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Abstract  
Kinesin is part of the microtubule (MT)-binding motor protein superfamily, which exerts crucial 

functions in cell division and intracellular transport in different organelles. The heterotrimeric 

kinesin-II, consisting of the kinesin like protein KIF3A/3B heterodimer and kinesin-associated 

protein KAP3, is highly conserved across species from the green alga Chlamydomonas to 

humans. It plays diverse roles in cargo transport including anterograde (base to tip) trafficking in 

cilium. However, the molecular determinants mediating trafficking of heterotrimeric kinesin-II 

itself is poorly understood. Using the unicellular eukaryote Chlamydomonas and mammalian 

cells, we show that RanGTP regulates ciliary trafficking of KAP3. We found the armadillo repeat 

region 6-9 (ARM6-9) of KAP3, required for its nuclear translocation, is sufficient for its targeting 

to the ciliary base. Given that KAP3 is essential for cilia formation and the emerging roles of 

RanGTP/importin β in ciliary protein targeting, we further investigate the effect of RanGTP in 

cilium length regulation in these two different systems. We demonstrate that precise control of 

RanGTP levels, revealed by different Ran mutants, is crucial for cilium formation and 

maintenance. Most importantly, we were able to segregate RanGTP regulation of ciliary protein 

incorporation from of its nuclear roles. Our work provides important support for the model that 

nuclear import mechanisms have been coopted for independent roles in ciliary import.  
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Introduction 
Cilia are microtubule-based protrusions with sensory and/or motile functions. In mammals, 

defects in assembly and maintenance of cilia results in a series of diseases called “ciliopathies” 

(Fliegauf et al., 2007). The assembly and maintenance of these organelles are dependent on 

anterograde and retrograde intraflagellar transport (IFT) (Rosenbaum et al., 2002).  Anterograde 

IFT, which moves from the base of a cilium to the tip, is driven by kinesin-II (kozminski et al., 

1995; Cole et al., 1998), whereas retrograde IFT, which moves from the tip back to the base, is 

achieved by cytoplasmic dynein 1b (Signor et al., 1999; Pazour et al., 1999; Porter et al., 1999).  

The kinesin-II motor family is composed of a heterotrimeric KIF3A/KIF3A/KAP3 motor and a 

homodimeric KIF17 motor (Hirokawa et al. 2009). Unlike homodimeric KIF17, heterotrimeric 

kinesin-II is highly conserved, and loss of function in any component of heterotrimeric kinesin-II 

results in defective cilia in different organisms (Walther et al., 1994; Morris et al., 1997; Sarpal et 

al., 2004; Zhao et al., 2011). In addition to cilium formation, regulation and maintenance of 

cilium length is also dependent on the size and frequency of kinesin-II trains recruited 

to/entering cilia (Ludington et al., 2013; Engel et al., 2009). In addition to its central role in IFT 

and ciliogenesis, heterotrimeric kinesin-II has also been reported in other organelle transport 

events outside cilia. This includes anterograde transport from endoplasmic reticulum to the 

Golgi apparatus in Xenopus (Le Bot et al., 1998), retrograde transport from the Golgi to 

endoplasmic reticulum in HeLa cells (Stauber et al., 2006), and establishment of cell polarity 

during migration (Murawala et al., 2009). Furthermore, heterotrimeric kinesin-II is reported to 

play critical roles in mitosis (Fan et al., 2004; Haraguchi et al., 2006). 

 

Intracellular localization of heterotrimeric Kinesin-II subunits is cell cycle dependent. 

Cilia assemble in quiescent cells and disassemble in dividing cells (Plotnikova et al., 2009). 

Heterotrimeric kinesin-II is localized in both cilia and basal body in ciliated cells. When cells 

enter mitosis and cilia retract, the non-motor subunit KAP is transported into nucleus before 

nuclear membrane break down in cells of sea urchin blastulae (Morris et al., 2004). During 

cytokinesis, the motor protein KIF3B is localized in the midbody (Fan et al., 2004). 

