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Abstract

Motivation: A large number of methods have been developed to cluster genes on the basis of their

changes in mRNA expression over time, using bulk RNA-seq or microarray data. These methods

cannot be directly applied to single-cell data, since the temporal order of the cells is unknown. One

way to address this challenge is to first use pseudotime methods to order the cells, and then apply

standard clustering techniques. However, pseudotime estimates are subject to high levels of uncer-

tainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident

gene clusters.

Results: The proposed method, GPseudoClust, is a novel approach that both clusters genes for

pseudotemporally ordered data and quantifies the uncertainty in cluster allocations arising from

the uncertainty in the pseudotime ordering. GPseudoClust combines a recent method for pseudo-

time inference with nonparametric Bayesian clustering methods, efficient MCMC sampling, and

novel subsampling strategies. For branching data, GPseudoClust identifies differences in dynamic

patterns for different branches. In an application to stimulated dendritic cells, we show that it

categorises genes in a way consistent with known biological function. Furthermore, it integrates data

from different cell lines, batches or experimental protocols in a principled way.

Availability: An implementation is available on GitHub:

https://github.com/magStra/nonparametricSummaryPSM and

https://github.com/magStra/GPseudoClust.

Contact: ms58@sanger.ac.uk

1 Introduction

During response to stimulations or development, gene expression undergoes significant changes for many

genes. For bulk-measurements of gene expression these changes can be understood in terms of a trajectory

mapping time points to expression measurements. Genes can be clustered in terms of the similarities

of their trajectories. Eisen et al. (1998) found that similar expression dynamics of genes are related to

biological function. Clustering genes together with similar changes in expression over time can identify

genes likely to be co-regulated by the same transcription factors (Cooke et al., 2011). McDowell et al.

(2018) emphasise that using clustering to identify shared response types helps reduce the complexity of

the response, and allows the exploration of regulatory mechanisms underlying the shared response types.
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However, the methods proposed in the publications above were developed for bulk-measurements of gene

expression, and not for single-cell data, and there is a need for effective clustering algorithms for genes

for single-cell data as well, given that single-cell technologies have enabled us to obtain response and

developmental trajectories with a much better resolution; see, for example, Griffiths et al. (2018); Kunz

et al. (2018); Nestorowa et al. (2016). Single-cell RNA-seq data often follow processes of development,

differentiation or immune response, and the order of cells in terms of their progression can be inferred

using pseudotemporal ordering, see Ahmed et al. (2018); Campbell and Yau (2016); Haghverdi et al.

(2016); Ji and Ji (2016); Qiu et al. (2017); Reid and Wernisch (2016); Strauß et al. (2018); Welch

et al. (2016) among many others. For each gene the ordered gene expression measurements are noisy

observations of an underlying latent trajectory characterising the response of the gene to a stimulant or

the dynamics of its expression during development. Importantly, the inferred latent trajectory depends

on the pseudotime ordering of the cells. Single-cell data are also characterised by higher levels of noise,

including dropout effects; see, among others, Stegle et al. (2015); Vallejos et al. (2015). In addition, the

number of cells in single-cell data sets typically exceeds by orders of magnitude that of time points for

bulk measurements.

A number of algorithms have been developed specifically for the clustering of cells for scRNA-seq data,

for instance Kiselev et al. (2017); Lin et al. (2017) and Wang et al. (2017), the latter method using

multiple kernel learning. There has been far less progress on the development of clustering methods for

genes for this specific type of data. Commonly used general clustering algorithms, including mixtures

of Normals (e.g. mclust, Fraley and Raftery, 2002; Scrucca et al., 2017), k-medoids clustering (PAM,

Kaufman and Rousseeuw, 2008) as implemented in the cluster R package (Maechler et al., 2017)), and

hierarchical clustering, all fail to account for the pseudotemporal nature of the data.

One way of clustering pseudotemporal single-cell gene trajectories is a two-step approach (Macaulay

et al., 2016): first use a pseudotime ordering method such as SLICER (Welch et al., 2016) or DeLorean

(Reid and Wernisch, 2016); then cluster genes using a method for time-stamped bulk data, such as

GPClust (Hensman, 2013; Hensman et al., 2015). The two-step approach is unable to integrate the

uncertainty of inferred pseudotimes into the modelling of cluster structures. In contrast, the method

proposed here, GPseudoClust, samples from a full posterior distribution of cluster allocations, which

depends on a posterior distribution of pseudotime orders sampled jointly with the cluster allocations. A

two-step approach is also implemented in Monocle 2 (Qiu et al., 2017), which uses PAM on a distance

measure between smoothed pseudotime trajectories.

The shapes of the trajectories and their uncertainties change depending on the order of the cells.

GPseudoClust addresses this additional challenge by modelling the orders of cells and cluster alloca-

tions of genes jointly, thereby accounting for dependencies between the orders of the cells and cluster

allocations of the genes. We previously developed a method to capture the uncertainty of pseudotime

(Strauß et al., 2018), which is now combined with Bayesian clustering using Dirichlet process mixtures

of hierarchical GPs (Hensman, 2013; Hensman et al., 2015).

