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DNA has recently emerged as an attractive medium for future digital data storage because of its 

extremely high information density and potential longevity. Recent work has shown promising 

results in developing proof-of-principle prototype systems. However, very uneven (biased) 

sequencing coverage distributions have been reported, which indicates inefficiencies in the storage 

process and points to optimization opportunities. These deviations from the average coverage in 

oligonucleotide copy distribution result in sequence drop-out and make error-free data retrieval 

from DNA more challenging. The uneven copy distribution was believed to stem from the 

underlying molecular processes, but the interplay between these molecular processes and the copy 

number distribution has been poorly understood until now. In this paper, we use millions of unique 

sequences from a DNA-based digital data archival system to study the oligonucleotide copy 

unevenness problem and show that two important sources of bias are the synthesis process and the 

Polymerase Chain Reaction (PCR) process. By mapping the sequencing coverage of a large 

complex oligonucleotide pool back to its spatial distribution on the synthesis chip, we find that 

significant bias comes from array-based oligonucleotide synthesis. We also find that PCR 

stochasticity is another main driver of oligonucleotide copy variation. Based on these findings, we 

develop a statistical model for each molecular process as well as the overall process and compare 

the predicted bias with our experimental data. We further use our model to explore the trade-offs 

between synthesis bias, storage physical density and sequencing redundancy, providing insights for 

engineering efficient, robust DNA data storage systems. 

Storing data in DNA is attractive due to its information density of petabytes of data per gram, and 

excellent durability1. High-throughput (HT) sequencing and synthesis technologies2,3 have evolved and 

made storing information in synthetic DNA an increasingly realistic alternative to traditional long-term 

storage methods 4–7. However, the sequencing coverage of oligonucleotide (henceforth referred to simply 

as “oligo”) copy distribution was found to be very uneven, requiring modern error correction codes 

capable of handling sequence dropout1,6–11. Current methods typically require either trial-and-error on 

experimental protocols or brute-force use of hundreds to thousands sequencing reads to capture 

underrepresented sequences. This inefficiency stems from lack of understanding about bias in oligo copy 

distribution, as well as how it changes as the oligos are manipulated in DNA data storage systems.  

The problem with quantifying bias in a DNA storage system is that we cannot immediately and 

clearly distinguish bias created by DNA synthesis from bias caused by PCR and sequencing. As our first 

foray in separating bias effects stemming from DNA synthesis versus PCR, we tagged an arbitrarily 

chosen DNA archival file with over 400,000 sequences using Unique Molecular Identifiers (UMI), 

random barcodes to label each molecule12. UMI labeling allowed us to decouple synthesis bias from PCR 
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bias, and we found significant bias from DNA synthesis. To corroborate this finding, we ordered from 

Twist Bioscience a carefully designed ready-to-sequence pool with 1,536,168 sequences, each of which 

unique, and already containing necessary segments of DNA to be sequenced. This ready-to-sequence pool 

can be sequenced using an Illumina sequencer directly, with no need for intermediate PCR or DNA 

ligation steps required for sequencing library preparation. Thus we can quantify synthesis oligo 

distribution without any interference from molecular processes. To the best of our knowledge, this is the 

first time an oligo pool from array-based synthesis is characterized in this way. We found that synthesis 

bias was highly related to spatial location of oligos on a synthesis chip.  

After quantifying synthesis bias, we studied PCR bias from two sources – guanine/cytosine (GC) 

content and PCR stochasticity. GC content of individual sequences had been previously found to affect 

PCR amplification efficiency in biological DNA13–15. In DNA storage, the GC content of each strand is 

determined by a data-to-DNA sequence encoder. We tested GC bias using two different oligo pools: one 

pool was encoded to avoid all homopolymers (non-homopolymer pool); in contrast, the other was 

encoded without homopolymer avoidance steps (homopolymer pool). These two encoding strategies 

indeed led to different GC distributions: the GC content of the homopolymer pool was between 25% and 

75%, while that of the non-homopolymer pool was between 40% and 60%. However, in either case, we 

found no practically important association between GC content and PCR bias. Instead, we found that PCR 

stochasticity widened oligo copy distributions of our test DNA archival file and, based on our 

observations, seemed to be a dominant factor in PCR bias. PCR is an exponential process, so small 

random variations early on in amplification can have a large impact on distribution16–22.  

