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ABSTRACT 13 

Setting appropriate conservation measures to halt the loss of biodiversity requires a good 14 

understanding of species’ habitat requirements and potential distribution. Recent (past few 15 

decades) ecological data are typically used to estimate and understand species’ ecological niche. 16 

However, historical local extinctions may have truncated species-environment relationships, 17 

resulting in a biased perception of species’ habitat preferences. This may result in incorrect 18 

assessments of the area potentially available for their conservation. Incorporating long-term 19 

(centuries-old) occurrence records with recent records may provide better information on 20 

species-environment relationships and improve the modeling and understanding of habitat 21 

suitability. We test whether neglecting long-term occurrence records leads to an 22 

underestimation of species’ historical niche and potential distribution and identify which species 23 

are more vulnerable to this effect. We compare outputs of species distribution models and niche 24 

hypervolumes built using recent records only with those built using both recent and long-term 25 

(post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while 26 

using recent records only is adequate for some species, adding historical records in the analyses 27 

impacts estimates of the niche and habitat suitability for fourteen species (41%) in our dataset, 28 

and that this effect is significantly higher for carnivores. These results show that neglecting long-29 

term biodiversity records in spatial analyses risks misunderstanding, and generally 30 

underestimating, species’ niche, which in turn may lead to ill-informed management decisions, 31 

with significant implications for the effectiveness of conservation efforts. 32 

Keywords 33 

habitat suitability models, historical ecology, megafauna, natural range, niche, reintroduction, rewilding  34 
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INTRODUCTION 35 

To avert the ongoing human-induced biodiversity decline, scientists have recently called for conservation 36 

efforts to be intensified, including through increased habitat protection and restoration [1]. Data on 37 

species’ distribution patterns and species assemblages are key to identify candidate areas for 38 

conservation [2]. However, distribution patterns have been drastically modified by humans, notably 39 

through global extinctions and regional to local extirpations [3,4], and thus contemporary patterns do not 40 

necessarily reflect species’ natural distribution and habitat preferences. Analyses of species distributions 41 

that tend to ignore these modifications will likely result in a biased understanding of species’ 42 

biogeography and ecological requirements and lead to misleading perceptions of the options available for 43 

conservation [5,6]. This phenomenon of spatially shifted baseline poses clear challenges for conservation 44 

and management. By providing information on species’ historic rather than current-day relictual 45 

distribution, long-term biodiversity data have the potential to improve our understanding of the 46 

biogeography of species and participate in setting appropriate spatial and ecological baselines for 47 

environmental conservation and restoration [7].  48 

Mammals are one of the most studied taxa, and their current distribution patterns are well known [8]. 49 

Historic and prehistoric human-driven global and local extinctions have however caused a strong deviation 50 

between current and pre-anthropogenic impact diversity patterns, in particular for large terrestrial 51 

mammals [4]. In South Africa, habitat loss, competition with livestock and direct exploitation, in particular 52 

following European colonization, have resulted in the global extinction of one mammal species [9], and 53 

the collapse of large mammal diversity in large parts of the country [10,11]. To halt this decline and restore 54 

populations, conservation efforts have focused on establishing protected areas and actively managing 55 

large mammal populations through reinforcement - to increase population viability - and reintroductions 56 

- to re-establish populations within species’ historical range [12]. Defining species’ historical distributions 57 

and suitable habitat is thus a critical aspect for conservation planning in South Africa [13], as it is for most 58 

restoration attempts elsewhere [14]. Among large mammal species, those identified as threatened by the 59 

IUCN Red List are a high priority for conservation [15] and large carnivores have an important ecological 60 

role and have undergone considerable historic range contractions [16], making them a major focus of 61 

conservation and rewilding efforts [17]. It is thus critical to understand the extent to which historical data 62 

are needed to inform wildlife conservation and management, for threatened species and large carnivores 63 

in particular.  64 
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Habitat suitability models (HSMs) [18,19]  and n-dimensional hypervolumes [20] are two widely-used tools 65 

that relate species’ occurrences to environmental variables in order to, respectively, map species’ 66 

potential distribution in geographical space and characterize species’ niche in the environmental space. 67 