2 System and methods

2.1 Cell orderings and pseudotime

We assume we have preprocessed log-transformed gene expression data in the form yj of gene j =

1, . . . , ng, where yj is a vector of length T , the number of cells. We start with a vector of pseudotime
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points τ = (τ1, . . . , τT ) and and define an ordering of cells as a permutation o = (o1, . . . , oT ), oi ∈
{1, . . . , T}, oi 6= oj for i 6= j, where oi is the index of the cell assigned to pseudotime τi in the ordering.

Orders o = (o1, . . . , oT ) are mapped to pseudotimes τ (o) = (τ1(o), . . . , τT (o)) using approximate geodesic

distances (Tenenbaum et al., 2000) between the ordered cells. The mapping of orders to pseudotimes

is required to allow changes in scale for the underlying biological development, while allowing the com-

putational benefit of sampling from a slightly smaller, if still large, set of possible orders rather than an

even much larger one of possible high-dimensional pseudotime-vectors in [a, b]T , where [a, b] is an interval

in R+. For details concerning the sampling of the cell orderings and the geodesic mapping, see Strauß

et al. (2018).

2.2 Hierarchical GPs for pseudotemporal data

A Gaussian process (GP, Rasmussen and Williams (2006)) is a distribution over functions that is specified

using a mean function µ and a covariance function Σ. For an input vector τ (o) = (τ1, . . . , τT ) of

pseudotime points depending on orders o, µ(τ (o)) is a vector of T function evaluations of the mean

function µ and Σ(τ (o)) is a T × T matrix of covariance function evaluations of Σ. The distribution

of functions f ∼ GP (µ(o),Σ(o)) is described by stating that, for any vector of pseudotime points

τ (o) = (τ1(o), . . . , τT (o)), evaluations f(τi(o)) follow a multivariate Normal (f(τ1(o)), . . . , f(τT (o))) ∼
NT (µ(τ (o)),Σ(τ (o))). Here we use a squared exponential covariance function for Σ:

[
Σ(τ (o);σ2

w, l)
]
i,j

= σ2
w exp

(
− (τj − τi)2

2l2

)
(1)

where σ2
w is a scale parameter and l a length scale, and [.]i,j refers to the element in row i and column j

of a matrix.

GPs have previously been used for pseudotime ordering – see Ahmed et al. (2018); Campbell and Yau

(2016); Reid and Wernisch (2016); Strauß et al. (2018); Welch et al. (2017) – as well as for clustering

time-stamped bulk gene expression data; see Cooke et al. (2011); Hensman (2013); Kirk et al. (2012);

McDowell et al. (2018).

GPseudoClust models both the cluster-specific latent trajectory and a gene-specific latent trajectory

deviating from the cluster-wide trajectory to some extent, see Figure 1. This is referred to as a hierarchical

GP (see Hensman, 2013; Hensman et al., 2015, for details).
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Figure 1: One cluster in the hierarchical GP model. left: cluster-wide latent mean, right: cluster-wide
latent mean (black) and latent mean for each gene in the cluster.

We use Dirichlet processes (DPs, Ferguson, 1973) as a Bayesian nonparametric way of performing model-
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based clustering. A DP is a distribution over discrete distributions; that is, each draw from a DP is

itself a distribution. More precisely, G ∼ DP (α,G0) signifies that for any partition B1, . . . , Br of a

parameter space Θ, we have (G(B1), . . . , G(Br)) ∼ Dirichlet(αG0(B1), . . . , αG0(Br)), where the Di-

richlet distribution with r categories and concentration parameters (γ1, . . . , γr) is defined as follows:

p(x1, . . . , xr) =
Γ(

∑r
k=1 γk)∏r

k=1 Γ(γk)

∏r
k=1 x

γk−1
k .

3 Algorithm

3.1 Model

Conditional on the order o of the cells, the allocation of genes to clusters is modelled as a DP mixture

model of hierarchical GPs as follows. The latent cluster means µj , j = 1, . . . , ng (see black line in

Figure 1, ng is the number of genes) are drawn from a DP with base distribution G0:

G0 | o, a, ε, L ∼ GP (0,Σ(τ (o), 3a2 + ε, L)) (2)

α ∼ Gamma(2, 4) G | G0 ∼ DP (α,G0) µj | G ∼ G

where 0 represents the zero mean function, and Σ is defined as in (1). τ (o) is the vector of pseudotimes

corresponding to cell order o (see Section 2.1). L is the length scale of the GP, σ2
W = 3a2 + ε the scale

parameter corresponding to σ2
w in equation (1). This specific parametrisation of the scale parameter of

the latent mean trajectory links it to the scale and noise parameters of the deviations from the cluster-

specific mean trajectory of the gene-specific trajectories, see Figure 1 and equation (3) below. The

specific parameterisation used for our model is described and discussed in more detail below.