Based on these observations, we constructed a computational model for predicting molecular bias 

in a DNA data storage system (Fig. 1). We have observed strong association between the bias predicted 

from this model and from our experimental data. Furthermore, we used our model to investigate the 

tradeoffs between synthesis bias, physical redundancy for storing DNA (i.e., oligo copy number) and 

sequencing redundancy (i.e., sequencing coverage). A system model can be very useful to determine the 

best parameters for a given DNA storage system. 

UMI reveals that DNA synthesis is a prominent source of sequence bias in DNA data storage 

Determining the source of bias in DNA data storage, and more generally in arbitrary DNA pools, is 

complicated because synthesis bias and PCR bias are typically coupled. To decouple them, we applied 

Unique Molecular Identifiers (UMI), barcodes to individually identify each molecule of an initial pool, in 

our case an arbitrarily chosen DNA file with over 400,000 sequences (Fig. 2a and Supplementary Fig. 

S1). Synthetic DNA pools include multiple copies of each sequence, and UMI labeling ensures with high 

probability that each molecule will include a tag different from any other. The UMI-labeled oligos were 

sequenced, and the resulting reads were aligned to the file sequences in two manners. First, these reads 

were aligned to individual sequences in the file using BWA23, independent from UMI, and their 

respective counts (coverage) are reported in Fig. 2c. Second, the same reads were aligned to sequences in 

the file, then further filtered by UMI label (Fig. 2b), and finally reported in Fig 2d. The UMI-filtered 

results are a proxy for the oligo distribution after DNA synthesis, and the copy number is clearly variable. 

This distribution is also very similar in shape to the distribution after PCR, indicating that PCR does not 

significantly increase bias overall. Nevertheless, PCR still has an impact on individual sequence counts, 

so we decided to study the amplification ratio of each sequence as a function of the number of initial 

molecules representing it. We define the amplification ratio to be the ratio of total reads after PCR to UMI 

count (i.e., oligo count before PCR) for each sequence. Fig. 2e shows that regardless of the initial oligo 

copy number, the average amplification ratio remains constant. On the other hand, the amplification ratio 

was observed to have high variation when oligos had very low copy numbers, indicating that the 
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amplification ratio was affected by stochastic effects at these low copy numbers. Indeed, since a PCR 

process is composed of successive rounds of binomially distributed copying (each molecule has some 

probability of being copied), we would expect the standard deviation (s.d.) of the amplification ratio to be 

inversely proportional to the square root of the initial number of strands. Additionally, since observation 

takes a sequencing reaction (another binomial process) we'd expect a constant amount of added deviation. 

These observations lead us to the model:  

𝜎𝛼 =
𝑎

√𝑈𝑀𝐼 𝑐𝑜𝑢𝑛𝑡
+ 𝑏 

 

 

(1) 

where 𝜎𝛼 is the s.d. of the amplification ratio, and a and b are constants. Our experimental data was fitted 

using equation 1 and shown in Fig. 2f. 

Synthesis bias is related to the spatial location on the synthesis chip 

To further understand the synthesis bias, we ordered a carefully designed a ready-to-sequence pool with 

1,536,168 unique DNA sequences from Twist Bioscience. Oligos in this pool already contain universal 

Illumina adapters and Illumina sequencing primers on both 5’ and 3’ ends, allowing us to sequence it 

without any sequencing library preparation such as PCR or ligation. By mapping the sequencing reads of 

each sequence back to its corresponding location on the synthesis chip, a distinct pattern can be observed 

(Fig. 3a, left), indicating that synthesis bias was related to the spatial location on the synthesis chip. After 

further discussion with Twist Bioscience, their synthesis process was improved, and the oligo counts on 

the synthesis chip became much more even (Fig. 3b, left). Interestingly, the oligo distribution before the 

synthesis process improvement did not follow a normal distribution, but the oligo distribution using the 

improved synthesis process is now well fitted to a normal distribution (Figs. 3a and 3b, right).   

Population fraction change for quantifying PCR bias 

We now turn to studying the PCR bias by creating metrics to quantify it at the sequence level. We begin 

by defining the population fraction of a sequence 𝑖 after 𝑘 ∈ {𝑍≥0} cycles of PCR as 

𝑥𝑖
(𝑘)

≔
𝑁𝑖

(𝑘)

∑ 𝑁𝑗
(𝑘)

𝑗

 
(2) 

where 𝑁𝑖
(𝑘)

 is the number of reads of sequence 𝑖 after 𝑘 PCR cycles. We then define the population 

fraction change for sequence 𝑖 to be 

𝑄𝑖 = 𝑄𝑖
(𝑘)

≔  
𝑥𝑖

(𝑘)

𝑥𝑖
(0)

. 