They have notably been used in a conservation and management contexts to improve our knowledge of 68 

species ranges, support management plans for species’ recovery, prioritize areas for biodiversity 69 

protection and predict changes in suitable habitat in response to human impacts [21–23]. HSMs and 70 

hypervolume approaches rely on the assumption that the observed geographical distribution of a species 71 

reflects its ecological requirements, making them highly contingent on the quality of the occurrence 72 

records[19,23]. Range contraction that have affected the array of conditions that the species occupy risk 73 

truncating species–habitat relationships [24], thus hindering our ability to estimate species niches and 74 

predict the distribution of suitable habitat [6]. Failing to consider past local extinction events may thus 75 

misguide conservation efforts by overlooking potentially suitable sites for reintroduction or restrict 76 

protection to suboptimal habitats [5]. Despite providing useful information on the historic distribution of 77 

species, historical written records and museum specimens have long been overlooked in habitat suitability 78 

modeling approaches, being perceived as untrustworthy for their intrinsic biases and limitations [25] (but 79 

see [26–28]). The development of methods to address sampling biases in HSMs [29–32] however, provides 80 

an avenue for more confident incorporation of these records in spatial modeling analyses, and hence in 81 

conservation interventions. 82 

Here we investigate how long-term biodiversity records can contribute to setting appropriate baselines 83 

for species’ distribution. We test the hypothesis that neglecting historical data in niche quantification and 84 

HSM approaches leads to biased perceptions of species’ historic niche and suitable habitat distribution, 85 

and the patterns of potential species richness at the regional level. We focus on large terrestrial mammals 86 

in South Africa, for which we have access to a unique dataset of long-term occurrence records spanning 87 

the last five centuries, as well as recent (post-1950) occurrence records, for a community of 34 mammal 88 

species.  89 

METHODS 90 

Overview of the approach 91 

We considered two datasets of occurrence - recent records (post-1950, RECENT) and recent + long-term 92 

records (post-1500, TOTAL) - to quantify the effect of neglecting long-term occurrence data. We compared 93 

results obtained from these two datasets in three different approaches, two that are species based: 1) 94 
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estimation of the climatic niche in environmental space using n-dimensional hypervolumes [23] and 2) 95 

prediction of suitable habitat in the geographic space using habitat suitability models (HSMs) and one at 96 

the community level, namely prediction of the distribution of potential species richness using stacked-97 

HSMs. For the species-level approaches, we used two indices that summarize the cost of neglecting long-98 

term biodiversity data and tested how the combination of these indices relate to species’ conservation 99 

status and diet. For the community-level approach, we investigated spatial differences in predicted 100 

potential species richness, notably by comparing predictions between different South African bioregions. 101 

Species data 102 

The general study area, hereafter referred to as South Africa, covers the countries of South Africa, Lesotho 103 

and eSwatini (former Swaziland). We considered all extant South African large (> 20 kg) terrestrial 104 

mammals, except for species with fewer than 25 long-term observations in the dataset. In total, 34 species 105 

were included: 23 from the order Artiodactyla, 6 Carnivora, 4 Perissodactyla and 1 Proboscidea.  106 

Theoretically accessible areas 107 

Barve et al. [33] outline the concept of the theoretically accessible area (the area that is climatically 108 

suitable and has been accessible to the species via dispersal over relevant periods of time), and show that 109 

restricting a model’s training and validation areas to this theoretically accessible area greatly improves 110 

HSM performance and provides more accurate predictions of species richness and community 111 

composition [33,34]. As an approach to estimating the theoretically accessible area for each species, we 112 

identified the bioregions in which the species are known to have occurred historically, based on 113 

information on their ecology and interpretation of historical occurrences, and built a polygon using the 114 

boundaries of these bioregions. We defined the accessible area for each species as a buffer of 20 km 115 

around this polygon, to include ecotone regions where the species could disperse. This option is suggested 116 

by Barve et al. [33] to be the most operational compared to more intricate alternatives. We acquired 117 

spatial information on bioregions from the 2012 Vegetation Map of South Africa, Lesotho and Swaziland 118 