It should be noted that while we draw a mean µj for each gene j = 1, . . . , ng, the DP determines a

number K � ng and values η1, . . . , ηK such that for all j = 1, . . . , ng there is a k ∈ {1, . . . ,K} such

that µj = ηk. That is, the latent means µj only take K distinct values and there are K groups of genes

with identical latent means, which form a total of K clusters. The number of clusters is not fixed, but

automatically determined at each iteration of the sampler.

Shared across clusters, o, a, ε and L have the following priors: o ∼ uniform(permutations({1, 2, . . . , T})),
log(L) ∼ N

(
1
2 , σL

)
, log(a) ∼ N(

√
1
2 , σa), log(ε) ∼ N( 1

2 , σε). Note that the log-Normal distributions

guarantee positivity of the parameters. A strong prior for the length scale L is preferable for single-cell

data in the context of sampling orders because of their high noise levels. With a vague prior on the

length scale the inferred length scale tends to be too short, and the GP tends to overfit. We therefore

fix σL = 0.01 for all data sets, as in Strauß et al. (2018).

Individual gene trajectories are modelled by GPs with mean µj , j = 1, . . . , ng (ng is the number of genes).

GPseudoClust uses as input preprocessed log-transformed gene expression data yg(o) for gene g =

1, . . . , ng. Conditional on the pseudotime ordering o of the cells, the trajectory yj(o) of gene j is

distributed as yj(o) | µj , a, a1,o ∼ F , where

F = GP(µj ,Σ(τ (o), a2 · a1, 1) + a2(1− a1)IT ) (3)

a1 ∼ Beta(4, 1) (4)

Σ is as in equation (1), IT refers to the T -dimensional identity function. Note that a1 represents how

much variation from the cluster-wide mean is due to stochastic variation from the underlying stochastic
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process, while 1−a1 represents the proportion of the variation resulting from noise. By equation (3), the

ordered gene expression levels yj(o) of gene j are noisy representations of individual gene-specific latent

means drawn from a GP with cluster-specific mean function, see Figure 1. The black line represents the

cluster-specific mean function and the coloured lines represent the gene-specific latent means around the

cluster-specific mean.

A strong prior is also used for log(a) (σa = 0.01), while we use a weaker prior for log(ε) (σε = 0.1).

The hyperparameter a determines the magnitude of both the deviations of latent means of individual

genes (see Figure 1) and noise-related deviations (see equation (3)). Our prior ensures that the method

identifies interesting gene clusters whose within-cluster variability is low relative to the between-cluster

variability. It also links these deviations to the scale hyperparameter of the cluster-wide GP by setting

on it a lower bound which depends on the deviations of the trajectories of the individual genes from the

cluster-wide mean trajectory, see equation (2). The raw data are normalised by subtracting the total

mean of the expression matrix (not the row-wise mean), and dividing by the total standard deviation. For

normalised data the proposed prior on a reflects that for the type of clustering found by GPseudoClust,

the deviations from the cluster-wide latent mean account for roughly 50% of their average total variation,

unless there is relatively strong evidence in the data for a split into more clusters with smaller deviations

or fewer clusters with larger deviations.

3.2 MCMC sampling and block matrix representation

We use Markov Chain Monte Carlo (MCMC, Gilks et al. (1996)) sampling for inference of pseudotime

orderings and cluster assignments. This allows sampling from a joint probability distribution of clusters,

orders and hyperparameters a, L, a1 and ε. For the orders, which are sampled from the discrete space of

all possible permutations of cells, we previously developed an efficient sampling strategy (Strauß et al.,

2018). To reduce the dimensionality of the inference problem by reducing the number of parameters, we

integrate out the cluster-specific mean trajectories, and developed an efficient method for the inversion

of the resulting block matrices. For details, see Section S1 of the supplementary materials.

3.3 Subsampling strategies

Sampling orders of cells and clusters of genes simultaneously is a challenging high-dimensional problem,

in particular as the posterior distribution of the orders is typically highly complex; see Strauß et al.

(2018). In addition to the efficient block matrix computation strategies described above we further

improve convergence crucially by means of parallel MCMC chains on subsets of cells. The chains are

subsequently combined to a summary result approximating the posterior distribution of the cluster

allocations.

