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ABSTRACT (209 words) 53 
When a behaviorally relevant stimulus has been previously associated with reward, 54 
behavioral responses are faster and more accurate compared to equally relevant but 55 
less valuable stimuli. Conversely, task irrelevant stimuli that were previously associated 56 
with a high reward can capture attention and distract processing away from relevant 57 
stimuli (e.g. the chocolate bar in the pantry when you are looking for a nice healthy 58 
apple). While increasing the value of task-relevant stimuli systematically up-regulates 59 
neural responses in early visual cortex to facilitate information processing, it is not clear 60 
if the value of task-irrelevant distractors influences behavior via competition in early 61 
visual cortex or via competition at later stages of decision-making and response 62 
selection. Here, we measured fMRI in human visual cortex while subjects performed a 63 
value-based learning task, and applied a multivariate inverted encoding model to 64 
assess the fidelity of distractor representations in early visual cortex. We found that the 65 
fidelity of neural representations related to task-irrelevant distractors increased when 66 
the distractors were previously associated with a high reward. Moreover, this value-67 
based modulation of distractor representations only occurred when the distractors were 68 
previously selected as targets on preceding trials. Together, these findings suggest that 69 
value-driven attentional capture begins with sensory modulations of distractor 70 
representations in early areas of visual cortex. 71 
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Introduction 99 
In most real-world situations, stimuli that are visually salient—such as a camera flash in 100 
a theater, or a green object in a sea of red—automatically capture attention[1–4]. 101 
Likewise, distractors that are distinguished only by their value, not their visual salience, 102 
also capture visual attention—even on occasions when high-value distractors are 103 
completely irrelevant and unactionable (e.g., a driver runs a red light because they get 104 
distracted by luxury sports car)[5–10]. In the laboratory, the value associated with an 105 
irrelevant distractor interferes with the processing of task-relevant visual information, 106 
resulting in increased response times (RTs) and sometimes reduced accuracy in a 107 
variety of tasks ranging from simple visual discrimination to more complex scenarios in 108 
which the value of multiple competing items must be compared[5–8,10–17]. Importantly, 109 
these behavioral effects of value-based attentional capture are overexpressed in 110 
patients with attention-deficit hyperactivity disorder and addiction[18,19]. While previous 111 
work has shown that the value of task-relevant visual information increases neural 112 
activity in areas of early visual cortex [20–26], it is unclear how the learned value of 113 
irrelevant distractors modulates cortical responses in these regions.  114 
 115 
To examine this, we recruited human participants to perform a value-based decision-116 
making task and measured their brain activity in visual cortex using functional magnetic 117 
resonance imaging (fMRI). Subjects were required to select one of two task-relevant 118 
options while ignoring a third irrelevant and unactionable distractor that was rendered in 119 
a color that had been previously associated with a variable level of reward. We 120 
hypothesized that the previously assigned value of the distractor color would modulate 121 
evoked responses in early visual cortex, and that this reward-based modulation would 122 
be specific to the spatial location of the distractor stimulus. To evaluate spatially 123 
selective modulations, we used an inverted encoding model (IEM) to reconstruct a 124 
representation of each stimulus using activation patterns of hemodynamic responses 125 
from retinotopically organized visual areas V1, V2, and V3. We found that distractors 126 
previously associated with a high value slowed choice RTs. Distractors were also 127 
represented with higher fidelity in extrastriate visual areas V2 and V3. Importantly, these 128 
value-based modulations of behavior and of neural representations depended on target 129 
selection history. That is, the effect of distractor value on behavioral and neural data 130 
only occurred when the color of the distractor matched the color of a recently selected 131 
target. Together, these results suggest that the influence of high-value distractors on 132 
attentional capture begins with an early modulation of sensory responses, and that this 133 
value-driven attentional capture occurs when participants have learned the value 134 
associated with the visual feature of the distractor. 135 
 136 
Results 137 
High-valued distractors automatically capture attention 138 
In the present study, we used fMRI to measure activity in retinotopically organized 139 
visual areas V1, V2, and V3 while human participants (N=15) performed a two-140 
alternative value-based decision-making task with changing reward associations [6] 141 
(Figure 1). On each trial, three stimuli were presented, each rendered in a different 142 
color. Two of the stimuli were presented in fixed target locations and subjects had to 143 
choose between them. The third stimulus, termed a ‘distractor’, was presented in 144 
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another fixed location that subjects could never select. Participants learned that different 145 
rewards (1 or 9 cents) were associated with the colors of visual stimuli presented at the 146 
two target locations. Importantly, the distractor was not actionable and was thus 147 
completely irrelevant with respect to evaluating the relative value of the two possible 148 
targets. Across trials, the colors of the targets and the distractor changed randomly so 149 
that the distractor color on a given trial could match the color of a previously selected 150 
target that yielded either a low or a high monetary reward. Additionally, the pairings 151 
between color and reward changed across mini-blocks of 8 trials, so that values 152 
assigned to different colors could be counterbalanced. Thus, for behavioral and fMRI 153 
analyses, we sorted trials based on incentive values assigned to the colors of 154 
distractors (i.e., low- or high-valued distractor). The incentive value was always defined. 155 
However, a given color may not have been selected on previous trials. Therefore, the 156 
current value of the distractor was not always known to the participant. We thus 157 
examined the ‘selection history’ of the current distractor color by coding whether it was 158 
selected as a target in the previous 3 trials (i.e., selected or unselected; see Materials 159 
and Methods). 160 
 161 
Overall, subjects selected higher valued targets more often than lower valued targets 162 
(Figure 2A, p ≤ 1x10-6, 2-tailed, resampling test). This indicates that subjects were able 163 
to learn the values assigned to the different colors. Next, we fit the choice preference 164 
data as a function of differential target value with a cumulative Gaussian function 165 
(Figure 2B). We found no effect of distractor value (high – low distractor value) on these 166 
fit parameters on trials where the current distractors were previously selected (p’s = 167 
0.9420 and 0.0784 for sigma and mu, respectively, 2-tailed) or unselected (Figure 2B; 168 
