shown in 606 
B & D. The horizontal axis is shared between panels A & C, as well as B & D. 607 
 608 

 609 
Supplementary Figure S2. Single-cell microbiome datasets were analyzed using the gene 610 
catalogs and CAG groupings from the CRC and IBD datasets. Co-occurrence was measured as 611 
the number of genes that were found in the same cell with another gene from the same CAG. 612 
Simulations were performed by random permutation, with 1,000 replicates. Orange bars show 613 
mean and standard deviation.  614 
 615 
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 616 
Supplementary Figure S3. Alpha diversity by diagnosis across cohorts. The number of total 617 
genes in each sample was estimated with breakaway for both the CRC (A) and IBD (B) cohorts.  618 
 619 
 620 
Supplementary Tables 621 
 622 
Supplementary Table S2. Description of genes associated with CRC, including the CAG 623 
grouping, correlation coefficient, taxonomic annotation, and functional annotation. Public 624 
repository URL: https://www.synapse.org/#!Synapse:syn17104367  625 
 626 
Supplementary Table S3. Description of genes associated with IBD, including the CAG grouping, 627 
correlation coefficient, taxonomic annotation, and functional annotation. Public repository URL: 628 
https://www.synapse.org/#!Synapse:syn17104250  629 
 630 
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