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Abstract 
Motivation: Somatic copy-number alterations (SCNAs) play an important role in cancer 
development. Systematic noise in sequencing and array data present a significant challenge to 
the inference of SCNAs for cancer genome analyses. As part of The Cancer Genome Atlas 
(TCGA), the Broad Institute Genome Characterization Center developed the Tangent copy-
number inference pipeline to generate copy-number profiles using single-nucleotide 
polymorphism (SNP) array and whole-exome sequencing (WES) data from over 10,000 pairs of 
tumors and matched normal samples. Here, we describe the Tangent pipeline, which begins 
with DNA sequencing data in the form of .bam files or raw SNP array probe-level intensity data, 
and ends with segmented copy-number calls to facilitate the identification of novel genes 
potentially targeted by SCNAs. We also describe a modification of Tangent, Pseudo-Tangent, 
which enables denoising through comparisons between tumor profiles when few normal 
samples are available. 
 
Results: Tangent Normalization offers substantial signal-to-noise ratio (SNR) improvements 
compared to conventional normalization methods in both SNP array and WES analyses. The 
improvement in SNRs is achieved primarily through noise reduction with minimal effect on 
signal. Pseudo-Tangent also reduces noise when few normal samples are available. Tangent 
and Pseudo-Tangent are broadly applicable and enable more accurate inference of SCNAs 
from DNA sequencing and array data. 
 
Availability and Implementation: Tangent is available at https://github.com/coyin/tangent and 
as a Docker image (https://hub.docker.com/r/coyin/tangent). Tangent is also the normalization 
method for the Copy Number pipeline in Genome Analysis Toolkit 4 (GATK4). 
 
Contact:  
matthew_meyerson@dfci.harvard.edu, rameen@broadinstitute.org, gadgetz@broadinstitute.org 
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1 Introduction 
Cancer often arises from the accumulation of somatic alterations in the genome, including point 
mutations, structural rearrangements, and copy number alterations (Weir et al., 2004). Somatic 
copy number alterations (SCNAs) can have significant impact in activating oncogenes or 
inactivating tumor suppressor genes to drive the development of cancer (Beroukhim et al., 
2010; Zack et al., 2013). In 2006, the NCI and NHGRI launched The Cancer Genome Atlas 
(TCGA) project to comprehensively characterize the genomic and molecular features of different 
cancer types (The Cancer Genome Atlas Research Network, 2013). TCGA collected samples 
from more than 11,000 cancer patients across 33 tumor types. The use of next-generation 
sequencing (NGS) and high-resolution microarrays allowed us to finely characterize SCNAs in 
cancer genomes and facilitate the discovery of novel genes that drive cancer (The Cancer 
Genome Atlas Network et al., 2013; Zack et al., 2013; Korn et al., 2008). 
 
Standard approaches to detect somatic copy-number profiles involve determining DNA content 
at various sites across the genome in tumor samples, and comparing to normal samples. For 
example, array CGH or single nucleotide polymorphism (SNP) arrays are composed of DNA 
probes that match various genomic loci; signal intensities read from these arrays scale with 
sample DNA content at each locus (LaFramboise, 2009). Similarly, high-throughput sequencing 
enables determination of coverage levels at loci across the genome, also reflecting sample DNA 
content (Yoon et al., 2009).  Detection of somatic copy-number alterations (SCNAs) typically 
relies on determining the ratios between DNA content in tumor vs. normal samples across these 
loci, which aims to normalize the different affinities (either of probes or sequencing) associated 
with each locus. 
 
Such analyses can be confounded by at least three sources of noise.  First, stochastic 
variations result in random deviations between measurements of DNA content and true DNA 
content.  This can be overcome by averaging measurements across adjacent loci (e.g. using 
segmentation algorithms; Venkatraman and Olshen, 2007) or by sequencing to greater average 
depth. Second, germline copy-number variations (CNVs) can be misinterpreted as SCNAs.  
This can be overcome by comparing tumor DNA to normal DNA from the same patient, or by 
masking common CNVs. Third, systematic errors can result from subtle differences between the 
experimental conditions that applied when generating sequencing or microarray data from 
tumors and their normal controls, which can affect the locus-specific affinities. 
 