p’s = 0.5637and 0.8206 for sigma and mu, respectively, 2-tailed). The null distractor 169 
value effect in the choice preference data is consistent with a large body of literature 170 
demonstrating smaller and more variable distractor value effects on task accuracy 171 
[11,27,28]. 172 
 173 
While there was no distractor value modulation on the choice preference data, RTs 174 
differed significantly across different distractor types (Table 1). We observed a 175 
significant effect of distractor value (high – low distractor value) on RTs on trials where 176 
the current distractor was previously selected (Figure 2D; p ≤ 1x10-6, 2-tailed). However, 177 
there was no distractor value modulation on trials where the current distractors were 178 
previously unselected (p = 0.2756, 2-tailed). Moreover, the magnitude of the distractor 179 
value modulation was significantly higher for the current distractor that was previously 180 
selected vs. unselected (p = 0.0102, 1-tailed). These RT results show that the distractor 181 
value captures attention, leading to a relative increase in the speed with which subjects 182 
processed task-relevant targets [5–8,13–17].  183 
 184 
The reward history of distractors modulates neural representations in early visual cortex 185 
 186 
To examine the influence of the distractor value on spatially specific distractor- and 187 
target-related neural representations in early visual cortex, we employed a multivariate 188 
analysis of fMRI data – an inverted encoding model (IEM; Materials and Methods; 189 
Figure 3) [20,29–31]. The IEM exploits the spatial tuning of neuronal populations in 190 
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visual cortex to reconstruct representations of target and distractor stimuli based on 191 
population-level activity measured via fMRI. As expected, we found that these 192 
reconstructions peaked at the center of each of the three locations (Figure 4A; sorted as 193 
unselected target, selected target, and distractor). Qualitatively, the reconstructed 194 
activation at the distractor location was highest when the distractor colors matched the 195 
target colors that had been selected (i.e., selected distractors) and rewarded with a 196 
higher value in the previous trials (i.e., the high-valued & previously selected distractor, 197 
the top right of the Figure 4A), compared to all the other distractor conditions.  198 
 199 
To quantify this effect, we computed the mean activation level in the reconstructed 200 
stimulus representations over the space occupied by the distractors (Figure 4A, see 201 
Materials and Methods; also see Sprague et al., 2018). Then, we used a non-parametric 202 
resampling method (i.e., resampling subjects with replacement) to evaluate the impact 203 
of distractor value (high vs. low distractor values) on the mean activation of the 204 
distractor representation. We did this separately for trials where the current distractor 205 
had been previously selected or unselected in preceding trials to determine if distractor 206 
value modulations depended on the selection history associated with the color of the 207 
distractor.  208 
 209 
First, we analyzed the data averaged across V1-V3 (Figure 4B). We found a significant 210 
distractor value modulation (high > low value) for the distractor that was previously 211 
selected (p = 1 x10-3, 2-tailed) but a null result for the distractor that was previously 212 
unselected (p = 0.4956, 2-tailed). We directly evaluated this effect and found that 213 
selection history significantly increased distractor value modulation  (p = 0.0243, 1-214 
tailed). We then repeated these tests separately for individual visual areas. We found 215 
significant distractor value modulations for the previously selected distractor in 216 
extrastriate visual areas V2 and V3 (p= 0.0011 and p = 0.0052, passing the Holm-217 
Bonferroni-corrected thresholds of 0.0167 and 0.025, respectively, 2-tailed) but not in 218 
the primary visual cortex V1 (p = 0.3318, 2-tailed). In V2 and V3, we confirmed that 219 
selection history had a significant effect on distractor value modulation (p = 0.0086 and 220 
p = 0.0374, respectively, 1-tailed). Similar to the data averaged across V1-V3, there was 221 
no significant distractor value modulation for the previously unselected distractors in any 222 
visual area (p = 0.2031, p = 0.6263, and p = 0.9230, for V1, V2, and V3, respectively, 2-223 
tailed). In sum, we used an IEM to evaluate spatially-specific representations of 224 
behaviorally irrelevant stimuli with an associated reward history. We found that the 225 
value associated with irrelevant visual features is encoded in spatially-specific activation 226 
in early visual areas V2 and V3.  227 
 228 
Target selection and target value are encoded in early visual cortex 229 
 230 
As shown in Figure 3A, stimulus representations are generally higher for selected 231 
targets compared to unselected targets. To quantify this effect, we computed the mean 232 
activation level in the reconstructed stimulus representations over the space occupied 233 
by the selected and unselected targets (Figure 5A). For the data collapsed across V1-234 
V3, we observed a significant target selection modulation (selected > unselected 235 
targets: p = 0.0011 for data collapsed across distractor types; p’s = 0.0642, 0.0003, 236 
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0.0228, and 0.0022 for low-valued & unselected, high-valued & unselected, low-valued 237 
& selected, and high-valued & selected distractors, with the Holm-Bonferroni-corrected 238 
thresholds of 0.05, 0.0125, 0.025, and 0.0167, respectively, 2-tailed). These target 239 
selection modulations were significant in all visual areas (p’s = 0.0189, 4.600 x10-4 and 240 
p = 5.600 x10-4, V1, V2 and V3, respectively; Holm-Bonferroni-corrected, 2-tailed).  241 
 242 
Next, we evaluated the impact of distractor value on the differential activity between 243 
selected and unselected targets. We found no influence of distractor value on target 244 
representations (high- vs low-valued distractors) on trials where the current distractor 245 
was previously selected (p =0.2303, 2-tailed) or on trials where the current distractor 246 
was unselected (p = 0.4463, 2-tailed). Similar null results were also observed when the 247 
data were analyzed separately in V1, V2, and V3 (p’s = 0.1639-0.8710 and 0.0744-248 
0.9419 for the selected and unselected conditions, 2-tailed). These are consistent with 249 
the null distractor value effects on the choice preference data (Figures 2A-B). 250 
 251 
Previous studies have reported that the relative value of targets is encoded in early 252 
visual cortex [23–25]. To test this, we analyzed the target selection modulation data 253 
both when the selected and unselected targets had the same value (i.e., selected = 254 
unselected targets), and when the selected target had a higher value compared to the 255 
unselected target (i.e., selected > unselected targets). As shown in Figure 5B, we found 256 
significant target selection modulations only when the selected targets had a higher 257 
value compared to the unselected targets in all visual areas (p’s = 0.0055, 4x10-6, and 258 
1x10-6, passing the Holm-Bonferroni-corrected thresholds of 0.0125, 0.0100, and 259 
0.0083 for V1, V2, and V3, respectively, 2-tailed), but no significant target modulations 260 
when selected and unselected targets had the same value (p’s = 0.0437-0.0756, which 261 