[35].  119 

Modern and historical occurrence records 120 

The long-term occurrence dataset used in this study covers the period 1500 to 1950 and includes records 121 

extracted from the historical literature, museum specimens and fossil records. For historical records and 122 

museum specimens, we used the database presented in Boshoff et al [10], completed with records from 123 

the KwaZulu-Natal, eSwatini and the rest of South Africa, using the same approach and criteria defined in 124 
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Boshoff et al. [10], so that the dataset covers all of South Africa. The reliability of these records in terms 125 

of identification and locality is discussed in Boshoff and Kerley [36] and their spatial, environmental and 126 

taxonomic biases in Monsarrat et al. [29] and Monsarrat and Kerley [37].   127 

Recent fossil records were obtained from Avery [38], a comprehensive compilation of information on the 128 

taxonomy and distribution in time and space of all currently recognized South African fossil mammal. We 129 

recovered radiocarbon dating for these record from primary sources and kept only those that were 130 

deposited in the period from 1500 to today. 131 

Modern (post-1950) occurrence records were provided by the South African National Biodiversity 132 

Institute and the Endangered Wildlife Trust, who consolidated and centralized a total of over 460,000 geo-133 

referenced unique occurrence records for South African mammals, from 59 different contributors 134 

(governmental institutions, research institutions, non-governmental organizations, the private sector and 135 

citizen science projects) [39]. This database formed the basis of the 2016 “Red List of Mammals of South 136 

Africa, Lesotho and Swaziland” and as part of this process, data were vetted and underwent several 137 

rounds of data cleaning to check accuracy. These data are spatially biased, with the highest densities of 138 

records typically found in protected areas [39], artificially increasing spatial auto-correlation of 139 

occurrences. This in turn may affect the performance of habitat suitability models built with these data 140 

[40]. To reduce the effect of sampling bias and spatial clustering on model performance, we subsampled 141 

the modern occurrence dataset using spatial thinning of the data (no occurrence records closer than 0.1 142 

degree), as recommended by Boria et al. [41]. 143 

We considered all occurrence records located outside of a species’ theoretically accessible area to be 144 

extralimital and we excluded them from the analyses. Modern extralimital records often correspond to 145 

introductions of individuals or populations outside of their historic range, often in suboptimal habitat, and 146 

are not informative of the habitat preferences of the species [42]. We however acknowledge that, by 147 

using bioregions as the filter for modern records, we may include some records that are outside the 148 

historic range, this being due to the relatively unique situation in SA of game translocations for commercial 149 

purposes [42]. 150 

In total, we analyzed 15,315 recent (post-spatial thinning, range 55-1,274) and 5,446 historical (range 151 

25-501) records for the 34 species of large terrestrial mammals, covering a total area of ca. 1,270,000 152 

km² for these three nations. 153 

 154 
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Environmental data 155 

We considered six bioclimatic variables derived from BioClim [43]: mean annual temperature (BIO1) and 156 

annual precipitation (BIO12), describing the average climatic conditions, temperature seasonality (BIO4) 157 

and precipitation seasonality (BIO15), describing climatic seasonality and maximum temperature of the 158 

warmer month (BIO5) and precipitation of the warmest quarter (BIO18), describing extreme climatic 159 

conditions. We also considered topography (TOPO), using altitude data from the ASTER Global Digital 160 

Elevation Model (ASTGTM) on https://lpdaac.usgs.gov [44]. These variables were chosen, because they 161 

were biologically meaningful to predict large mammal species richness in South Africa [45] and because 162 

they potentially represent environmental characteristics that limit species’ distributions. All 163 

environmental variables were estimated at a 0.1 x 0.1 degree resolution, using the raster package [46] in 164 