Despite rapid advancement in sequencing technologies and improvements in copy number tools 
that attempt to combat systematic noise, such as Control-FREEC, ExomeCNV, VarScan2, and 
CNVkit (Boeva et al., 2012; Sathirapongsasuti et al., 2011; Koboldt et al., 2017; Talevich et al., 
2016; Rieber et al., 2017; Zare et al., 2017), filtering out systematic noise present in NGS and 
microarray data remains a significant challenge. Many of these tools use similar approaches to 
reduce systematic noise, either with matched case-control samples or with GC correction (Zhao 
et al., 2013). While matched normal samples can sometimes approximate their tumors’ noise 
profiles, they are not always available, and during the sequencing process, many of them may 
be processed under conditions different from those of their corresponding tumors and therefore 
may not have similar noise profiles. And while GC-content bias constitutes a large component of 
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systematic noise, GC correction does not target all sources of noise present in copy number 
data. Other potential sources of systematic noise include mappability biases across the genome 
and variability in experimental conditions during PCR amplification, cross-hybridization, or 
sample and library preparation. Thus, currently available tools do not adequately address these 
gaps in copy number analysis. 
 
Here, we present Tangent, a copy number inference pipeline that aims to address these gaps 
by constructing noise profiles using a subset of normal samples to target all potential sources of 
systematic noise. The normal samples used for Tangent will ideally have been processed using 
the same experimental conditions as the tumor samples, but do not have to be from the same 
patients as the tumors. Our pipeline begins with either a whole-exome sequencing (WES) BAM 
file or raw probe-level intensity data and concludes with segmented copy number calls, 
processing data with special attention to noise reduction, artifact removal, and quality control. 
The Tangent pipeline can be applied to both WES and Affymetrix SNP Array 6.0, both of which 
have been the basis for data analyses in TCGA. Tangent can also be extended to other 
sequencing platforms. Additionally, we describe Pseudo-Tangent, an approach that uses signal-
subtracted tumor data to augment standard normal data in the Tangent pipeline. Pseudo-
Tangent is particularly useful when there is a limited number of normal samples that can be 
used for denoising. Tangent is the basis for copy-number normalization in the GATK4 CNV 
workflow available within Genome Analysis Toolkit 4 (GATK4; McKenna et al., 2010) and is 
available through Github and Docker. 
 
 

2 Materials and Methods 
2.1 Generation of raw coverage data 
As input to Tangent, we generated raw coverage data from either Affymetrix SNP arrays or from 
WES. For SNP arrays, the procedure to generate raw coverage data is described in 
Supplementary Methods. For WES data, we used the GATK DepthOfCoverage tool on input 
.bam files to assess coverage from the input .bam file (Depristo et al., 2011). DepthOfCoverage 
outputs values for a set of genomic loci (“intervals”) representing the hybrid capture targets. 
Interval files are available in Firecloud from the broad-firecloud-
tutorials/Broad_MutationCalling_QC_Workflow_BestPractice workspace. Flow charts for each 
type of input data are presented in Supplementary Figure 1A-B. 
 

2.2 Tangent Normalization 
Tangent assumes that systematic noise, after log-transformation, is distributed according to a 
similar additive pattern in tumor samples as in normal samples. (We use log2 copy-ratios 
because we have found that this representation works well for noise reduction [data not shown], 
suggesting that much of the observed noise is multiplicative.) Therefore, to minimize  systematic 
noise, we can subtract estimated noise profiles individually calculated for each tumor using data 
from normal samples. Specifically, we compute the projection of each tumor in a lower-
dimensional subspace spanned by the coverage profiles of the normal samples and then 
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subtract that projection from the raw log2-transformed copy number profile of the tumor. This 
difference is the Tangent-normalized coverage profile for that tumor. 
 