 

(3) 

We consider a PCR process to be unbiased when 𝔼 [𝑄𝑖|𝑥𝑖
(0)

> 0] = 1 for all sequences, that is, no 

sequence becomes over or underrepresented after an unbiased PCR, whereas we consider a PCR process 

to be biased when 𝔼 [𝑄𝑖|𝑥𝑖
(0)

> 0] ≠ 1 for any sequence 𝑖. We then can say that experiments with higher 

standard deviation over the population fraction change, s. d. [𝑸 ≔ {𝑄𝑖|𝑥𝑖
(0)

> 0}], show more bias when 

all other conditions are equivalent. It is worth noting that even an unbiased process will have s. d. [𝑸] > 0 

for finite sample sizes. Furthermore, s. d. [𝐐] should asymptotically decrease with the total number of 

reads. 
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PCR bias is not correlated with GC content in DNA data storage 

Although previous studies observed PCR bias in genomic biological sample amplification13–15, it remains 

unclear whether such bias is significant in DNA data storage. To assess this, we used the 1.5 million-

sequence ready-to-sequence pool and compared its distribution before PCR and after PCR. The ready-to-

sequence pool was sequenced in two ways: (1) directly from the synthesized pool and (2) after one 6-

cycle plus five 5-cycle PCR processes, for a total of 31 cycles. Each PCR process was limited to no more 

than 6 cycles to prevent resource exhaustion (i.e., there was always an excess of primer and other 

reagents). Sequencing data (Fig. 4a) shows qualitatively little change in the coefficient of variation (c.v.) 

of oligo copy distribution before and after PCR (0.41 and 0.45, respectively, when both are subsampled to 

20x coverage). The two datasets were then compared at a sequence level by observing population fraction 

changes with respect to the overall available the pre-PCR pool coverage, 60x (Fig 4b). The distribution 

before PCR shows the effect of subsampling on population fraction, and the distribution after PCR shows 

the effect of PCR itself. The latter showed much higher standard deviation. The standard deviations of 

population fraction changes were 0.24 and 0.37 before PCR and after PCR, respectively, and these two 

numbers were statistically different (p < 0.005, computed by bootstrapping n=1000). This indicates that 

PCR increased bias relative to a random sampling process.  

We then asked whether population fraction changes were caused by GC content. We first 

examined the ready-to-sequence pool, which was encoded to avoid homopolymers6 (Fig. 4c). Although 

the association between population fraction changes and GC content of this pool (between 40% and 60%) 

was found to be statistically significant (P value < 0.05), the association between the two was very small 

and practically unimportant (the slope of the linear fit was < 0.01). Additionally, we tested another 9 

different DNA archival files with a total of 1,358,998 unique sequences that allow random homopolymers 

(Fig 4d; Supplementary Figure S2 shows experimental workflow details). These homopolymer files had 

a wider range of GC content from 25% to 75%, but the association between GC content and the 

population fraction changes was still very small and not practically important (the slope of the linear fit 

was < 0.01). The negligible bias impact from GC content in our experimental data was likely because 

these oligos were relatively short (150-nt), and the use of KAPA HIFI polymerase also reduced the 

impact of GC bias24. Having established that GC content was not the main effect being observed, we 

turned to hypothesizing that PCR stochasticity was the culprit. 

PCR stochasticity can lead to significant bias 

Because PCR is not perfect (i.e., replication of an individual molecule has a probability of less than one), 

even small random divergence in early phases of amplification can create significant bias, which is known 

as PCR stochastic bias. We have shown that PCR bias is related to oligo copy number in the UMI 

quantification experiment, especially for sequences with low copy numbers in the initial pool (from a 

previous PCR process or from a biased synthesis pool). Now we want to understand better how PCR 

stochastic bias affects our DNA storage system. 

To quantify PCR stochastic bias, we used an arbitrarily chosen DNA pool with 7,373 sequences 

to perform a serial dilution-PCR experiment (Fig. 5a). The master pool was diluted to different average 

copy numbers ranging from 8 to 113 (the copy numbers were quantified using qPCR). Then each sample 

was amplified with 18 cycles of PCR using primers with Illumina sequencing primer overhangs. 