R 3.5.1 [47]. 165 

Hypervolume analysis 166 

The n-dimensional hypervolume was originally proposed by Hutchinson [48] to describe the fundamental 167 

niche of a species, i.e. the environmental space where the species can exist indefinitely. In the modern 168 

understanding of the hypervolume function, a set of n variables that represent biologically important and 169 

independent axes are identified and the hypervolume is defined by a set of points within this n-170 

dimensional space that reflects suitable values of the variables for the species’ persistence [23].  Here, we 171 

consider five environmental axes: BIO1, BIO4, BIO12, BIO15 and TOPO, rescaled to a common and 172 

comparable scale before the analyses. We used the Gaussian kernel density estimation with the Silverman 173 

bandwidth estimator method in the hypervolume package [20] in R 3.5.1 [47]. The bandwidth was 174 

estimated from the RECENT dataset with the Silverman estimator and the same value was used for the 175 

TOTAL dataset, to allow direct comparison. 176 

The volume of the hypervolume is approximately linearly proportional to the number of observations in 177 

the dataset [20]. To ensure results are insensitive to sample size, we randomly subsampled the TOTAL 178 

dataset to have the same number of records as the RECENT dataset. We repeated the process ten times 179 

and used averaged hypervolume measures of these ten repetitions in the statistical analyses. 180 

Habitat Suitability Modeling 181 

Background data 182 
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Because the species occurrence records are highly biased spatially [29,39], we addressed the potential 183 

effect of sampling bias in the models. To do so, we produced background data with similar geographical 184 

bias as the RECENT and TOTAL occurrence datasets, following [30]. We first created a sampling effort 185 

raster using a two-dimensional kernel density estimation applied on the occurrence dataset. Background 186 

data were then created by sampling without replacement within this raster grid, where the probability of 187 

a cell being sampled was proportional to the sampling density values (weighted target group approach, 188 

following Sanín and Anderson [49]). We selected the same number of background points as the number 189 

of occurrence records, so as to achieve a prevalence of 50%, as advised by Liu et al. [50]. 190 

Ensemble modeling 191 

We created ensemble HSM [51] for each species by assembling five statistical methods (GAM, MAXENT, 192 

MARS, RF and GBM) to account for inter-model variability, using the ssdm package [52]. We ran ten 193 

repetitions for each of the algorithms and produced an average of the models’ outputs, weighting each 194 

model according to its predictive ability. We measured predictive ability with a cross-validation approach, 195 

by using a random 70% of the data for calibration of the models (keeping the prevalence constant) and 196 

testing their predictive ability on the remainder of the dataset using the True Skill Statistic (TSS) [53]. We 197 

repeated this approach ten times for each model and used an average of the predictive accuracy measure. 198 

In total, for each species and each dataset, we ran 500 models using five different statistical models, ten 199 

repetitions of each algorithm, and ten repetitions of the random-splitting strategy. The outputs of these 200 

models are maps of predicted habitat suitability over the study area that provide hypotheses for the 201 

potential distribution of species for both datasets. We identified areas where the predicted habitat 202 

suitability differs between the RECENT and TOTAL datasets by subtracting the predicted values obtained 203 

from the RECENT model to those obtained with the TOTAL model in each cell within the study area. Areas 204 

with positive (negative) values are where we underestimate (overestimate) habitat suitability when 205 

considering only recent records. 206 

Species richness 207 

Stacked-species distribution models (SSDM) combine multiple individual HSMs to produce a community-208 

level model and predictive maps of potential species richness [54]. We used the ssdm package [52] to 209 

compute maps of local species richness by summing the probabilities from continuous habitat suitability 210 

maps provided by the ensemble HSMs, a method that performs better than stacking methods based on 211 

thresholding site-level occurrence probabilities [55]. To highlight areas where the potential species 212 
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diversity is under- or over-estimated because of neglecting long-term occurrence records in the models, 213 

we subtracted the map of species richness produced with the RECENT dataset to the one produced with 214 

the TOTAL dataset. We also compared the mean difference in predicted species richness for each 215 

bioregion of South Africa. 216 

Statistical analyses 217 

For each species, we considered two indices to summarize the effects of neglecting long-term records on 218 

the estimation of climatic niche and habitat suitability: 1) the niche dissimilarity in environmental space 219 

(Ndis) [20] and 2) the dissimilarity in predicted habitat suitability in the geographical space (PREDdis) [56]; 220 