For � � �1,2,3, . . .  
�� where 
� is the number of normal samples, the ith normal sample is 
represented as a vector, ��, of log2 copy-ratio intensities in genomic order, with each coordinate 
corresponding to one of the non-CNV probes. The noise space, N, is defined as the 
� � 1�-
dimensional plane containing the vectors ���, ��, ��, . . . , ���

�. Note that 
� � 1 ��  �, where M 

equals the dimension of the ambient (log2 copy-ratio) coordinate space or equivalently, the 
number of markers not excluded as poor quality or potential CNVs. Similarly, for � �

�1,2,3, . . . , 
��, where 
�  is the number of tumor samples, �� represents the jth tumor sample in 

the same format as ��. A constructed normal profile that closely matches the noise profile for a 
tumor �� is determined as the point in N that is closest to �� using a Euclidean metric, i.e. the 

projection, ����, of �� on N. The resulting normalization of �� is set to the residual, �� � ����.  

 
The projection ���� can be computed directly using standard linear algebra techniques. A rigid 

transformation of Euclidean marker space prior to normalization does not alter the resulting 
normalization of ��. In particular, an appropriate translation of the Euclidean space ensures that 

N passes through the origin and forms a vector subspace of Euclidean space, in which the 
normal vectors now reflect the deviation from the typical normal (i.e. the noise). After projection 
to N, the noise profile for each sample can be expressed as a linear combination of nN-1 
translated normal vectors. This noise profile, that is closest to the tumor, is then subtracted from 
the tumor signal to obtain a “clean” signal. 
 
We include both male and female normal samples, which differ in the number of copies of X. 
The inclusion of the X chromosome in Tangent Normalization requires special treatment to 
ensure that the distance from a tumor to a normal reflects noise differences, without being 
artificially inflated due to gender difference. Additionally, we must take into account that the 
normalization, �� � ����, of �� could potentially alter the apparent chromosomal copy number of 

X, due to the fact that ���� is a weighted average of copy ratios from both male and female 

samples. To address these issues, we include in our reference plane a theoretical normal with 
copy-number precisely two throughout the autosomes and one throughout the X chromosome. 
Tangent normalization against this expanded collection of normal samples will adjust the copy-
profile of X for any sample, regardless of gender, to a mean level with ~2 copies of X. The 
ensuing analysis can detect focal SCNAs within X, but discounts whole-chromosome changes 
of X. Currently, the Y chromosome is excluded from Tangent Normalization. Use of gender-
matched normals may enable recovery of whole-chromosome SCNAs involving X.  
 
The large number of reference normal samples presents computational challenges as the 
projection matrix depends on the computation of the pseudo-inverse of an M x 
�matrix (~1.5e6 
x 3000). To address this issue, we mimic Gram-Schmidt orthogonalization, but on a blockwise 
level, and decompose the reference plane into orthogonal blocks so that the projection, ����, 

can be computed on a block-by-block basis with only one block in memory at a time. Each block 
of data represents approximately 250 normal samples, typically from multiple batches. The 
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orthogonalization process replaces the ith block of normal data by its Tangent Normalization 
against blocks 1 through � � 1. When a new batch is processed, an additional block is added 
using the normal samples from the batch at hand, which are themselves first normalized against 
the reference normal samples. 
 

2.3 Pseudo-Tangent 
In the first step of Pseudo-Tangent, we use Tangent with a small set of normals to define the 
reference subspace and Circular Binary Segmentation (CBS) (Venkatraman and Olshen, 2007) 
to generate a tentative copy number profile for each tumor. In the second step, we subtract 
these tentative profiles from their original log-transformed tumor profiles in order to generate a 
corresponding pseudo-normal profile for each tumor input (keeping only deviations from the 
CBS segment values). In the penultimate step, the tumors are partitioned into n approximately 
equal subsets, and then each subset is Tangent-normalized against a reference subspace of 
pseudo-normals generated from tumors in that subset’s complement. The partition parameter n 
is a user-controlled parameter that is inversely related to the cardinality of each subset. Finally, 
CBS is used to convert the resulting Pseudo-Tangent-normalized coverage profiles into 
segmented copy-number calls in the form of log2 copy-ratios (Supplementary Figure S1C). 
 