did not pass the Holm-Bonferroni-corrected threshold of 0.0167, 2-tailed). In addition, on 262 
trials where participants selected the higher-valued target, the target selection effect 263 
was significantly stronger in V3 than V1 (p = 0.0021, passing the Holm-Bonferroni-264 
corrected of 0.0167, 2-tailed). However, there was not a significant difference between 265 
V3 and V2 (p =0.1165, 2-tailed) or between V2 and V1 (p = 0.1274, 2-tailed). Taken 266 
together with the previous section, our results show that the encoding of target value 267 
and distractor value can occur in parallel in early areas of visual cortex.  268 
 269 
Discussion 270 
Visual stimuli that are not physically salient but that are paired with high reward values 271 
are known to automatically capture attention, even when those stimuli are behaviorally 272 
irrelevant and unactionable [5–9]. While a recent study reported that neural responses 273 
associated with distractors scale with reward history [32], it is unclear if these 274 
modulations were tied specifically to the location of the distractor and whether distractor 275 
response modulations led to attenuated target responses. Using a multivariate spatial 276 
reconstruction analysis of fMRI data, we show here that retinotopically organized 277 
regions in extrastriate visual areas V2 and V3 are modulated by the reward history of 278 
irrelevant visual stimuli. Importantly, the spatial reconstructions of these stimuli indicate 279 
that reward-based modulations occur precisely at the location of the distractor and that 280 
there is little associated impact on responses to simultaneously presented targets. 281 
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Taken together, our results suggest that value-based modulations may begin with the 282 
early value-based modulation of sensory responses evoked by the distractor. 283 
 284 
At the first glance, our results seem to contradict several recent studies that observed a 285 
reward-based suppression of neural representations associated with distractors in 286 
sensory cortices [33–36]. However, in many of these studies, the reward manipulation 287 
was not specifically tied to the distractor and distractor suppression was inferred based 288 
on modulations of neural responses related to the task-relevant targets [33–35]. Thus, 289 
these recent results are actually in line with the current data, in which the reconstruction 290 
activation of selected targets was higher than unselected targets and low-valued 291 
distractors. That said, another recent study reported that a high-valued distractor 292 
induced weaker neural representations in early visual cortex compared to the low-293 
valued distractor [36]. However, they found that this was true only when the distractor 294 
was physically more salient than the target in a perceptually demanding task[36]. They 295 
reasoned that the high sensory competition between low salience targets and high 296 
salience distractors required top-down attentional suppression of the high-valued 297 
targets[36]. However, this was not the case in the current experiment, where all stimuli 298 
were suprathreshold and matched for luminance. Thus, in the context of our 299 
experimental design, we did not find evidence for distractor suppression at either the 300 
behavioral or neural level.  301 
 302 
In the present study, we showed that an association between reward and color can 303 
induce neural modulations in early visual areas V1 – V3. This is somewhat surprising 304 
given evidence that neurons in higher visual areas, such as V4, V8, VO1, and inferior 305 
temporal cortex, are selectively tuned to chromatic information and responsible for 306 
processing color-based top-down modulations [29,37–42]. We suggest that value-based 307 
modulations in early visual areas may reflect top-down feedback signals from these 308 
higher visual areas, where the association between color and reward might be 309 
computed. Related to this idea, we found significant distractor value modulations only in 310 
extrastriate visual cortex but not in V1, which may reflect a reentrant signal 311 
backpropagated to earlier visual areas. The more robust effects in higher visual areas 312 
were also observed for the task-relevant target reconstructions, consistent with previous 313 
reports [20,30,31,43,44]. Overall, this pattern of data supports theoretical frameworks 314 
suggesting that visual cortex operates as a priority map which indexes the rank-ordered 315 
importance of different sensory inputs [20,23–25,30,31,33,34,45,46]. That said, the 316 
assumption that the color-reward association can only be computed in higher visual 317 
areas has to be considered with caution, because studies have also found that primary 318 
and extrastriate visual areas contain neuronal populations with an inhomogeneous 319 
spatial distribution of color selectivity [47,48].  320 
 321 
In summary, we demonstrate that the learned value of irrelevant distractors 322 
automatically captures attention and that this interferes with the processing of relevant 323 
visual information. This value-based attentional capture results in increased RTs and 324 
heightened distractor representations in retinotopically organized areas of extrastriate 325 
visual cortex. Together, our findings suggest that value-driven attentional capture 326 
begins with early sensory modulations of distractor representations in visual cortex. 327 
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Moreover, the modulations of both relevant targets and irrelevant distractors supports a 328 
recent re-framing of the classic dichotomy between bottom-up and top-down biasing 329 
factors in favor of a trichotomy that emphasizes a crucial role of learned reward history 330 
on the processing of relevant and irrelevant visual information [9].  331 
 332 
 333 
Materials and methods 334 
Participants 335 
Sixteen neurologically healthy human observers with normal color vision and normal or 336 
corrected-to-normal acuity participated in the present study. Participants were recruited 337 
from the University of California, San Diego (UCSD) community and all participants 338 
provided written informed consent as required by the local Institutional Review Board at 339 
UCSD (IRB# 081318). They then completed one scanning session of the main 340 
experiment and one or two sessions of retinotopic mapping scans. Participants were 341 
compensated 20 dollars per hour in the scanner with additional monetary rewards that 342 
scaled with their behavioral performance in the value-based learning task (mean 13.13 343 
dollars, SD 0.74). Data from one subject were excluded because of excessive 344 
movement artifacts during the retinotopy scans (>3 mm movement in more than half of 345 
the scans), leaving a total of 15 participants in the final analysis (age range 20 - 34 346 
years old, mean age = 24.6, ±4.29 SD).  347 
 348 
Stimuli and tasks 349 
Visual stimuli were rear-projected onto on a 115 cm-wide flat screen placed ~440 cm 350 
from the participant’s eyes at the foot of the scanner bore using a LCD projector 351 
(1024×768, 60 Hz, with a grey background, luminance = 8.68 cd/m2). The behavioral 352 
paradigms were programmed and presented via a laptop running Windows XP using 353 
MATLAB (Mathworks Inc., Natick, MA) and the Psychophysics Toolbox [49,50]. 354 
 355 
Value-based decision-making task  356 
We adopted a value-based decision-making task that we recently used to show a robust 357 