Macromolecules can’t freely go into or out of the cilium and nucleus because diffusion barriers 

exist at the ciliary base and the nuclear pore complex (NPC) (Kee et al., 2012; Takao et al. 

2014., Endicott et al., 2018). The fundamental question is how this conserved heterotrimeric 

kinesin-II complex traffics between different compartments (the cytoplasm, nucleus and cilium) 

and how these processes are regulated.  
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For nuclear transport from the cytoplasm, the NPC mediates active transport of proteins 

(Alber et al., 2007). Larger proteins (>50 kDa) generally require RanGTP and specific importin 

transport receptors to cross the NPC (Gorlich et al., 1994; Gorlich and vogel et al., 1995). 

Importins usually bind a nuclear localization signal (NLS)-containing cargo at relatively low 

RanGTP level in cytosol. This moves the complex through NPCs and releases cargo in the 

nucleus where RanGTP concentration is high (Moore et al.,1993; Gorlich et al., 1999).  In most 

cases, importin β1 binds to importin α, which interacts with a conventional NLS, to mediate 

substrate nuclear import (Gorlich and Kostka et al., 1995). In contrast, importin β2 recognizes 

non-traditional proline-tyrosine NLS (PY-NLS) for nuclear import (Lee et al., 2006). In the 

nucleus, direct binding of RanGTP with importin β results in cargo release (Gorlich et al., 1997). 

 

 Compared to nucleo-cytoplasmic transport, the molecular mechanisms controlling protein 

trafficking into cilia are less well understood. Several ciliary localization sequences were 

reported in previous studies including RVxP, VxPx, and Ax[S/A]xQ motifs that are important for 

mediating ciliary trafficking of membrane proteins (Jenkins et al., 2006; Geng et al., 2006; 

Mazelova et al., 2009; Berbari et al., 2008). It was proposed that there are shared mechanisms 

between ciliary import and nuclear import (Dishinger et al., 2010; Takao et al., 2014; Del Viso et 

al., 2016; Takao et al., 2017; Endicott et al., 2018). Several results indicated that 

RanGTP/importin β/NLS import system is required for ciliary targeting of either membrane or 

soluble proteins including importin β1 for Crumsb3 (Fan et al., 2007), RanGTP/importin β2 for 

KIF17 (Dishinger et al., 2010), importin β2 for RP2 (Hurd et al., 2011), importin α1/α6/NLS for 

KIF17 (Funabashi et al., 2017), and importin β2/PY-NLS for GLI2/GLI3 (Han et al., 2017). It was 

also reported that importin β2/Rab8 forms a ternary complex with ciliary localization sequences 

to direct membrane protein trafficking to cilia (Madugula et al., 2016), suggesting that this 

process is independent of RanGTP and a NLS or PY-NLS. Despite these advancements in 

uncovering mechanisms for ciliary import, it remains unclear whether RanGTP regulates ciliary 

trafficking directly or by affecting nuclear import to result in defective ciliary trafficking. It is also 

unclear whether different cargoes depend on different importin β receptors for ciliary trafficking. 
Lastly, prior work investigated determinants of ciliary entry for the homodimeric ciliary kinesin 

composed of KIF17 (Dishinger et al., 2010), the heterotrimeric kinesin-II is the motor that 

dictates cilium assembly and maintenance (Walther et al., 1994; Morris et al., 1997; Sarpal et al., 

2004; Zhao et al., 2011; Engel et al., 2009; Ludington et al., 2013). Therefore, we focused on 

how ciliary trafficking of the heterotrimeric kinesin-II is regulated by leveraging the unique 
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advantages of the unicellular green alga Chlamydomonas reinhardtii as an excellent eukaryotic 

model to study ciliogenesis (Harris et al., 2001; Rosenbaum et al., 2002).  