An optional step we take in Pseudo-Tangent is to perform truncated singular value 
decomposition (tSVD) on the entire collection of pseudo-normal profiles before partitioning the 
tumors and normalizing their coverages against the pseudo-normal profiles. This step limits the 
dimensionality of our pseudo-normal reference subspace and constrains us to a smaller number 
of eigenvectors to describe our pseudo-normal noise distribution. 
 

2.4 Comparisons against other normalization methods 
When comparing Tangent normalization to other normalization methods, we opted to exclude 
the X and Y chromosomes from our analyses so that differences in their handling of the sex 
chromosomes would not affect their performances. For similar reasons, we excluded CNV 
probes that map to known germline copy-number polymorphisms or other regions where, due to 
errors in the experimental platform, data across normals vary widely (Supplementary Table 1). 
To normalize using matched normals, we subtracted the log2 ratios of each matched normal 
from its corresponding tumor. For tumors with more than one matched normal (blood or normal 
tissue sample), the matched blood sample was preferred over the matched normal tissue 
sample. To normalize using the five nearest normals approach, we subtracted from each tumor 
the mean of the five normals closest to it based on Euclidean distance (Beroukhim et al., 2007).  
 
To normalize using the average normal method with WES data, we first averaged the coverage 
at each interval across the entire panel of normal samples to produce a standard average 
normal. We then subtracted the log2 ratios of this computed average normal from each tumor. 
Normalization using GC correction was performed based on the GC content normalization 
algorithm in HMMcopy (Lai et al., 2016). 
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3 Results 
3.1 Tangent method overview 
We have found systematic biases to be prevalent in both array- and sequencing-based data, 
both within and across batches, and found that these biases can generate widespread false 
positive SCNAs that can recur across samples (Figure 1A).  In principle, these biases can be 
overcome by normalizing tumor data only against normal control samples that have been 
profiled under identical experimental conditions. In practice, many of these experimental 
conditions are neither known nor measured. We developed the Tangent method to reconstruct 
normal controls that most accurately represent the tumor noise profile, so as to overcome these 
tumor-specific biases. 
 
Tangent assumes that variations in experimental conditions can introduce variations in signal 
intensity or coverage profiles, such that normal samples that represent a single diploid state can 
produce signal intensity or coverage profiles encompassing a subspace N of the space of all 
possible coverage profiles. By accruing a collection of normal samples from the same 
batch/center as the tumors and with similar noise characteristics, Tangent attempts to construct 
this reference subspace N as the space that spans all linear combinations of normal profiles. 
Tangent then assumes that, for any copy-number profile T from a tumor sample, the point in 
subspace N that is most similar to T represents the profile of a normal sample characterized 
under similar conditions as T. SCNAs are then represented as the difference between T and 
that nearest point in subspace N (Figures 1B-C; see Methods). 
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Figure 1. Overview of problem and method. (a) Segmented pre-normalized log2 copy-number 
ratios (low and high ratios indicated by blue and red, respectively) on replicates of DNA from the 
HCC1143BL immortalized lymphocyte (non-cancer) line across 110 batches in chromosome 1. 
As these variations are observed in the same DNA, they represent experimental artifacts. (b) 
Reduced, 2-dimensional representation of the Tangent methodology. For each tumor (purple) 
we compute its projection onto a lower-dimensional subspace defined by normal samples 
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(green) profiled in parallel with the tumors. Signal representing somatic copy-number alterations 
is contained within the difference between the tumor and its projection. (c) Flowchart describing 
the steps of Tangent normalization. 
 

3.2 Tangent analysis on microarray data 
To assess Tangent’s performance on copy-number profiles generated from microarray data, we 
applied it to a dataset comprising 497 glioblastomas and 451 normal samples profiled by TCGA 
using SNP 6.0 arrays. We benchmarked Tangent against two other normalization methods: use 
of matched normal samples from the same patient (which was possible for only 386 of the 
GBMs), and use of the five normal samples with noise profiles closest to those in the tumor 
(Beroukhim et al., 2007). We compared the performance of these normalization approaches in 
detecting SCNAs based on preservation of signal intensity, reduction in noise, and improvement 
in signal-to-noise ratio (SNR). We estimated signal as the standard deviation of median signal 
intensities among all chromosome arms and noise as the median absolute difference between 
log2 copy-ratios of adjacent intervals or probes.  
 