effect of distractor reward history on behavior [6]. Each block started with an instruction 358 
period, telling participants the locations of the two targets and the location of the 359 
irrelevant distractor. The position of each stimulus was indicated by different letter 360 
strings located inside three circular placeholders equally spaced from one another (120o 361 
polar angle apart with an eccentricity of 3.02o visual angle; Figure 1). The placeholders 362 
remained visible for the entire run so that participants knew the precise target and 363 
distractor locations. The instruction period was followed by experimental trials where 364 
three physically isoluminant checkerboard stimuli of different colors were presented 365 
(black paired with red, green, and blue, radius of 1.01o visual angle, and spatial 366 
frequency of 1.98 cycles per degree visual angle). The stimuli were flickered on-off at 367 
7.5 Hz for 1 sec. 368 
 369 
Participants were instructed to choose one of the two targets to maximize their reward, 370 
and were told that the reward value associated with each color changed across the 371 
course of the scan. The reward values associated with each stimulus color were 372 
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changed every 8 trials (a mini-block). Subjects were not explicitly informed about the 373 
length of this mini-block but they were told that reward-color associations would change 374 
dynamically across a small chunk of trials. All 8 possible combinations of the three 375 
colors and two reward values (1 and 9 cents) were presented in each mini-block. The 376 
color assignments to each target and distractor stimulus were also counterbalanced 377 
within each mini-block. Trial order was pseudo-randomized so that the colors of the 378 
visual stimuli at three stimulus locations swapped in an unpredictable fashion. The 379 
assignment of different values to each color was also randomized so that changes in 380 
color-reward associations were unpredictable. 381 
 382 
Participants were instructed to choose one of the two targets using two fingers on the 383 
right hand, as indicated in a diagram displayed before the run started (Figure 1). 384 
Importantly, the distractor could never be chosen and was thus choice-irrelevant. After a 385 
1.25 sec delay following the offset of the stimulus array, participants received visual 386 
feedback indicating the value associated with the chosen target color (‘1’ or ‘9’; 387 
feedback duration = 0.25 sec). If a response was not given before the stimulus offset, 388 
they would receive a letter ‘M’ (“miss”) to indicate that no reward was earned on that 389 
trial. On a random 20% of trials, rewards were withheld to encourage participants to 390 
explore and learn the value of each color (done independently for each of the two 391 
targets). ‘0’ cents were given in these trials indicating that participants received no 392 
reward. The feedback period was followed by a blank inter-trial interval with a central 393 
fixation for 1.5 sec. 394 
 395 
Participants completed 6 total blocks with the distractor location remaining stable for 2 396 
consecutive blocks to ensure that participants knew the exact position of the distractor 397 
stimulus. Across all blocks the distractor location was counterbalanced across the 3 398 
possible stimulus positions. Each block lasted 4 min 57 sec and contained 48 399 
experimental trials and 20 pseudorandomly interleaved null trials. There was a blank 400 
period of 9 sec at the end of each block. We counterbalanced stimulus configurations 401 
across participants to ensure our results were not influenced by any spatial bias. To 402 
sample data from the entire circular space across subjects, the stimulus arrays were 403 
rotated by 30o polar angle to form four configurations (15o-135o-255o, 45o-165o-285o, 404 
and 75o-195o-315o, and 105o-225o-345o) and these four configurations were 405 
counterbalanced across subjects. Each subject viewed 1 of these 4 configurations for 406 
their entire scanning session. 407 
 408 
Visuospatial mapping task 409 
Participants also completed 4-7 blocks of a visuospatial mapping task (one completed 4 410 
blocks, one completed 7 blocks, and the rest completed 6 blocks). The data from this 411 
task were then used as an independent data set to train an inverted encoding model 412 
(IEM) that was used to reconstruct spatial representations of the targets and distractors 413 
in the value-based learning task (see the analysis section below for more details). 414 
Participants were instructed to fixate centrally and to covertly attend to a checkerboard 415 
stimulus rendered at 100% Michelson contrast that pseudo-randomly appeared at 416 
different locations on the screen (3 sec duration; the same size, spatial frequency, and 417 
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flicker frequency as the stimulus in the value-based learning task). The participant’s task 418 
was to detect a rare and brief dimming in contrast (19.57% target trials; 0.5 sec 419 
duration; occurring between 0.5-2 seconds after stimulus onset). On each trial, the 420 
checkerboard stimulus was presented at one of 37 locations on a triangular grid (1.50o 421 
visual angle between vertices), covering a visual space that overlapped with the 422 
stimulus locations in the value-based learning task (the first panel in Figure 3A). To 423 
smoothly cover the entire circular space, we randomly rotated the entire triangular grid 424 
around its center by 0o, 20o, or, 40o polar angle across different runs (blue, yellow, and 425 
red dots in the first panel in Figure 3A), so there were 111 different stimulus locations in 426 
total (see similar methods in Sprague et al., 2018). On each run, there were a total of 37 427 
non-targets (1 repeat per location) and 9 targets. Target locations were pseudo-428 
randomly drawn from the 37 locations (never repeated within each block). The 429 
magnitude of the contrast change was adjusted across trials so that accuracy was at 430 
~76% (mean hit = 77.95%, SD = 12.23%). Each stimulus presentation was followed by 431 
an ITI of 2-5 sec (uniformly distributed). We pseudo-randomly interleaved 10 null trials 432 
and included a blank period of 8.2 sec at the end of the block. Each block lasted 6.28 433 
minutes. 434 
 435 
Behavioral analysis 436 
We first sorted trials from the main value-based decision-making task based on target 437 
selection (i.e., target type: selected and unselected), target value (low and high value), 438 
distractor value based on previous target rewards associated with the color of the 439 
distractor (low and high value), and selection history (i.e., whether the distractor was 440 
previously unselected or selected at least once in 3 preceding trials). We chose the 3-441 
back analysis window because it yielded the most balanced number of trials between 442 
individual conditions. That said, an analysis using a window covering 1 or 2 previous 443 
trials yielded qualitatively consistent results. Note that because of the boundary 444 
between miniblocks (every 8 trials where value-color assignments were the same), we 445 
could only go back 1 and 2 trials for the 2nd and 3rd trials, respectively.  We excluded 446 
data from the 1st trial of every 8 trials in each mini-block to reduce the spill-over effect 447 
from different sets of value-color assignments.  448 
 449 
Next, we examined subjects’ choice preference. To do so, we labeled targets located 450 