3.3.1 Posterior similarity matrices

A central step is the computation of posterior similarity matrices (PSMs) for each of the chains on

subsets of cells. The PSM is the symmetric positive semidefinite (see Lemma 4 in Section S2.2 of the

supplementary materials) matrix whose entry in the ith row and jth column is the frequency with which

gene i and gene j are clustered together among the samples drawn from the posterior distribution of

cluster allocations. This estimates the posterior probability of the two respective samples being in the

same cluster (Fritsch and Ickstadt, 2009).
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3.3.2 Obtaining summary clusterings from PSMs

While the uncertainty of the cluster allocations obtained for single-cell data sets does not always justify

a single summary clustering, it can nevertheless sometimes be useful to compute summary clusterings

for validation and comparison purposes. In addition, the methods presented below to find weights for

combining the PSMs obtained from the individual subsampled MCMC chains into one joint PSM also

require summary clusterings of individual PSMs. To obtain a summary clustering from a PSM, we apply

hierarchical clustering to the columns of the PSM using 1−PSM as the distance matrix (Medvedovic et al.,

2004). The optimal number of clusters is determined by a method maximising the posterior expected ARI

(PEAR) between the inferred summary clustering and the unknown true clustering structure (Fritsch

and Ickstadt, 2009). The ARI (adjusted Rand index, Hubert and Arabie (1985); Rand (1971), see

also Section 3.4 and Section S3 of the supplementary materials) is a measure of agreement between two

clusterings. The PEAR is therefore a measure of how well the inferred summary clustering is expected

to agree with the unknown true clustering.

3.3.3 Combining PSMs

The following methods for combining the PSMs from the individual MCMC chains on subsampled data

to obtain a joint overall PSM are proposed here:

Method ‘mean psm’ The first method proposed to obtain a joint PSM is to compute the element-

wise unweighted arithmetic mean of the PSMs of the individual chains. This method is referred to as

‘mean PSM’ here.

Methods ‘PY and PEAR’, ‘DPM and PEAR’ As noise levels tend to differ between subsamples

of cells, an unweighted average of the PSMs may not always be the best representation of the overall

posterior distribution. We propose new methods to obtain a final PSM as a weighted average of the PSMs

of the individual subsampled chains. The proposed methods are based on the following ideas. DP or

Pitman-Yor (PY, Ishwaran and James (2001); Pitman and Yor (1997)) mixture models can be extended

to perform feature selection. Pitman-Yor processes are a generalisation of DPs, for which the number

of clusters is a priori larger than for the DP, see Section S2.1 of the supplementary materials. Using

the two different processes here allows us to assess better the robustness of the method. We propose

to use DP and PY mixture models with variable selection to identify features which are informative of

the clustering, and to discard features that are not. In our case the features are the subsampled MCMC

chains. We obtain weights for the PSMs of the subsampled chains as follows: First we obtain a summary

clustering from each PSM. Then we use a DP or PY mixture model for discrete input data to model the

summary clusterings, and this gives us weights, which are inclusion probabilities of features we obtain

from the feature selection process. We refer to the two methods as ‘PY and PEAR’, ‘DPM and PEAR’,

respectively. For details see Section S2.1 of the supplementary materials.

Method ‘lmkk’ The differences in noise for different subsampled chains may be gene-specific; to

address this, this method applies localised multiple kernel k-means (lmkk, Gönen and Margolin (2014))

to obtain a summary clustering from the set of PSMs for the different chains. lmkk was first used to

obtain summary clusterings from consensus clustering matrices in Cabassi and Kirk (2019b,a). Unlike the

other methods proposed in this section, the ’lmkk’ method does not aim to provide a full estimate of the
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overall posterior similarity matrix, but it is an optimisation method to find a summary clustering from

multiple PSMs. The method proposed in this paper also finds weights for an overall summary matrix

representation of posterior cluster allocation probabilites. For details on our approach, see Section S2.2

of the supplementary materials.

3.4 Alternative clustering methods and assessment

The following other clustering methods are applied to the simulated and Shalek data sets: mclust,

PAM, hierarchical clustering and SIMLR. In addition, we applied the following two-step methods (first

pseudotime ordering of cells, then clustering of genes in a second step): SLICER (Welch et al., 2016) and

DeLorean (Reid and Wernisch, 2016) combined with GPclust (Hensman, 2013; Hensman et al., 2015),

and Monocle 2. Generally, standard settings are used. For SLICER the number of edges of the nearest

neighbours graph in the low dimensional space is set to 5. For the initialisation of the noise and variance

parameters for GPclust a number of different values were tried in an attempt to achieve a good clustering

solution. The method turned out to be sensitive to initial conditions. For those methods which do not

determine the number k of clusters automatically the average silhouette width (Rousseeuw, 1987), a

standard criterion, is used to determine the optimal number of clusters. For the Shalek data we assume

a minimum of four clusters, to distinguish between at least four different shapes of response trajectories,

including early and late response and different levels of response.

For the simulated data sets the following measures of comparison between the true and the inferred

cluster allocations are used: the Adjusted Rand index (ARI) (Hubert and Arabie, 1985; Rand, 1971),

the Fowlkes-Mallows Index (FMI), and normalised mutual information (NMI) (Kvalseth, 1987). For all

of these measures a score of one signifies perfect agreement between true and inferrred cluster allocations.

For a definition of the measures see Section S3 of the supplementary materials.