(see Table 1 for a definition of these indices). For each index, higher values indicate higher disparity 221 

between the results obtained with the RECENT and the TOTAL dataset. 222 

We rescaled all indices by subtracting the mean and dividing by the standard deviation so that they are 223 

comparable and conducted a Principal Component Analysis (PCA) to convert these indices into a one-224 

dimension variable (the first principal component PC1), quantifying the effect of neglecting historical 225 

records. We ran a two-way ANOVA with Type II errors to test for differences in PC1 between conservation 226 

status (threatened vs non-threatened) and broad diet guilds (herbivores vs carnivores). The conservation 227 

status was defined from the IUCN Red List categories [57], where species listed as vulnerable, endangered 228 

or critically endangered were considered “threatened”, and “non-threatened” otherwise. We used a 229 

linear model to test how the change in mean predicted habitat suitability (ΔPRED, calculated as the 230 

proportion difference in mean predicted habitat suitability over the study area when it is estimated from 231 

the TOTAL dataset, compared to the RECENT dataset) varies with PC1 values. We also estimated the 232 

difference in the ability of HSMs to predict all the known occurrences for the species (ΔB), by measuring 233 

the proportional increase (or decrease) in the continuous Boyce index, a threshold-independent evaluator 234 

of the ability of HSMs to predict species presences [54], when it is estimated from the TOTAL dataset, 235 

compared to the RECENT dataset. 236 

 237 

 238 

 239 

 240 

 241 

 242 
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Table 1. Description of the two indices used in the PCA analysis to quantify the effect of neglecting 243 

historical records on the estimation of climatic niche and suitable habitat. 244 

Index Name Estimated 
from 

Formula Description 

Ndis 
Dissimilarity of 
climatic niche  

5-dimensional 
hypervolume 

1 – Jaccard similarity index 
 

The Jaccard similarity index measures the overlap 
between niche hypervolumes [20]. 

Ndis is comprised between 0 and 1, with higher values 
meaning higher dissimilarity. 

PREDdis 
Dissimilarity of 

predicted suitable 
environments  

HSM 
1 – ESP 

 

The Expected fraction of Shared Presences (ESP) is a 
derivation from the Sørensen index of similarity of 
species’ distributions that measures the overlap in 

predicted habitat suitability [56,58]. 
PREDdis is comprised between 0 and 1, with higher 

values meaning higher dissimilarity. 

 245 

RESULTS 246 

The ensemble modeling approach yielded very good agreement between the different modelling 247 

methods, as indicated by low standard deviation around the predicted habitat suitability values 248 

(Supplementary Information 2). For 18 out of 34 species, the inclusion of historical records improved the 249 

ability of the model to predict all known occurrences of the species (ΔB>0). The highest improvement in 250 

predictive ability was for the Black rhinoceros, Bontebok and African Elephant (ΔB equal to 25%, 16% and 251 

11%, respectively). In contrast, eleven species showed a decrease in predictive ability when historical data 252 

are included in the model, with the gemsbok and blue wildebeest showing the strongest decrease (ΔB 253 

equal to -10% and -8%, respectively). The dissimilarity in climatic niche Ndis calculated from the 5-254 

dimensional hypervolume ranges from 0.09 to 0.52 (mean=0.21 ± 0.11 SD), with Ndis > 0.40 for the African 255 

elephant, lion and African wild dog. The dissimilarity in predicted habitat suitability PREDdis ranges from 256 

0.41 to 0.71 (mean=0.57 ± 0.07 SD), with PREDdis > 0.70 for the African wild dog, lion and spotted hyaena 257 

(Table S1 of Supplementary Information). 258 

Overall, by combining Ndis and PREDdis in a PCA, fourteen species (41% of our dataset) come out as 259 

impacted by neglecting historical records (PC1 < 0, with PC1 explaining 79% of the variance), with five 260 

species identified as the top most impacted: the lion, African wild dog, African elephant, spotted hyaena 261 

and hippopotamus (Fig 1A). Of these five species, four are listed as threatened on the IUCN Red List. Three 262 

are carnivores and the other two are megaherbivores (body mass >1,000 kg).  PC1 values were significantly 263 

lower for carnivores compared to herbivores (two-way ANOVA Type II, F(1,34)= 5.35, MSE = 6.60, 264 

p=0.026), and marginally lower for threatened compared to non-threatened species (two-way ANOVA 265 