clockwise (CW) and counter-clockwise (CCW) to the distractor CW and CCW targets 451 
and computed the probability that participants chose CW over CCW targets and plotted 452 
as a function of CW target value and CCW target value (Figure 2A). Next, we plotted 453 
the choices as a function of differential target value (CW – CCW) separately for different 454 
distractor values and fit individual subjects’ data with the cumulative Gaussian function 455 
(Figure 2B). Specifically, we estimated the mean (or mu) and the standard deviation (or 456 
sigma) of the cumulative Gaussian function that best fit the choice preference data 457 
derived from different distractor values (see Table 1 for mean and SEM)[6]. To test 458 
distractor value modulations on these parameters, we computed the bootstrap 459 
distribution of the difference in these parameters between the high and low distractor 460 
value conditions (i.e., resampling subjects with replacement for 100,000 iterations) and 461 
calculated the percentage of values in this distribution that were larger or smaller than 462 
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zero to yield a 2-tailed p-value. We performed this statistical analysis separately for 463 
previously selected and unselected distractors (see above). 464 
 465 
Finally, we examined the effect of distractor value on RTs. First, we computed the mean 466 
RTs across different distractor values for individual subjects. Then, we computed the 467 
bootstrap distribution of the RT difference between the high and low distractor value 468 
conditions (i.e., resampling subjects with replacement for 100,000 iterations) and 469 
calculated the percentage of values in this distribution that were larger or smaller than 470 
zero (a 2-tailed p-value). We performed this statistical analysis separately for previously 471 
selected and unselected distractors. We then compared whether the effect of distractor 472 
value was significantly larger in the selected condition than the unselected condition by 473 
a similar procedure that compared the two bootstrap distributions. Since we only 474 
observed significantly larger RT differences for previously selected targets, we knew the 475 
expected direction of the effect and therefore computed a 1-tailed p-value. 476 
 477 
fMRI analysis 478 
fMRI acquisition 479 
All MRI data were acquired on a GE 3T MR750 scanner at the Keck Center for 480 
Functional Magnetic Resonance Imaging (CFMRI) at UCSD. Unless otherwise 481 
specified, all data were collected using a 32-channel head coil (Nova Medical). We 482 
acquired functional data using a multiband echo-planar imaging (EPI) protocol (Stanford 483 
Simultaneous Multi-Slice sequence). We acquired 9 axial slices per band at a multiband 484 
factor of 8, for 72 total slices (2x2x2 mm3 voxel size; 800 ms TR; 35 ms TE; 35° flip 485 
angle; 104x104 cm matrix size). Prior to each functional scan, 16 TRs were acquired as 486 
reference images for image reconstruction. Raw k-space data were reconstructed into 487 
NIFTI format image files on internal servers using scripts provided by CFMRI. In each 488 
session, we also acquired forward and reverse phase encoding blips to estimate the 489 
susceptibility off-resonance field [51]. This was used to correct EPI signal distortion 490 
using FSL topup [52,53], the results of which was submitted to further preprocessing 491 
stages described below. In each session, we also acquired an accelerated anatomical 492 
using parallel imaging (GE ASSET on a FSPGR T1-weighted sequence; 1x1x1 mm3 493 
voxel size; 8136 ms TR; 3172 ms TE; 8° flip angle; 172 slices; 1 mm slice gap; 256x192 494 
cm matrix size). This same-session anatomical was coregistered to the functional data. 495 
It was also coregistered to a high-resolution anatomical from the retinotopic mapping 496 
session(s). 497 
 498 
Retinotopic mapping  499 
To identify regions of interest (ROIs) in early visual cortex, we used a combination of 500 
retinotopic mapping methods. Individual participants completed meridian mapping (1-2 501 
~5-min blocks), where they saw flickering checkerboards “bowties” along the horizontal 502 
and vertical meridians while fixating centrally. They also completed several scans of a 503 
polar angle mapping task (4-6 ~6-min blocks) where participants covertly attended to a 504 
rotating a checkerboard wedge and detected brief contrast changes (see details in 505 
Sprague and Serences, 2013; Vo et al., 2017). We identified retinotopically organized 506 
regions of visual areas V1, V2, and V3 using a combination of retinotopic maps of visual 507 
field meridians and polar angle preferences for each voxel in these visual areas and 508 
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concatenated left and right hemispheres as well as dorsal and ventral aspects of 509 
individual areas [54,55]. Visual area borders were drawn on an inflated cortical surface 510 
created from a high-resolution anatomical scan (FSPGR T1-weighted sequence; 1x1x1 511 
mm3; 8136 ms TR; 3172 ms TE; 8° flip angle; 172 slices; 1 mm slice gap; 256x192 cm 512 
matrix size) collected with an 8-channel head coil. 513 
 514 
fMRI data preprocessing  515 
Analysis was performed in BrainVoyager 20.2 (Brain Innovation, Maastricht, The 516 
Netherlands) supplemented with custom analysis scripts written in MATLAB R2016a 517 
(The Mathworks Inc., Natick, Mass). Using the distortion-corrected images, we first 518 
performed slice-time correction, affine motion correction, and temporal high-pass 519 
filtering. Then the functional data were coregistered to the same-session anatomical 520 
and transformed to Talairach space. Each voxel’s timecourse was z-scored within each 521 
run. We then built a design matrix with individual trial predictors convolved with a 522 
double-gamma HRF (peak = 5 s, undershoot peak = 15 s; response undershoot ratio = 523 
6; response dispersion = 1; undershoot dispersion = 1). We also included a baseline 524 
predictor. This allowed us to calculate single-trial beta weights using a general linear 525 
model (GLM). These beta weights served as input to the IEM described below. 526 
 527 
Inverted encoding model (IEM) 528 
In order to create the reconstructions of target and distractor stimuli in the value-based 529 
learning task from individual ROIs, we employed an IEM for retinotopic space (see 530 
Figure 3; also see Brouwer & Heeger, 2009; Sprague et al., 2018; Sprague & Serences, 531 
2013; Vo, Sprague, & Serences, 2017). First, we computed a spatial sensitivity profile 532 
(i.e., an encoding model) for each voxel, parameterized as a weighted sum of 533 
experimenter-defined information channels (i.e. spatial filters in second panel of Figure 534 
3A) using an independent training data set acquired from the visuospatial mapping task 535 
(using only non-target trials). Then, we inverted the encoding models across all voxels 536 
to compute weights on the spatial information channels and used these weights to 537 
transform the fMRI data from the value-based learning task into an activation score. 538 
Specifically, the activation of each voxel is a weighted sum of 64 Gaussian-like spatial 539 
information channels arrayed in an 8 x 8 rectangular grid (see the second panel of 540 
Figure 3). The filter centers were equally spaced by 1.43o visual angle with full-width 541 
half-maximum of 2o visual angle). The Gaussian-like function of each filter is described 542 
by:  543 