4 Implementation

4.1 Data sets

Simulated data sets 1 and 2 We simulated two data sets with five clusters each. The specific

construction of the two data sets is tailored for the first one to have very clearly separated clusters, and

the second one to have clusters that cannot be disentangled using methods ignoring the pseudotemporal

structure of the data, see Supplementary Figure S1. scRNA-seq data often consist of large numbers of

repeated measurements at a few capture times. To mimic this situation, we assume 3 capture times for

the simulated cells: the first 20 cells have capture time 1, cells 21 to 40 have capture time 2, and 41 to 60

capture time 3. We remove information about the true order by applying a random permutation to the

order of the cells within each capture time, to mimic the lack of temporal information in applications.

Simulated data sets 1 and 2 were simulated using GPs, but not the same GP model as GPseudoClust.

For both the simulated data sets cluster1 contains 8 genes, cluster2 4 genes, cluster3 12 genes, cluster4

16 genes and cluster5 12 genes. For a detailed description of the simulation set-up, see Section S4 of the

supplementary materials.
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Simulation studies with dropout noise scRNA-seq data are affected by technical noise leading

to zero-expression values when the gene is actually expressed in the cell. To study the robustness of the

method to technical zero-inflation without the presence of any other confounders, we use one of the data

sets which we used to validate the subsampling procedures (simulated data set 2, see paragraph above

and Supplementary Figure S1), and set nonzero values to zero at random. Note that while we could have

used a dropout rate which depends on the actual gene expression level, with higher expression levels

associated with lower probability of dropout (Pierson and Yau, 2015), our way of testing the robustness

is more stringent by allowing larger perturbations of the trajectory. This additional simulation study

comprises three sets of 100 data sets, to test for robustness of the GPSeudoClust method and all of the

proposed subsampling methods (Section 3.3) to different levels of dropout, including a simulation study

for which different groups of genes are affected by dropout to different degrees. The three dropout-related

simulations were repeated 100 times each. For details, see Section S6.1 of the supplementary materials.

Overview of experimental data sets The validity of the subsampling approach with parallel chains

each run on a subset of cells is further validated by applying GPseudoClust both with and without

subsampling to a data set with 600 genes and 35 cells (Sasagawa data set below, Sasagawa et al. (2013),

see below for a description of each of the data sets). An application of GPseudoClust to branching data

(Moignard data, Moignard et al. (2015)) confirms existing, but also finds new results on differences of

cluster structures of genes for different branches. GPseudoClust is also applied to non-branching data

(Shalek data, Shalek et al. (2014)). Finally, the subsampling method and the combination of weighted

PSMs are used to integrate data from different cell lines (Stumpf data, Stumpf et al. (2017)).

Moignard data: Moignard et al. (2015) applied single-cell RT-qPCR to 3,934 mouse early hema-

topoietic cells. In an in-vivo experiment cells were captured at four time points between embryonic day

7.0 and 8.5. In Moignard et al. (2015); Haghverdi et al. (2015, 2016) diffusion maps (Coifman et al.,

2005) are used to identify two branches, a blood and an endothelial branch. Here GPseudoClust is used

to identify and compare different clustering structures for genes for the different branches. We use the

pre-processed (Haghverdi et al., 2016; Moignard et al., 2015) data available as supplementary material

to Haghverdi et al. (2016). Before the application of GPseudoClust, branches are inferred using diffusion

maps, as in Haghverdi et al. (2016), which leads to the identification of an endothelial and an erythroid

branch. We use diffusion maps for the identification of the branches, but find cluster allocations and

their uncertainties using GPseudoClust without prior pseudotime ordering.

Sasagawa data: Mouse embryonic stem cells, cell-cycle related genes. GPseudoClust is also

applied to a Quartz-Seq (FPKM normalised) data set of 35 mouse embryonic stem cells (Sasagawa

et al., 2013), on cell-cycle related genes. Cell cycle genes were selected by finding genes associated with

GO:0007049, as in Liu et al. (2017).

Shalek data: LPS-stimulated mouse dendritic cells, scRNA-seq. Shalek et al. (2014) examined

the response of primary mouse bone-marrow-derived dendritic cells in three different conditions using

scRNA-seq. GPseudoClust is applied to the 74 genes identified by a previous method (Reid and Wernisch,

2016) as those with the highest temporal variance relative to their noise levels and to the 183 cells from

the LPS (Lipopolysaccharide stimulated) condition and capture times 2h, 4h, and 6h, dropping the cells

captured at 0h and 1h, to focus on differences between gene expression levels in reaction to the stimulus
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rather than before the reaction has set in. The data were log-transformed, and an adjustment for cell

size applied, according to Anders and Huber (2010) and Reid and Wernisch (2016).

Stumpf data: Stumpf et al. (2017) generated an RT-qPCR data set for 94 genes from two cell lines

following the progression of mouse embryonic stem cells along the neuronal lineage, containing 96 cells

per capture time (0h, 24h, 48h, 72h, 96h, 120h, 172h). The proposed subsampling methods allow taking

subsamples of cells from each cell line separately and combining the chains as described in Section 3.3.

For the preprocessing, the steps described in Stumpf et al. (2017) were applied to each cell line separately.