Cilia of Chlamydomonas can be regenerated to full length in two hours, and unlike 

mammalian cells, ciliary assembly does not need to be induced (Rosenbaum et al., 1969) to 

result in heterogeneous population of ciliated and non-ciliated cells. The molecular mechanism 

of the nucleo-cytoplasmic trafficking is likely conserved between the Chlamydomonas and 

humans (Li et al., 2018). However, there are fewer constituent nucleoporins in the 

Chlamydomonas NPC compared to that of humans (Neumann et al., 2006). By using both 

mammalian and Chlamydomonas cells, we have found that ciliary trafficking of kinesin 

associated protein KAP3 is regulated by RanGTP. We demonstrated that precise manipulation 

of RanGTP level is crucial for regulating cilium formation. Importantly, we were able to clearly 

show that RanGTP plays a direct role in incorporation of ciliary proteins that is independent of 

its nuclear roles. These results provide potential insights for the molecular mechanism 

orchestrating multi-compartment trafficking of the heterotrimeric kinesin-II motor complex. 

Further, they answer a long-standing open question in the field about whether nuclear import 

mechanisms have been coopted for direct ciliary import. 

 

Results 
Ciliary protein KAP3 can localize to the nucleus 

The heterotrimeric kinesin-II motor complex consists of the heterodimeric motor proteins 

KIF3A/3B and the adaptor protein KAP3. In contrast, the homodimeric kinesin-II KIF17 motor 

does not need an adaptor protein to exert its function. Although it was suggested that KAP3 

functions as a linker between KIF3A/3B and the specific cargoes to facilitate intracellular 

transport, the function of KAP3 is still not well characterized. To explore this, we firstly 

investigated the intracellular localization of KAP3 in ciliated and non-ciliated cells. HA-tagged 

KAP3A and KAP3B (a short isoform of KAP3A) were transfected into hTERT-RPE cells. 24 

hours after transfection, cilia were induced by serum starvation. As expected, both HA-tagged 

KAP3A and KAP3B co-localized with acetylated-α-tubulin, confirming the intracellular 

localization of KAP3A and KAP3B are not affected by small HA epitope and can be targeted to 

cilia (Figure 1A). Surprisingly, we noticed that a significant amount of KAP3A and KAP3B was 

also distributed throughout the nucleus (Figure 1A). We further examined the localization of 

KAP3A and KAP3B in other different cell types. As shown in Figure 1B, HA-tagged KAP3A and 

KAP3B are mainly localized in the nucleus of COS-7 cells, although a small amount is 

distributed in the cytoplasm. We also showed that EGFP-tagged KAP3A and KAP3B could 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/562272doi: bioRxiv preprint 

https://doi.org/10.1101/562272
http://creativecommons.org/licenses/by/4.0/


	 5 

localize in the nucleus of MDCK cells (Figure 1C). Nuclear localization of KAP3A was 

consistent with that of EGFP tagged KAP3A in a previous report (Tenny et al., 2016). 

To dissect critical regions within KAP3A responsible for its nuclear localization, as depicted 

in Figure 1D, EGFP-fused KAP3 truncations were constructed (henceforth, KAP3 refers to the 

long isoform KAP3A). First, the expression of appropriately-sized truncations in MDCK cells 

were detected by western blot analysis (Figure 1E). Second, the subcellular distributions of 

these KAP3 truncations in MDCK cells were analyzed via fluorescence microscopy. As shown in 

Figure 1F, the N-terminal fragment KAP3 (1-270) and the C-terminal fragment KAP3 (661-792) 

are distributed in both the cytoplasm and nucleus, and KAP3 (271-460) was exclusively 

distributed in the cytoplasm. In contrast, KAP3 (461-660), consisting of armadillo repeats (ARM) 

6-9, were predominantly localized in the nucleus, which is similar to full-length KAP3. These 

data indicate that the region between amino acids 461 and 660 is crucial for nuclear localization 

of KAP3. Taken together, our data demonstrate that ciliary protein KAP3 can localize to the 

nucleus under the control of armadillo repeats 6-9. 