All three normalization methods described preserved signal integrity, but only Tangent 
normalization consistently reduced systematic noise and thus increased signal-to-noise ratios 
(Figure 2A-C; Supplementary Figure S2). Normalization using the five nearest normals 
improves noise levels negligibly, and normalization by matched normals tends actually to 
increase noise levels and decrease signal-to-noise ratios relative to data that had not been 
normalized. As a result, segmented copy-number profiles generated after Tangent normalization 
exhibited less hyper-segmentation than profiles generated using other methods (Supplementary 
Figure S2).  
 
We next investigated the effects of increasing the size of the normal reference pool used by 
Tangent on reducing noise. We re-applied Tangent to our set of glioblastomas while 
incrementing the numbers of normal samples used to define our reference subspace from 0 (i.e. 
no use of Tangent) to 3146 samples across 13 batches (median number of normal samples per 
batch 255, range 102 to 281). These normal samples represented data generated by TCGA 
from normal blood leukocytes obtained from patients with a variety of cancers. We observed a 
monotonic reduction in median noise levels with increasing numbers of normal samples, 
although this improvement decreased asymptotically and offered negligible benefits after 
approximately 1000 normal samples (four batches; Figure 2D).   
 
We also investigated the effects of altering the composition of our normal reference pool, and 
specifically the utility of including normal samples that had been profiled in the same vs. 
different batches of arrays as the tumor under study. We observed greater noise reduction when 
utilizing the entire set of normal samples across batches than we did when applying Tangent 
using a reference subspace containing only normal samples from the same batch (Figure 2E). 
Nevertheless, whether Tangent utilizes the entire reference subspace or it uses only a subset of 
normal samples from the same batch, both methods consistently yield lower levels of post-
normalization noise compared to pre-normalization noise for all tumors.  
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Figure 2. Normalization of SNP array data from 497 TCGA glioblastomas. Scatter plots indicate 
post-normalization vs. pre-normalization (a) signal, (b) noise level, and (c) signal-to-noise ratios 
for the normalization methods: Tangent (red), five nearest normals (green), and matched 
normals (blue). (d) Box plot of post-normalization noise as a fraction of pre-normalization noise, 
following tangent normalization with increasing numbers of normal samples (approximately 250 
normal samples were added in each batch). (e) Noise ratio (post-normalization over pre-
normalization noise) for glioblastoma samples following tangent normalization using the entire 
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reference plane vs. tangent normalization using only the normal samples processed in the same 
batch as a tumor. Almost all samples lie below y=x, indicating that there is greater noise 
reduction with the full reference plane. 
 

3.3 Tangent analysis on whole exome sequencing data 
We next evaluated Tangent’s performance on sequencing data, by applying it to WES data 
generated by TCGA from 123 tumors and 129 matched normal samples across four tumor 
types: low grade gliomas, lung squamous cell carcinomas, prostate adenocarcinomas, and 
stomach adenocarcinomas (see Supplementary Material). We compared the performance of 
Tangent with normalizing against matched normals, an average normal from a panel of normals.  
We also combined each approach with a method that corrects for variations in local GC content 
(Ha et al., 2014) to determine whether Tangent provides improvements beyond GC correction. 
 
We found that Tangent outperforms these conventional normalization methods. Specifically, the 
average noise in post-Tangent normalized data is 35% lower than post-normalization against 
matched normals and 26% lower than post-normalization against an average normal (Figure 
3A). This level of noise reduction is attained without significant compromise on signal. The 
average SNR in post-Tangent normalized data is 58% higher than that post-normalization 
against matched normals, and 78% higher than post-normalization against an average normal 
(Figure 3B). Adding GC correction to the other two normalization methods does not enable them 
to reach the performance of Tangent. Use of Tangent results in 31% lower noise and 57% 
higher SNR on average than use of matched normals and 55% lower noise and 115% higher 
SNR on average than use of an average normal. Application of GC-correction to Tangent-
normalized data provided only marginal benefit relative to Tangent alone (Figure 3A-B). 
 