   𝑓(𝑟) = &0.5 + 0.5 𝑐𝑜𝑠 ./
0
1
2
for r < s; 0 otherwise, (Equation 1) 544 

where r is the distance from the filter center and s is a size parameter indicating the 545 
distance between filter centers at which the filter returns to 0. We set values greater 546 
than s to 0 (s = 5.0332), resulting in a smooth filter at each position along the grid [30].  547 
 548 
We then define the idealized response of the information channels for each given 549 
training trial. To do this, we multiplied a discretized version of the stimulus (n trials x p 550 
pixels) by the 64 channels defined by Equation 1 (p pixels x k channels). We then 551 
normalized this result so that the maximum channel response is 1. This is C1 in the 552 
following equation:  553 
   𝐵4 = 𝐶4𝑊 ,       (Equation 2) 554 
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where B1 (n trials × m voxels) is the measured fMRI activity of each voxel during the 555 
visuospatial mapping task (i.e., beta weights, see fMRI Preprocessing section), C1 (n 556 
trials × k channels) is the predicted response of each spatial filter (i.e., information 557 
channel normalized from 0 to 1), and W is a weight matrix (k channels × m voxels) that 558 
quantifies the contribution of each information channel to each voxel. Next, we used 559 
ordinary least-squares linear regression to solve for W with the following equation:  560 