Subsequently, a second step of PCR was carried out to include the Illumina adapters where we adjusted 

the number of cycles to equalize the final library concentration (Supplementary Figure S3 shows 

workflow details). The second PCR was carried out at high copy number of the templates (over a million 

oligo copies per sequence) to avoid introducing additional bias. Our experimental results show that as 
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average copy number decreased, oligo distribution skewed further away from its mean (Fig. 5c). We plot 

average copy number in a pre-PCR mix against the coefficient of variation (c.v.) of sequencing coverage 

(Fig. 5d) and standard deviation of population fraction change Q (Supplementary Figure S4). Both plots 

show that the lower oligo copy numbers were, the greater the PCR stochastic bias was. 

A computational model can predict molecular bias in a DNA archival system 

After characterizing the bias caused by synthesis and PCR sequencing retrieval, we construct a DNA 

storage model that encompasses the entire workflow of DNA storage, starting from synthesis → aliquot 

into pre-PCR reaction → PCR amplification with k cycles → sequencing with mean �̅�𝑟 reads (Fig. 5b). 

We model the oligo copy distribution of synthesis as a normal distribution with total number of sequences 

𝑁𝑠𝑒𝑞, mean copy number per sequence �̅�𝑠𝑦𝑛, and standard deviation of oligo copy number 𝜎. The PCR 

process is modeled as a stochastic branching process using the following recursive equation: 

𝑛𝑗+1 = 𝑛𝑗 + 𝐵(𝑛𝑗 , 𝑃) 

 

(4) 

where nj is the number of molecules in the j-th cycle; B(nj, P) is a binomially distributed random variable 

with nj molecules, and P is the probability of a successful amplification. Illumina sequencing was 

previously observed to have bias on GC extreme sequences13,25,26, but GC content in our files did not 

show practically significant bias in the PCR GC bias test. Therefore, high-throughput sequencing and 

sample dilution are modeled using random sampling. Note that for performance reasons our model does 

not perform stochastic simulation for high copy number PCR because PCR carried out at high copy 

number of templates should obey the law of mass action and therefore be effectively deterministic. 

We then interrogated our computational model to determine whether it can estimate the bias 

observed in the serial dilution-PCR experiment. Despite not being able to observe the oligo population 

directly after synthesis, our UMI experiment (Fig. 2) has provided evidence that its population 

distribution is quite similar to the distribution resulting from a PCR process that starts from a large 

average copy count sample coming from that synthesized pool. As such, the copy distribution of a 

synthesis pool is modeled as a normal distribution with the same c.v. as the experimental data from the 

(optimized) ready-to-sequence pool. Then we used our system model to simulate the dilution-PCR 

experiment. Fig. 5d shows that our model prediction is in good agreement with the c.v. of the 

experimental data (R2 = 0.71). The model also predicted the trend of standard deviation of population 

fraction change Q: the lower starting copy number in the PCR showed higher standard deviation (R2 = 

0.84; Supplementary Figure S4).  

A computational model can help determine system parameters for DNA data storage systems 

Taking it one step further, we used our computational model to study a range of parameters associated 

with DNA storage: synthesis bias, physical redundancy for storing DNA, and sequencing redundancy 

(Fig. 6a). In particular we investigated the impact of these parameters on sequence dropout rate, which is 

critical for error-free decoding. Fig. 6b plots sequence dropout rates as a function of the c.v. of a synthesis 

pool and sequencing reads. It shows that a biased synthesis pool (i.e., high c.v.) is the dominant factor in 

sequence dropout and cannot be proportionally compensated by additional sequencing reads. Sequence 

dropout is caused by physical storage with a limited number of oligo copies coupled with PCR stochastic 

bias. Fig. 6c plots sequence dropout rates as a function of the copy number of stored DNA and sequencing 

reads. It shows that physical storage density is a more important factor than sequencing reads in 

modulating sequence dropout. Interestingly, our model estimates that it is possible to store as few as 10 

copies per oligo sequence (information density of 9.3 EB/g (EB: exabytes; 1018 bytes)), while achieving 
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less than 2% sequence dropout. This estimated information density is over 10-fold higher than prior work 

by Erlich and Zielinski9, showing that there is more optimization to be done in this area.  