Type II, F F(1,34)=2.26, MSE = 2.78, p=0.143). 266 
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We found a significant inverse linear relationship between PC1 and the change in mean predicted habitat 267 

suitability over the study area ΔPRED (p<0.001, R2=0.73) (Fig 1B), i.e. species that are most affected by 268 

neglecting historical data have higher mean predicted habitat suitability over their study area when 269 

historical records are included in HSMs. The lion, African wild dog, elephant, spotted hyaena and 270 

hippopotamus show the largest increase in mean predicted habitat suitability when historical records are 271 

included (ΔPred equal to 81%, 53%, 41%, 34% and 33%, respectively).  272 

This results in differences in predicted potential species richness at the community level (Fig 2A) and in 273 

the geographic distribution of predicted habitat suitability at the species level (see maps on Fig 2B for the 274 

five most impacted species and Supplementary Information for maps of all 34 species). Differences in 275 

predicted potential species richness are higher for the Albany Thicket, Fynbos and Savanna Lowveld 276 

biomes (Fig 3). The Nama-Karoo has on average very similar predicted species richness with the RECENT 277 

or TOTAL dataset, whereas the potential species richness tends to be overestimated in Arid Savanna. 278 

 279 

Figure 1. Effects of incorporating historical records on the estimation of species climatic niche and 280 

predictions of habitat suitability. A) Principal Component Analysis (PCA) of the two indices used to 281 

measure discrepancy between estimations of climatic niche (Ndis) and habitat suitability (PREDdis) with the 282 

RECENT and TOTAL datasets, for the 34 species of large mammals considered. Higher values of indices 283 

(lower values of PC1) indicate a higher discrepancy. We highlighted (silhouettes) 14 species with negative 284 

PC1 values, most affected by neglecting historical records. We differentiate carnivores vs herbivores and 285 
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threatened vs non-threatened species. The differences between these groups along the first principal 286 

component (PC1) are significant for the former (p=0.026) and marginal for the latter (p=0.143). B) Plot 287 

showing the negative relationship between values of PC1 and the proportion difference in mean predicted 288 

habitat suitability over the study area when it is estimated from the TOTAL dataset, compared to the 289 

RECENT dataset (ΔPRED). Positive values of ΔPRED mean that the habitat suitability is underestimated 290 

without using historical records. Species that are most affected by neglecting historical data have 291 

increased mean predicted habitat suitability when historical records are included in HSMs. See Table S1 292 

in Supplementary Information for a key of silhouettes. 293 

 294 
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 295 

Figure 2. Effect of incorporating historical records in the spatial prediction of A) species richness and B) 296 

habitat suitability for the five species most impacted by neglecting historical records. The first column 297 

is the prediction of species richness/habitat suitability obtained from the RECENT dataset (post-1950 298 

records) and the second column is obtained from the TOTAL dataset (historical + recent records). The last 299 

column is the difference between column 2 and column 1. We highlight the five species most impacted 300 

through neglecting historical records according to their PC1 score: lion, African wild dog, African elephant, 301 

spotted hyaena and hippopotamus. 302 
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 303 

Figure 3. Mean difference in species richness estimated from the TOTAL vs RECENT dataset, calculated 304 

for each of the bioregions of South Africa. Darker shades of red indicate that the potential species 305 

richness is higher when predicted with the TOTAL dataset than with the RECENT dataset. The main biomes 306 

are identified with grey contouring, obtained from simplifying polygons of the 2012 “Vegetation Map of 307 

South Africa, Lesotho and Swaziland” [59]. The distinction is made between arid Savannas (SVk: Eastern 308 

Kalahari Bushveld Bioregion and SVkd: Kalahari Duneveld Bioregion) and mesic Savannas (SVcb: Central 309 