Similar to our experience with SNP arrays, we found that increased numbers of normal samples 
in the reference pool improved noise profiles after Tangent normalization. We applied Tangent 
using between 10 and 1000 reference normal samples sequenced by TCGA, including normal 
samples from patients with the four tumor types under study and six other tumor types (see 
Supplementary Material). We found that Tangent’s performance plateaued at approximately 200 
normal samples (Figure 3C-D). 
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Figure 3. Performance of Tangent on WES data. (a) Noise levels and (b) signal-to-noise ratios 
for Tangent-normalized data (Tangent); data normalized against corresponding matched 
normals (MatchedNorm); and data normalized against an average across a panel of normals  
(AverageNorm), both with and without additional GC correction. (c) Noise and (d) signal-to-
noise ratios plotted against the number of normal samples in the reference subspace.  
 

3.4 Pseudo-Tangent: a method to compensate for insufficient 
normal data 
Tangent assumes that systematic noise distributions in tumors are identical to those in normal 
samples. However, it is often impossible to collect a sufficiently large collection of normal 
samples to encompass the range of systematic noise types spanned by the tumor samples. In 
light of this limitation, we developed Pseudo-Tangent as an adaptation of the Tangent pipeline 
that utilizes a reference subspace composed of signal-subtracted tumor profiles (i.e. “pseudo-
normal profiles”) instead of the standard normals used in Tangent. In brief, the method first 
estimates SCNAs for each tumor using standard Tangent with a limited number of normal 
samples. Pseudo-Tangent then applies Tangent again to detect SCNAs for each tumor, using a 
reference subspace comprising other tumors from which the initially detected SCNAs had been 
subtracted (see Methods). 
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We applied Pseudo-Tangent to TCGA WES data from 305 Cervical Squamous Cell Carcinoma 
and Endocervical Adenocarcinoma (CESC) primary tumors. We initially normalized these data 
against WES data from five normal samples obtained from blood, and used these to generate 
305 corresponding pseudo-normal profiles. We then divided the tumors and their matching 
pseudo-normal profiles into three batches, and normalized each tumor in each batch against the 
pseudo-normal profiles in the other two batches. (The number of batches is a modifiable 
parameter.) 
 
We then compared these results to previously generated gold-standard absolute allelic copy-
number profiles (Taylor et al., 2018). The gold-standard profiles were generated by applying the 
standard Tangent pipeline and the ABSOLUTE algorithm (see Methods; Carter et al., 2012) to 
primarily SNP array data from these 305 tumors and 3,154 normal samples.  (ABSOLUTE did, 
however, use mutation calls from WES data to optimize its tumor purity estimates.) We selected 
gold-standard profiles based upon a different experimental platform (SNP array data) to 
minimize cross-contamination of artifacts in the WES data used by Pseudo-Tangent. We 
measured noise as the average distance of each probe in the Pseudo-Tangent-generated 
coverage profile from its nearest estimated absolute total copy number level. We found that all 
278 CESC tumors displayed lower noise levels after undergoing Pseudo-Tangent normalization 
than they did after just the initial round of Tangent normalization using only the 5 true normal 
samples (Figure 4A). 
 
One concern with applying Pseudo-Tangent is that, with sufficient numbers of pseudo-normal 
samples, true SCNAs in a tumor may be normalized away due to overfitting.  We therefore 
explored whether limiting the number of dimensions of the pseudo-normal space could improve 
Pseudo-Tangent’s overall performance. Specifically, we performed eigenvector decomposition 
of the pseudo-normal reference subspace, retained between 10 to 305 of the eigenvectors with 
the greatest eigenvalues, and normalized our tumors against a reduced subspace spanned by 
these eigenvectors. We then determined the number of eigenvectors that provided optimal 
results, as indicated by generating copy-number profiles with the smallest deviations from the 
results of our gold-standard ABSOLUTE runs on the same tumors.  
 