The raw data are available on Mendeley Data (http://dx.doi.org/10.17632/g2md5gbhz7.1).

Details on numbers of MCMC chains and subsampled cells for the different data sets are provided in

Section S5 of the supplementary materials.

4.2 Simulated data: only pseudotemporal methods unravel latent trajector-

ies

data set 1

0.4 0.6 0.8 1

mcl
SIMLR

PAM
hier.

SL+GCl
De+GCl

Mon 2
GPs+lmkk

GPs+PY
GPs+DP

GPs+mean

ARI FMI NMI

data set 2

0.4 0.6 0.8 1

mcl
SIMLR

PAM
hier.

SL+GCl
De+GCl

Mon 2
GPs+lmkk

GPs+PY
GPs+DP

GPs+mean

ARI FMI NMI

Figure 2: Simulated data sets 1 and 2. Comparison of estimates to true cluster allocations. Methods
compared: GPs+mean = GPseudoClust and ‘mean psm’, GPs+DP = GPseudoClust+‘DPM+PEAR’,
GPs+PY = GPeudoClust and ‘PY+PEAR’, GPs+lmkk = GPseudoClust method followed by summary
clustering using lmkk, Mon 2 = Monocle 2 (2 steps: ordering and then clustering), De+GCl = DeLorean
& GPclust (2 steps), SL+GCl = SLICER & GPclust (2 steps), hier = hierarchical clustering, PAM,
SIMLR, mcl = mclust. Left: simulated data set 1 (more clearly separated clusters), right: simulated
data set 2 (less clearly separated clusters).

Figure 2 illustrates the importance of using methods modelling the pseudotemporal nature of the data. It

includes results for point estimates obtained by combining the GPseudoClust method with the proposed

methods to obtain a joint PSM from several subsampled chains (see Section 3.3). Except for lmkk,

where the method itself provides a summary clustering, a final summary clustering was obtained from

the summary PSM by means of hierarchical clustering and the PEAR criterion. While for data sets

with clearly separated clusters most clustering methods will perform satisfactorily (Figure 2, left), this

is not the case for data sets where the cluster structure only becomes apparent through modelling the

data as a pseudotime series, see Figure 2 (right). In the latter case only methods taking into account
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the pseudotemporal dynamics, such as GPclust combined with pseudotime ordering, and GPseudoClust,

work well, while mclust and SIMLR perform best among those methods not incorporating the pseudotime

structure. It should be noted that, as indicated by the different values for the two ARIs, and also the

FMIs and NMIs, in Figure 2 for the two different two-step methods combining GPclust with existing

pseudotime methods, the clustering results depend on the chosen pseudotime method.

4.3 Robustness to dropout

Further simulation studies on a total of 300 data sets (dropout studies 1, 2, and 3, see Section 4.1) with

different levels of dropout noise demonstrate the robustness of GPseudoClust. For details, see Section S6

of the supplementary materials. Supplementary Figure S2 shows high ARIs with the true clustering

for summary clusterings obtained by means of GPseudoClust and the proposed subsampling methods.

While all the subsampling methods have a similar level of robustness to dropout noise when all genes are

affected for all cells with equal probabilities (see Supplementary Figure S2), the ‘lmkk’ method is shown

to be the best performing one for the case where there are groups of cells known to be less affected by

dropout for a subset of the genes (dropout study 3), see Supplementary Figure S3. Section S6.2 in the

supplementary materials also presents comparisons of the summary PSMs obtained using the different

subsampling methods, see Supplementary Figures S4 to S12.

4.4 Validating subsampling: Sasagawa data

The Sasagawa data set has only 35 cells, which makes it suitable for comparing the proposed subsampling

methods to applying the GPSeudoClust method to all the cells. Figure 3 illustrates good convergence of

the GPseudoClust method with and without subsampling. Moreover it demonstrates that the proposed

Figure 3: Sasagawa data: (a) illustrates four PSMs obtained without subsampling, by applying GPseudo-
Clust to all cells for each of the four chains. (b) compares the proposed subsampling methods ‘PY and
PEAR’, ‘DPM and PEAR’, and ‘lmkk’.

subsampling methods ‘PY and PEAR’ and ‘DPM and PEAR’ lead to PSMs convincingly similar to the

ones obtained without the subsampling, and that a similar matrix is obtained using lmkk.
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4.5 Immune response trajectories cluster around functional trajectories

The genes analysed for the Shalek data (see Section 4.1) are from three modules identified in Shalek

et al. (2014) as ‘peaked inflammatory module’, which shows a ‘rapid, yet transient induction’ to LPS

stimulation, ‘core antiviral module, enriched for annotated antiviral and interferon response genes’, and

‘sustained inflammatory module; exhibiting continued rise in expression under LPS’. While the analysis

proved to be very stable with regard to the number of subsampled chains (Supplementary Figure S27),

for the following analysis the PSM obtained using the ‘PY + PEAR’ method with 96 subsampled chains

is used. However, as illustrated by Supplementary Figure S27, for the ‘PY and PEAR’, ‘DPM and

PEAR’ and ‘mean PSM’ methods a good approximation is achieved with only 4 randomly chosen chains.