   𝑊
^
= (𝐶48𝐶4)94𝐶48𝐵4       (Equation 3)   561 

Here, W
^

 represents all estimated voxel sensitivity profiles, which we computed 562 

separately for each ROI. Next, we used  W
^

 and the measured fMRI activity of each 563 
voxel (i.e., beta weights) during each trial of the value-based learning task to estimate 564 
the activation of each information channel using the following equation (see Figure 3B):  565 

  𝐶
^
; = 𝐵;𝑊

^
8 <𝑊

^
𝑊
^
8=

94
     (Equation 4) 566 

Here, 𝐶
^
; represents the estimated activation of each information channel (n2 trials × k 567 

channels), which gives rise to the observed activation pattern across all voxels within 568 
that ROI (B2, n2 trials × m voxels). To visualize and co-register trials across three 569 
stimulus locations, we computed spatial reconstructions by multiplying the spatial profile 570 
of each filter by the estimated activation level of the corresponding channel (i.e. 571 
computing a weighted sum; the last panel of Figure 3B). We rotated the center position 572 
of the spatial filters on each trial of individual participants such that the resulting 2D 573 
reconstructions of the target and distractor stimuli share common positions across trials 574 
and participants (CCW target, CW target, and distractor locations centered at 30o, 150o, 575 
and 270o polar angle, respectively; 3.02o visual angle from the center of the 2D 576 
reconstruction). Next, we sorted trials based on choice selection (selected and 577 
unselected) and target value (1 and 9 cents) and the reward history of the distractor 578 
(zero, low, and high) in the same way as we did for the behavioral analysis. Then we 579 
flipped all spatial reconstructions left to right on trials where the selected target location 580 
was on the left (150o) so that the unselected and selected targets always shared 581 
common locations on the left and right of the reconstruction, respectively (150o and 582 
30o). This step did not change the position of the distractor, so it stayed at 270o polar 583 
angle. Finally, we averaged the 2D reconstructions across trials with the same trial 584 
types for individual participants and then averaged those reconstructions across 585 
participants, resulting in the grand-average spatial reconstructions shown in Figure 4A.  586 
 587 
fMRI statistical analysis 588 
Following a previous approach [20,56], we extracted the reconstruction activation for 589 
each trial type in individual participants by averaging the data within the circular space 590 
spanning the entire area of individual stimuli. This was used as our “reconstruction 591 
activation” measure. Like the behavioral analyses, all statistical analyses were 592 
conducted by resampling relevant values from each subject with replacement for 593 
100,000 iterations and comparing these values across resampling iterations 594 
 595 
First, we examined the distractor value modulation on the distractor reconstruction 596 
activation for data averaged across V1-V3. To do so, we computed the bootstrap 597 
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distribution of the difference of the distractor reconstruction activation between the high 598 
and low distractor value conditions and calculated the percentage of values in this 599 
distribution that were larger or smaller than zero (2-tailed). We performed this statistical 600 
analysis separately for trials where the current distractor was previously selected and 601 
unselected in preceding trials to examine if the distractor value modulation depended on 602 
selection history. We then compared whether the effect of distractor value was 603 
significantly larger in the selected condition than the unselected condition by a similar 604 
procedure that compared the two bootstrap distributions (1-tailed to the known direction 605 
of the difference). We repeated the same statistical procedures for individual visual 606 
areas, and corrected for multiple comparisons using the Holm-Bonferroni method[57].   607 
 608 
Next, we tested the target selection modulation on the target reconstruction activation 609 
for data averaged across V1-V3. To do so, we computed the bootstrap distribution of 610 
the difference between the selected and unselected target reconstruction activation and 611 
calculated the percentage of values in this distribution that were larger or smaller than 612 
zero (2-tailed). We first performed this on the data collapsed across all distractor types. 613 
Then we assessed the target selection modulations separately for individual distractor 614 
values and corrected for multiple comparisons using the Holm-Bonferroni method. 615 
Then, we tested for the distractor value modulation on the target selection modulation 616 
by computing the bootstrap distribution of the difference of the target selection 617 
modulations between the high and low distractor value conditions and computing the 618 
percentage of values in this distribution that were larger or smaller than zero (2-tailed). 619 
This was done separately for trials where the current distractor was previously 620 
unselected and selected in preceding trials. We repeated the same statistical 621 
procedures for individual visual areas, and corrected for multiple comparisons using the 622 
Holm-Bonferroni method.   623 
 624 
Finally, we tested whether target selection modulations depended on the relative value 625 
difference between selected and unselected targets, as suggested by previous 626 
studies[23–25]. For each target value condition (same vs different target values) and 627 
each visual area, we computed the bootstrap distribution of the difference between the 628 
selected and unselected target reconstruction activation and calculated the percentage 629 
of values in this distribution that were larger or smaller than zero (2-tailed). Here, we 630 
also corrected for multiple comparisons across different target value conditions and 631 
different visual areas using the Holm-Bonferroni method (6 comparisons). Since we 632 
found more robust target selection modulations in higher visual areas in trials where the 633 
selected and unselected targets had different values, we further tested if the target 634 
selection modulation in V3 was higher than that in V1, if the target modulation in V2 was 635 
higher than that in V1, and if the target modulation in V2 was higher than that V1. To do 636 
so, we compared the target selection modulation distributions across these visual areas 637 
(1 tailed, due to the known direction of the difference), and corrected for multiple 638 
comparisons using the Holm-Bonferroni method.   639 
 640 
 641 
 642 
 643 
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Behavioral 
measurements  