Discussion 

In this work, we quantified molecular bias in a DNA storage system, and we identified two significant 

bias sources: synthesis bias and PCR stochastic bias. Synthesis bias was found to be related to the spatial 

location on the synthesis chip, and this observation was later used to inform and improve the synthesis 

process. PCR stochastic bias was identified as the second main driver of oligo copy variation. Indeed, 

prior work also found that PCR copy data from a deeply diluted oligo pool resulted in dramatic bias, 

which was not suitable for data recovery9.  

Another important contribution of this manuscript is the construction of the first process-wide 

model that provides a quantitative understanding of how oligo copy distribution is skewed as it goes 

through a DNA storage system. Importantly, such system model helps researchers rationally optimize the 

use of DNA storage density and sequencing redundancy for reliable data decoding without conducting 

hundreds of experimental trials. We believe this is an important step towards engineering robust, efficient 

DNA storage systems.  

Our system model was experimentally tested by PCR-amplifying a single file without any other 

non-targeted files in a pool. This experiment was designed to avoid complexity from other files for proper 

quantification of the impact of PCR stochastic bias. Next, we plan to investigate whether PCR random 

access of a file from a complex pool with additional files will lead to more bias. We suspect that 

amplifying a very small file from a complex pool with relatively large number of sequences will exhibit 

more copy number variation due to non-specific binding of primers. New methods will probably be 

needed for such system.   

  

METHODS 

Reagents. All DNA pools were synthesized by Twist Bioscience (San Francisco, CA). All DNA pools 

were resuspended to 10 ng/µL in 1X TE buffer (pH 7.5). All primers were purchased as desalted, 

unpurified DNA from Integrated DNA Technologies (IDT; Coralville, IA). All primers were resuspended 

to 100 uM in 1X TE buffer (pH 7.5). KAPA HIFI polymerase was purchased from Kapa Biosystems. T4 

ligase and T4 Polynucleotide Kinase (T4 PNK) were purchased from New England Lab. 

PCR protocol. In a 20 µL PCR reaction, 1 µL of 1 ng/µL of ssDNA pool was mixed 1 µL of 10 uM of 

the forward primer and 1 µL of 10 uM of the reverse primer, 10 µL of 2X KAPA HIFI enzyme mix, and 7 

µL of molecular biograde water. The reaction followed a thermal protocol: (1) 95˚C for 3 min, (2) 98˚C 

for 20 sec, (3) 62˚C for 20 sec, (4) 72˚C for 15 sec. After PCR, the length of the PCR products was 

confirmed using a Qiaxcel fragment analyzer, and the sample concentration was measured using a Qubit 

3.0 fluorometer. 

Sample preparation for sequencing. Before sequencing, the concentrations of all samples were 

quantified using qPCR. The final sample was then prepared for sequencing by following the NextSeq 

System Denature and Dilute Libraries Guide. The final concentration of the loaded sample for our 

Illumina NextSeq is 1.3pM, and a 10%-20% PhiX was spiked in as a control (PhiX is a genomic DNA 

sample provided by Illumina). 
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Protocols of UMI labeling.  The general workflow for UMI labeling of a single-stranded DNA pool is 

divided into 5 steps (Supplementary Figure S1): (1) phosphorylation of a ssDNA pool and Illumina P7 

adapters, (2) assembly of a ssDNA pool with Illumina adapters with DNA staples by heat annealing, (3) 

ligation of Illumina adapters to the ssDNA pool, (4) extraction of the ligated sample using denaturing 

polyacrylamide gel electrophoresis (D-PAGE), and finally (5) PCR enrichment of the full length product. 

The phosphorylation of ssDNA was performed using the following recipe: 5 pmole of the single-stranded 

DNA pool, 20 units of T4 Polynucleotide Kinase (T4 PNK), 1µL of 10X T4 ligase buffer and 1 µL of 

10X T4 PNK buffer were mixed in a 10 µL total volume reaction. 500 pmole of single-stranded Illumina 

P7 adapter, 200 units of T4 PNK, 5µL of 10X T4 ligase buffer and 5µL of 10X T4 PNK buffer were 

mixed in a 50 µL total volume reaction. The mixtures were incubated for 30 minutes at 37˚C. 

The assembly of the single-stranded DNA pool with adapters were performed with the following recipe: 

In a 25 µL reaction, 15 pmole of single-stranded DNA pool, 30 pmole of DNA staples and 45 pmole of 

Illumina P5 and P7 adapters were mixed. The mixture was heated up to 95˚C for 2 minutes, and then 

cooled down to 25˚C at a rate of 1 degree per minute.  