Bushveld Bioregion; SVmp: Mopane bioregion; SVl: Lowveld Bioregion and SVs: Sub-Escarpment Savanna 310 

Bioregion) [59]. 311 

 312 

DISCUSSION 313 

We show that neglecting long-term records can bias estimates of species climatic niche and suitable 314 

habitat and underestimate the potential regional species richness. The implications are more severe for 315 

carnivore species, and marginally more so for threatened species, for which appropriate conservation 316 

actions and management decisions are the most critical. These results have implications for conservation 317 

planning and distribution modelling in general, given that globally most mapping of species’ distributions 318 

and habitat use exclude long-term occurrence records, and for the conservation and management of 319 

South African mammalian fauna. These findings highlight the importance of considering long-term data 320 

in modern ecological analyses and may also provide explanatory insights into limits of conservation 321 
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approaches when they fail to consider appropriate species distribution baselines. We expand on these 322 

points below. 323 

Species implications 324 

For several species, we observe only a limited effect of including historical records in the analyses. This 325 

indicates that modern occurrence records provide a reasonably good coverage of the climatic conditions 326 

found in their historic distribution. This possibly reflects that they have been less impacted by past range 327 

contractions, that range contraction did not affect the range of environmental conditions occupied by the 328 

species or that they have successfully recovered throughout their historic range, whether by natural 329 

recolonization or through active reintroductions. This result highlights the success of conservation efforts 330 

in South Africa, where many species have been successfully reintroduced throughout their historic range 331 

(e.g. black wildebeest, Cape mountain zebra) [60], with some species even introduced outside their native 332 

range (e.g. giraffe, impala) [42] (though extralimital records have been excluded from the analyses and 333 

thus the consequences of these introductions were not reflected in this study). 334 

In contrast, considering historical data hugely affects estimates of the climatic niche and potential 335 

distribution of other species. For these, the geographic distribution of predicted habitat suitability is wider 336 

than expected from recent data only and this effect is higher for species of high conservation value. Three 337 

of the five most impacted species are carnivores (lion, African wild dog and spotted hyaena) and the two 338 

others are megaherbivores (elephant and hippopotamus), all being listed as threatened by the IUCN Red 339 

List except the spotted hyaena, which is revealingly listed as near threatened on the Red List of Mammals 340 

of South Africa, Swaziland and Lesotho [61]. These species are highly charismatic [62], very sensitive to 341 

humans [63], and play important roles in ecosystems[64], thus acting as focal species for management 342 

efforts and trophic rewilding initiatives [65]. Analyses based on recent data only will lead to truncated 343 

estimates of bioclimatic relationships and underestimations of the extent of suitable areas for 344 

conservation. Important suitable areas might be overlooked when selecting appropriate sites for 345 

reintroductions and trophic rewilding, and protection efforts might focus on marginal habitat [5,6]. The 346 

implications of such missed opportunities on management outcomes and the conservation status of 347 

species need to be better understood.  348 

Community implications 349 

At the community level, neglecting historical records underestimates potential regional species richness, 350 

with some areas being more impacted than others. In South Africa, the south-western and western parts 351 
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of the coastline as well as the central Free State and the Eastern Cape provinces have higher potential 352 

richness than expected from recent records only. These areas were highly impacted historically, with the 353 

establishment of the Cape Colony by the Dutch in the mid-17th century and the subsequent colonization 354 

of the interior, with increased pressures from land-use change and direct hunting [11,66]. In most 355 

bioregions, overlooking historical records underestimates the potential species richness, with particularly 356 

strong effects in the Fynbos and Albany Thicket biomes. These shifted distribution baselines clearly have 357 

implications for our understanding of broader biogeographic patterns and processes. As an example, the 358 

underestimate of large mammal species richness in the Fynbos biome illustrated here demonstrates that 359 

the role of mammals in this biome, traditionally considered to support a low diversity of large mammals 360 

[13,68], needs to be reassessed. In addition to having suffered major biodiversity declines in the past 361 