Distractor types: Distractor value & Selection history (mean ± SEM) 

Low & Unselected  High & Unselected Low & Selected High & Selected 

Sigma 23.99±8.01 29.87±9.48 32.66±7.09 33.56±7.81 

Mu 0.85±2.41 0.17±2.80 1.31±1.58 -1.46±1.13 

RTs (ms) 600±20  612±15 592±18 643±19 

Table 1. Cumulative Gaussian parameters describing choice preference data and 828 

response times (RTs) for different distractor types shown in Figure 2.  829 
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 844 
Figure 1. Value-based decision-making task. Participants selected one of the two target 845 
stimuli to learn values associated with their colors, while ignoring a task-irrelevant 846 
distractor that could never be selected and was thus unactionable. Across trials, the 847 
colors of the targets and the distractor changed randomly so that the distractor color on 848 
a given trial could match the color of a previously selected target that yielded either a 849 
low or a high monetary reward (i.e., low- or high-valued distractor).   850 
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 852 
Figure 2. High-valued distractors increased response times. (A) Choice preference for 853 
high-valued targets for different distractor types. CW and CCW targets are targets 854 
located clockwise and counter-clockwise to the distractor location, respectively. (B) The 855 
same choice preference data, overlaid with the best fit cumulative Gaussian function 856 
(see Table 1). (C) Distractor value modulation (high – low distractor value) of regression 857 
parameters that explain choice preference functions in (B) (also see Table 1). Overall, 858 
we observed no distractor value modulation on choice preference functions: none of the 859 
regression parameters changed with distractor value in trials where the current 860 
distractor was previously selected or unselected. (D) Unlike choice preference data, we 861 
observed a robust distractor value modulation on RTs. The RT effect was significant 862 
only for trials where the distractor was previously selected. Black *** shows a significant 863 
distractor value modulation compared to zero with p < 0.001 (2-tailed; resampling test). 864 
Red * shows a significant difference between trials where the current distractors were 865 
previously selected and unselected with p < 0.05 (1-tailed). All error bars show ±1 866 
standard error of the mean (SEM). 867 
 868 
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 869 
 870 
Figure 3. Quantifying stimulus representations with an inverted encoding model (IEM). 871 
(A) The IEM was trained using fMRI data from the visuospatial mapping task, where 872 
flickering-checkerboard mapping stimuli were randomly presented at each of 111 873 
locations (center locations shown in blue, red, and yellow dots in the first panels; these 874 
dots were not physically presented to participants). We filtered individual stimulus 875 
locations using 64 Gaussian-like spatial filters to predict channels responses for each 876 
trial. We then use the predicted channel responses and fMRI data of all trials to predict 877 
channel weights for each voxel within each visual area. (B) The IEM was tested using 878 
fMRI data from the value-based learning task (an independent dataset).  We inverted 879 
the estimated channel weights to compute channel responses within each visual area, 880 
resulting in a spatial reconstruction centered at three stimulus locations in the value-881 
based learning task. 882 
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 883 
Figure 4. Distractor value boosted the activation of distractor representations in early 884 
visual cortex. (A) Averaged spatial reconstructions of the selected target, unselected 885 
target, and distractor based on fMRI activation patterns in early visual areas (collapsed 886 
across V1-V3). The data were sorted based on the distractor value (high and low 887 
distractor value) and the selection history (previously selected and unselected; also see 888 
Online Methods). Before averaging, reconstructions were rotated so that the positions of 889 
each respective stimulus type were in register across subjects. In each color plot, a 890 
black dot marks the location of the central fixation, and three surrounding dots at 30o, 891 
150o, 270o polar angle indicate the centers of the selected target, unselected target, and 892 
distractor locations, respectively. The bottom panels show difference plots between high 893 
and low distractor value conditions. (B) The distractor value modulation (high – low 894 
distractor value) from the reconstruction activation (averaged across black dashed 895 
circles in A). Overall, we found significant distractor value modulations in extrastriate 896 
visual areas V2 and V3, only in trials where the current distractor was previously 897 
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selected. Black ** and *** show significant distractor value modulations compared to 898 
zero with p < 0.01 and p < 0.001 (2-tailed). Red * and ** show a significant difference 899 
between trials where the current distractors were previously selected and unselected 900 
with p < 0.05 and p < 0.01 (1-tailed). The stats computed for different visual areas were 901 
corrected using the Holm-Bonferroni method. All error bars show ±1 standard error of 902 
the mean (SEM). Blue, red, and black dashed circles in A represent the spatial extents 903 
of unselected targets, selected targets, and distractors, respectively. 904 
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 932 
 933 
Figure 5. Target selection modulations in early visual areas. (A) The difference between 934 
the selected and unselected target reconstruction activation for different target types. 935 
The activation values were obtained from averaging the reconstruction activation over 936 
circular spaces spanning the spatial extents of target stimuli (red and blue dashed 937 
circles in Figure 4A). The data in (A) were collapsed across visual areas. (B) The same 938 
data as (A) but plotted separately for different target value conditions and for different 939 
visual areas. ** and *** indicate significant target selection modulations compared to 940 
zero with p’s < 0.01 and < 0.001, respectively (2-tailed). ++ indicate a significant 941 
difference across visual areas V1 and V3. Stats in (B) were corrected with the Holm-942 
Bonferroni method. All sub-figures are plotted with ±1 SEM. 943 
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