Ligation of DNA was performed with a 15 µL reaction in which 10 µL of the assembled DNA mixture, 2 

µL of the T4 ligase (10 units/µL), 1.5 µL of T4 ligase buffer and 1.5 µL of molecular water were mixed. 

The ligation mixture was incubated at room temperature for 30 minutes, followed by heat inactivation at 

65˚C for 10 minutes. 

A 10% D-PAGE gel was made by mixing 2.5 mL of 19:1 40% acrylamide/bus, 1.2 mL of 10X TBE, 5.04 

g of urea and deionized water to 12 mL. Then 72 µL APS and 4.8 µL of TEMED were added to help 

polymerization. DNA sample was mixed with 2X TBE/Urea denaturing loading buffer (Bio-Rad). Gels 

were run at 200 V for 55 minutes at 55˚C. The extracted band was incubated with 1X TE buffer overnight 

at room temperature for elution.  

The eluted single-stranded DNA was PCR-amplified using the end primers of Illumina adapters. The PCR 

reaction used 1 µL of the eluted single-stranded DNA, 10 pmole of the forward and reverse primers, 10 

µL of 2X KAPA HIFI polymerase and 8 µL of molecular water. The thermal protocol is as follows: (1) 

95˚C for 3 min, (2) 98˚C for 20 sec, (3) 60˚C for 20 sec, (4) 72˚C for 15 sec. 

Density histogram plots 

The y-axis of a density histogram shows probability density, and the area (or integral) under the 

histogram is 1. The probability density 𝑑𝑖 is calculated by dividing the count by the sample size times its 

bin width (see the following equation).  

𝑑𝑖 =
𝑁𝑖

(∑ 𝑁𝑗) ∗𝑗 𝑊𝑖
 

(5) 

where 𝑁𝑖 is the count of the i-th bar, and 𝑊𝑖 is the bin width of the i-th bar. Displaying the y-axis as 

probability density makes it possible to compare distributions. In Fig. 5c, a Gaussian estimated curve is 

added to help visualize each histogram.  
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Figure 1. A DNA storage system model. Digital information is first encoded into oligonucleotide (oligo) 

sequences, resulting in multiple 150-base DNA fragments synthesized using array-based DNA synthesis 

technology, which are then stored. To read back the stored data, target DNA oligos can be selectively 

(random-) accessed using polymer chain reaction (PCR), then sequenced via next generation sequencing 

(NGS), and decoded back to digital information. The computational model approximates each molecular 

process in the DNA storage system: it uses a normal distribution for modeling sequence copy numbers 

from synthesis, a stochastic branching process for PCR, and random sampling for sequencing. The 

computational model makes predictions for oligo copy distribution to help researchers estimate statistics 

such as sequence dropout rate. 

 

Figure 2. Estimating oligonucleotide bias using unique molecule identifiers (UMIs). (a) Overview of 

tagging each single DNA molecule with UMIs. Each oligo sequence (e.g., represented in black, beige) in 

a pool has multiple copies and each copy is labeled with a UMI (represented in different colors) and 
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universal Illumina sequencing adapters (represented in grey). After UMI labeling, oligos are PCR-

amplified and sequenced. (b) Hypothetical examples of UMI counting. The UMI count of each sequence 

is a proxy for the oligo copy number from DNA synthesis. The total number of reads containing the same 

UMI is a proxy for the number of copies of a DNA molecule created by PCR. (c) The distribution of 

number of reads for each sequence, normalized to 83.0 mean coverage. Read counts are normalized to 

form a probability density (y-axis); the integral of the probability density is 1 (see Methods). (d) The 

distribution of UMI counts for each sequence, normalized to 7.7 mean coverage. The biased UMI count 

distribution indicates that pools are already biased immediately after DNA synthesis, before any PCR is 

performed. (e) Amplification ratio versus UMI count. The average amplification ratio is roughly constant 

across UMI counts, but oligos with low initial copy numbers show higher variation. (f) Standard deviation 

(s.d.) of amplification ratio versus UMI count. The experimental data agree with equation 1. 

 

 

Figure 3. Oligo copy distribution on the synthesis chip. (a) The sequencing coverage of each oligo 

from the first ready-to-sequence pool was mapped back to its corresponding location on the synthesis 

chip. Coverages are normalized to the median. (b) The histogram of normalized sequencing coverage of 

the first ready-to-sequence pool (blue). The distribution does not fit a normal distribution (dashed line). 