[13,67], these areas are also where conservation efforts are thus most likely to be misguided (but see [13] 362 

for conservation planning in the Fynbos), which carries major implications for wildlife management and 363 

conservation in South Africa. 364 

Our study area doesn’t cover the full distribution range of some species, meaning that we are only 365 

sampling part of the environmental conditions that these species might encounter throughout their range. 366 

While this limits the transferability of predictions in space or time, our results remain valid at the regional 367 

level because we don’t extrapolate outside the environmental space sampled in the occurrence dataset. 368 

South Africa is an exceptional ecoregion, with unique climatic regimes, high species richness and 369 

endemism [69,70]. Being at the southern margin of some species’ global distribution, it is a particularly 370 

important area for conservation since it may harbor populations with unique local adaptations that will 371 

be critical for species’ ability to persist in the face of future climate change [71]. Range contractions that 372 

truncate species-climate relationships in this area are thus even more critical for our understanding of 373 

species’ niche than those occurring at the center of the range.  374 

Implications for informing climate change and invasion risk 375 

HSMs are widely used  to forecast species range shifts under contemporary climate change [72] and to 376 

assess the geographic risk of species’ invasions [73]. In a study investigating the impact of overlooking 377 

historical records in HSMs for 36 North American mammal species, Faurby and Araújo found that forecasts 378 

of climate change impacts on biodiversity are unlikely to be reliable without acknowledging for past 379 

anthropogenic range contraction [74]. Our study provides further evidence that using recent distribution 380 

records only can underestimate species’ bioclimatic niche, which in turn is likely to provide biased forecast 381 

of species’ response to climate change. Similarly, this truncated understanding of suitable bioclimatic 382 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2019. ; https://doi.org/10.1101/565929doi: bioRxiv preprint 

https://doi.org/10.1101/565929
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

areas will make us vulnerable to underestimating invasion risk. While this latter aspect is of less relevance 383 

for large mammals which are less frequently involved in invasions, the principle is of importance when 384 

modelling risk areas for known invasive species.  385 

Setting baselines 386 

Shifting baselines [75] emphasize the need for setting appropriate references when exploring ecological 387 

patterns and how these may change, especially for detecting long term processes.  We have demonstrated 388 

here the occurrence of shifted baselines for the distribution of South African mammals, against which one 389 

can assess recent and future shifts in the geographic patterns of this fauna. Such phenomenon can be 390 

expected elsewhere, and there is thus a need to study this at a global scale.  391 

This study focuses on Pre-European settlement conditions, which are often held up as a relevant baseline 392 

from which to define restoration objectives and quantify success [13,76,77]. For South Africa, we consider 393 

the 15th century baseline to be appropriate for identifying species’ niche since the bulk of human-related 394 

impact for extant large mammal species occurred after this period [11] (but see [78]). But this might not 395 

hold true in other systems, where human impact on mammal megafauna occurred much earlier [79]. The 396 

appropriate baseline should be adapted accordingly, to estimate natural diversity patterns and allow the 397 

identification of sites that match the biotic and abiotic needs of the focal species.  398 

CONCLUSION 399 

The recognition that neglecting long-term biodiversity might lead to setting inappropriate spatial 400 

baselines is the first step towards a better integration of these data in decision-making for biodiversity 401 

conservation and management. Due to the difficulty in collecting historical occurrence records, long-term 402 

datasets are not currently available for all taxa or regions. However, with the recent recognition of the 403 

value of these datasets for conservation, there is an encouraging development towards assembling long-404 

term biodiversity datasets [e.g. 80–82], including for underrepresented taxa [e.g. 83,84]. The release of 405 

global databases of historic distributions [85] is a promising avenue to integrate long-term perspectives 406 

in future ecological studies. We join previous calls for international, multidisciplinary effort to compile 407 

historical data [86], and urge that, whenever possible, these should be included into conservation and 408 

biogeography studies. Unless efforts are made to integrate this historical perspective into biodiversity 409 

conservation, shifted distribution baselines risk undermining our efforts to define appropriate protected 410 

areas and halt the ongoing biodiversity crisis, as well as appropriately manage biodiversity under global 411 

change. 412 
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