The PSMs allow the computation of (potentially overlapping) groups of genes with high pairwise co-

clustering probabilities. We use a threshold of 80% for the identification of groups of genes with high

pairwise co-clustering probability. The choice of 80% for the threshold is chosen to ensure that it is

sufficiently stringent to allow meaningful groups to be identified, but low enough to allow reasonably

sized groups to be identified. The word pairwise is used here to emphasise that this is not the probability

of all the genes being in the same cluster, but that for any two genes in such a group the probability of

these two genes being in the same cluster is above 80%. It should be noted that this approach is different

from trying to find a single summary clustering, and that the groups will usually overlap.

GPseudoClust identifies four groups with pairwise co-clustering probabilities of more than 80%, three of

which, however, have a large overlap. Therefore, we refer to the groups as 1, 2a, 2b, and 2c.

Group 1: Bcl2l11, Flrt3, Nfkbid, Ralgds, Rasgef1b, Socs3. All genes in this group belong to a ‘peaked

inflammatory module’ identified in Shalek et al. (2014), which shows a ‘rapid, yet transient induction’

to LPS stimulation.

Group 2: Ddx60, Dhx58, E030037k03rik, Iigp1, Irf7, Mpa2l, Ms4a4c, Nlrc5, Nos2, Phf11, Slco3a1

Group 2a: Group 2 and D14ertd668e, Il15. Except for Nos2, all genes in this group belong to a ‘core

antiviral module, enriched for annotated antiviral and interferon response genes’ (Shalek et al., 2014).

Nos2 is part of the ‘sustained inflammatory module; exhibiting continued rise in expression under LPS’.

Group 2b: Group 2 and D14ertd668e, Procr. This group consists of genes from the ‘core antiviral

module’, except for Nos2 and Procr.

Group 2c: Group 2 and Il15, Procr. This group consists of genes from the ‘core antiviral module’,

except for Nos2 and Procr.

We also applied the other clustering methods mentioned, see Section 3.4, to the Shalek data set. The

importance of quantifying the uncertainty of inferred cluster structures as done by GPseudoClust is

highlighted by Figure 4, where the various clustering methods resulting in a single clustering disagree

quite significantly, with most ARIs between pairs of results obtained by different methods less than

0.6. In addition, Figure 4 also shows that when the two-stage method of combining GPclust with a

pseudotime method is used, the clustering result depends on the choice of the pseudotime method.

4.6 Detecting branch-dependent clustering structures

The analysis of the Moignard data set shows very different clustering structures in the trunk, the en-

dothelial and the erythroid branch, see Figure 5, which shows summary PSMs obtained using the ‘PY
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Figure 4: ARI between results obtained by different clustering methods: Shalek data set. A score of 1
shows that the two clusterings are identical, a score of 0 that they are no more related than expected by
random chance. mcl = mclust, hier. = hierarchical clustering, SL+GCl = SLICER+GPclust, De+GCl
= DeLorean+GPclust, Mon 2 = Monocle 2.
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Figure 5: Moignard data: PSMs for branches. PSMs for each branch are obtained by the ‘PY and PEAR’
method. ‘Mean PSM’ refers to the unweighted mean of the summary PSMs of the three branches. A
summary clustering was obtained from the mean PSM to order each of the matrices in the same way.

+ PEAR’ method for the different branches. In this figure, the rows and columns of the four PSMs

displayed are ordered in the same way to illustrate the differences in the clustering structures between

the different branches.

For the trunk, Fli1, Tal1, Etv2, and Kdr have high posterior co-clustering probabilities, mirroring the

fact that they are switched on early in the developmental process (see Supplementary Figures S14

and S15). Genes with very low expression levels in the trunk (Gata1, Gfi1, Gfi1b, Hbbbh1, HoxB2,

HoxD8, Ikaros, Itga2b, Mecom, Mitf, Myb, Nfe2, Sfpi1 ) also have high co-clustering probabilities, see

Supplementary Figure S16, similarly genes with relatively constant higher expression levels (Ets2, FoxH1,

FoxO4, Ldb1, Supplementary Figure S17). For the endothelial branch, there is a group of genes with

relatively constant higher expression level throughout the endothelial branch, which have high posterior

co-clustering probabilities (Cbfa2t3h, Cdh5, Egfl7, Erg, Ets1, Ets2, Etv6, Fli1, Hhex, Itga2b, Kdr, Kit,
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Ldb1, Lyl1, Mecom, Meis1, Notch1, Pecam1, Sox17, Sox7, Tal1, Supplementary Figure S20), and a

group of genes which have very low expression levels or are not expressed (Cdh1, Gata1, Gfi1, Gfi1b,

HoxB2, HoxD8, Ikaros, Myb, Nfe2, Supplementary Figure S21). For the erythroid branch GPseudoClust

identifies again a group of genes with relatively constant higher expression levels (Cbfa2t3h, Ets2, Etv6,

FoxH1, FoxO4, Kit, Ldb1, Lyl1, Pecam1, Runx1, Tal1, Supplementary Figure S22). Gata1 and Nfe2 are

switched on at similar pseudotimes in the erythroid branch, whereas Cdh5, Ets1, Etv2, Hhex, Kdr and

Sox7 (Supplementary Figure S23) have a marked decrease in expression around a similar pseudotime

(Supplementary Figure S24). For a detailed analysis and illustrations of the pseudotemporal dynamics of

clusters of genes in different branches, see Section S7 of the supplementary materials and Supplementary

Figures S13 to S26.