(c) The sequencing coverage of each oligo from the second ready-to-sequence pool, mapped back to its 

corresponding location on the synthesis chip. Coverages are normalized to the median. (d) The histogram 

of normalized sequencing coverage of the second ready-to-sequence pool (blue). The second ready-to-

sequence pool showed much more even oligo copy distribution and fits a normal distribution (dashed 

line) much more closely than then first.  
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Figure 4. Impact of GC content on PCR bias. (a) Histogram of sequencing coverages for optimized 

ready-to-sequence pool. The ready-to-sequence pool was sequenced directly, without PCR (blue). The 

same pool was amplified using PCR for 31 cycles (green) and sequenced separately. Both were randomly 

sampled to coverage of 20x for direct comparison, and they look quite similar (c.v. = 0.41 and c.v.=0.45, 

respectively). (b) The blue histogram shows the population fraction change Q distribution of the ready-

to-sequence pool, before PCR, after being subsampled to 20x coverage, with respect to its overall 

available coverage (60x). The green histogram shows the population fraction change Q distribution of the 

ready-to-sequence pool, after PCR and after being subsampled to 20x coverage, with respect to the pre-

PCR pool distribution at 60x coverage. The blue distribution shows the effect of subsampling, while the 

further widening of the green curve with respect to the blue curve is attributed to stochastic bias in the 

PCR process. (c, d) The GC content is plotted against the log2 of the population fraction change Q for (c) 

the ready-to-sequence, non-homopolymer pool and a homopolymer pool (d). The experimental data are 

shown as blue dots, and the linear fit is shown as a red line. The histograms of GC content and 𝑙𝑜𝑔2(𝑄) 

are shown at the top and right, respectively.  
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Figure 5. Dilution-PCR experiment. (a) The experimental workflow. A master DNA pool was diluted 

to different average copy numbers as indicated in the drawing. Each dilution sample was PCR-amplified 

and sequenced using an Illumina NextSeq instrument, and the results sampled at 200x coverage. (b) A 

computational model for the dilution-PCR experiments. The synthesis pool model used Nseq = 7,373 

number of sequences, and normally distributed copy numbers with mean  �̅�𝑠𝑦𝑛 = 108, and standard 

deviation 𝜎 =  3.2 ∗ 107. The c.v. of the synthesis pool in this simulation (
𝜎

�̅�𝑠𝑦𝑛
= 0.32) was set to be 

equal to the c.v. of our ready-to-sequence pool sequenced at mean coverage 17. The dilution process was 

simulated using random sampling with a mean copy number �̅�0, ranging from 8 to 113. PCR was 

simulated as a binomial process with a probability of successful amplification P = 0.95 and 18 PCR 

cycles. The simulated sequencing result was obtained using random sampling with an average coverage 

�̅�𝑟 = 200. (c) Simulated post-PCR sequencing coverage histogram of each dilution-PCR sample. The 

initial (pre-PCR) average copy number of each histogram is shown in the legend, ranging from 8 to 113. 

Coverage counts are normalized to display a probability density. A Gaussian estimated density curve is 

added as an outline of each histogram to help with visualization. (d) Sequencing coverage c.v. of the post-

PCR mix versus average copy number in the pre-PCR mix. The model prediction (green) shows good 

agreement with the experimental data (blue) with R2=0.71. The error bars of experimental data indicate 

standard error calculated from triplicate experiments. The error bars of model outputs indicate standard 

error calculated from 100 repeated simulations. 
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Figure 6. A computational model can help determine system parameters for DNA data storage. (a) 

A synthesis pool was generated with 𝑁𝑠𝑒𝑞 = 10,000 total number of sequences, with normally distributed 

copy numbers with a mean of �̅�𝑠𝑦𝑛 = 108 and standard deviation 𝜎 =  3.2 ∗ 107. The pool was simulated 

to store an average copy number �̅�0 =100, followed by 20 cycles of PCR amplification with P=0.95, and 

high throughput sequencing with average sequencing coverage �̅�𝑟=200. Sequence dropout (i.e., coverage 

of 0 for a given sequence) rates were quantified. (b) Sequence dropout percentage as a function of 

variable synthesis pool c.v. and variable mean sequencing coverage �̅�𝑟. (c) Sequence dropout percentage 

as a function of variable mean copy number n0 and variable mean sequencing coverage �̅�𝑟. The reported 

dropout percentage was the average of 100 repeated simulations. 
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