We found that the median difference between copy-number levels generated after Pseudo-
Tangent and those generated by the gold-standard ABSOLUTE pipeline was lowest when we 
used the 150 eigenvectors with the greatest eigenvalues (Figure 4B), which captured 98% of 
the variance of the entire pseudo-normal reference subspace. However, the optimal number of 
eigenvectors varied across the different tumors. In particular, the noisiest tumors seemed to 
have greater noise reductions when 10 eigenvectors were used rather than larger numbers of  
eigenvectors (Figure 4C). This behavior suggests that optimal use of Pseudo-Tangent might 
take into account the noise level of the tumor being normalized when determining the number of 
eigenvectors to retain.  
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Figure 4. Pseudo-Tangent decreases noise in resulting copy number profiles compared to 
standard Tangent, as measured by deviation from ABSOLUTE-estimated copy number levels. 
(a) Average deviation from ABSOLUTE-estimated copy number levels after Pseudo-Tangent 
(vertical axis) vs. Tangent alone (horizontal axis). (b) Improvement in the deviation from 
ABSOLUTE-estimated copy number levels after use of Pseudo-Tangent, as a fraction of the 
deviation after only standard Tangent had been used (vertical axis), against the number of 
eigenvectors used for Pseudo-Tangent (horizontal axis). The median improvement was greatest 
when 150 eigenvectors were used. (c) Average deviation from ABSOLUTE-estimated copy 
number levels after Pseudo-Tangent (vertical axis) vs. Tangent alone (horizontal axis) as in 
panel (a), after use of (left) 200 eigenvectors, (middle) 100 eigenvectors, and (right) 10 
eigenvectors. Although median levels of deviation from ABSOLUTE-estimated copy number 
levels increased when fewer than 150 eigenvectors were used, the noisiest tumors saw the 
greatest improvements  when only 10 eigenvectors were used. 
 

4 Discussion 
Although Tangent was developed for use with SNP array data, we have extended its use to 
WES data, and in principle it can be applied to any source of copy-number data that measures 
DNA dosage with varying signal intensity or depth of coverage, such as  whole-genome 
sequencing (WGS) or comparative genomic hybridization (CGH). Indeed, Fehrman et al. 
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developed a similar method to detect SCNAs from transcriptomic profiling data, in which they 
remove principal components reflecting different transcriptional states to enrich for 
transcriptional changes reflecting underlying SCNAs (Fehrman et al., 2015). Rearrangements 
detected by whole genome sequencing (Wala et al., 2018; Rausch et al., 2012; Drier et al., 
2013; Layer et al., 2014) can also provide information about copy-number breakpoints, thereby 
further improving accuracy of SCNA profiles. Further improvements to SNRs can also be 
obtained  from algorithms that determine differences in absolute rather than relative copy-
numbers (Carter et al., 2012; Van Loo and Nordgard, 2010). However, these algorithms require 
normalized copy-number ratios as inputs, and therefore are likely to benefit from the improved 
normalization Tangent provides. 
 
Accurate SCNA determination relies on having normal control samples that have been 
processed in identical fashion to the tumors. For example, SCNA profiling of tumors obtained 
from a large variety of institutional sources--such as may occur when profiling tumors studied in 
multi-institutional clinical trials or in clinical laboratories--would ideally make use of normal tissue 
obtained from each institution contributing tumors. Unfortunately, this is often difficult or 
impossible in practice. Likewise, tumor tissue obtained through careful surgical resection in 
which the tumor is separated from its blood supply for an extended period may not be 
adequately reflected by normal DNA from blood samples. Pseudo-Tangent may help remove 
the effects of systematic noise in these situations by generating pseudo-normals from tumors 
that were processed in similar fashion to each other. However, application of Pseudo-Tangent 
carries risk of overfitting and loss of signal, particularly if SCNAs are not adequately removed 
while generating pseudo-normals from tumor samples.  In situations where true normals are 
available, extensive profiling of these normals as controls for the tumors is preferable to 
computational generation of pseudo-normals as described here. 
 
The Tangent pipeline we describe here was the basis for copy-number determination across 
TCGA. Additionally, both Tangent and Pseudo-Tangent are widely applicable to a large variety 
of research and clinical applications and copy-number profiling platforms, and can be integrated 
with further improvements in SCNA detection that make use of alternative sources of 
information such as rearrangement locations and tumor purity and ploidy.  
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