4.7 Combining multiple data sets

The subsampling methods proposed in Section 3.3 are also particularly useful in situations where we

need to integrate data that were not obtained in exactly the same way, for instance because they were

obtained from different cell lines or generally in slightly different experimental conditions. Instead of

just blending the data sets, the subsampling method allows us to run chains for the different cell lines

separately, then combine them in a principled way. The ’PY and PEAR’ and ’DPM and PEAR’ methods

show particularly good agreement (see Supplementary Figure S28), but we also considered the ”mean

psm” and “lmkk” methods (see again Supplementary Figure S28).

Figure 6 illustrates the downweighting of those subsamples which are inconsistent with the integration

of the two cell lines to a joint overall structure (weights close to 0 in Figure 6), and highlights again the

high level of agreement between the ‘PY + PEAR’ and ‘DPM + PEAR’ methods.
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Figure 6: Stumpf data: comparison of weights for ’PY and PEAR’ (green) and ’DPM and PEAR’ (blue)
methods. The weights are plotted along the y-axes and are sorted in the same way for both methods
(ascending for ’PY and PEAR’ ).
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5 Discussion

GPseudoClust is a Bayesian nonparametric method for the clustering of genes for single-cell RNA-seq and

RT-qPCR data in terms of latent shared pseudotime trajectories. Applying the method to simulated data

shows that unless the clusters are very clearly separated from each other, clustering methods ignoring

the pseudotemporal nature of the data may not be effective. While it is possible to combine pseudotime

ordering and clustering methods in a two-step process, applications to both simulated and experimental

data lead to clustering results with a dependence on the pseudotime method used, see Figures 2 and 4.

GPseudoClust, a one-step ordering and clustering method, avoids this problem by sampling from a full

posterior distribution of cluster allocations, fully exploring not only one clustering solution, but providing

probabilities of genes being clustered together. GPseudoClust combines nonparametric Bayesian methods

(Gaussian and Dirichlet processes) with efficient proposal distributions for MCMC, subsampling of cells

(see Section 3.3), and novel methods for the combination of output from MCMC chains on subsampled

data. This allows GPseudoClust to be applied to data sets with large numbers of cells.

In an application to dendritic cells GPseudoClust identifies clusters of genes closely associated with

their biological function, and shows that there is considerable uncertainty in the clustering structures.

GPseudoClust captures this uncertainty by providing a distribution of posterior co-clustering probabil-

ities rather than just one single “point estimate” of a clustering. An application to branching data from

early hematopoeitic cells demonstrates the ability of the method to identify strong differences between

the clustering structures of the different branches. GPseudoClust identifies genes switched on or off at

similar times in pseudotime as being co-clustered with a high probability. The uncertainty of clustering

structures learned from the posterior distribution as represented by the PSM allows us to understand

similarity of genes in terms of pairwise co-clustering probabilities.

An application to data obtained from different cell lines illustrates the ability of the method to analyse

different data sets studying the same developmental process. GPseudoClust can be used to combine

studies with different experimental protocols with different levels of measurement noise. The methods

for finding weighted averages from multiple PSMs proposed here are designed to discard chains incon-

sistent with the overall clustering structure. We note that GPseudoClust could also be used to perform

meta-analyses of previous studies, thanks to its ability to integrate data sets obtained under different

experimental conditions. This may be of interest beyond the study of single-cell gene expression data.

While the computational efficiency of the subsampling methods makes it feasible to apply GPseudoClust

to data sets with several thousand genes, the method is most suitable for the clustering of genes with

high pseudotemporal variation. The stability of the methods used is demonstrated to be good. In

particular, the final summary PSMs are shown to be robust to whether we use the ‘DPM and PEAR’

or ‘PY and PEAR’ method. Except for relative measurements like RT-qPCR, GPseudoClust is applied

to log-transformed data. This is a frequent procedure for many pseudotime methods: see among many

others Ahmed et al., 2018; Haghverdi et al., 2016; Ji and Ji, 2016; Reid and Wernisch, 2016; Welch et al.,

2016. Modelling count data directly in GPseudoClust could be achieved by a change in the likelihood

function to a zero-inflated negative binomial distribution with GPs modelling the mean. However, this

would further increase the computational complexity and make it much more difficult for the MCMC to

achieve convergence.
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