 
RanGTP, but not importin β2, mediates nuclear translocation of KAP3  

As shown in Figure 1, KAP3 is distributed to the nucleus in different cells. To determine the 

molecular mechanism of KAP3 nuclear translocation, we tested a well-studied pathway for 

protein nuclear import, RanGTP mediated nuclear import, which requires a high concentration of 

RanGTP in the nucleus for the disassembly of the imported complexes. To determine whether 

RanGTP drives nuclear import of KAP3, the dominant negative mutant RanQ69L which cannot 

hydrolyze GTP, was used in this study. As shown in Figure 2A, Ectopic expression of RanQ69L 

blocked nuclear localization of KAP3 in COS-7 cells, resulting in a more cytoplasmic distribution 

of KAP3 relative to wild-type controls. This data suggests that nuclear translocation of KAP3 is 

mediated by a RanGTP-dependent nuclear import pathway. 

We mapped the region responsible for nuclear localization of KAP3 and found that KAP3 

(461-660) is required. If the region we mapped is correct, the nuclear localization of this 

truncation KAP3 (461-660) should be RanGTP-dependent, which act the same way as full-

length KAP3. To test this, we co-transfected KAP3 (461-660) with the dominant negative Ran 

mutant RanQ69L. As shown in Figure 2B, RanQ69L completely disrupted nuclear import of 

KAP3 (461-660) and resulted in the cytoplasmic localization of this truncation. These results 

suggest that RanGTP-dependent nuclear import of KAP3 is dependent on the 461-660 region of 

KAP3. In contrast, RanQ69L didn’t change the localization of other KAP3 truncations (Figure 
2B). 
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It was reported that the import receptor importin β2 plays critical roles in both nuclear import 

and ciliary import of ciliary proteins, like KIF17 and GLI2/GLI3 (Dishinger et al., 2010; Han et al., 

2017). We further examined whether importin β2 is utilized for nuclear translocation of KAP3. 

The importin β2 inhibitory peptide M9M was used in these studies (Cansizoglu et al., 2007. 

Compared to the empty MBP control, MBP-tagged M9M did not block the nuclear translocation 

of KAP3 (Figure 2C). This data suggests nuclear import of KAP3 is independent of the importin 

β2 receptor. 

 

The armadillo repeat domain 6-9 (ARM6-9) alone is sufficient for ciliary base localization.  
KAP3 can localize in both the cilium and nucleus. We dissected the regions required for 

nuclear translocation of KAP3.  Next, we mapped the regions required for ciliary targeting of 

KAP3 in hTERT-RPE cells. As depicted in Figure 3A, full-length KAP3 contains three regions: a 

non-conserved N-terminal domain, nine armadillo repeats, and a C-terminal conserved domain 

(Jimbo et al., 2002; Shimuzu et al., 1996). Based on this, a series of truncations of KAP3 were 

generated and intracellular localization of these truncations was examined after cilium induction. 

As shown in Figure 3B, the truncation KAP3 (661-792) containing the C-terminal domain 

completely abolished localization to the cilium and ciliary base. In contrast, the truncation 

KAP3(186-792) containing both the nine armadillo repeats and C-terminal domain, and the 

truncation KAP3(186-660) merely with the nine armadillo repeats showed intense signal at the 

ciliary base. These data suggest that the nine armadillo repeats are required for KAP3 targeting 

to the ciliary base. We further narrowed the region within the nine armadillo repeats and 

demonstrated that the truncation KAP3(461-660), harboring the ARM6-9, is sufficient for ciliary 

base targeting of KAP3 (Figure 3B). It is noteworthy that this region is also required for 

RanGTP mediated KAP3 nuclear trafficking.  

 

RanGTP regulates percent ciliation in human retinal epithelial cells 
Given the middle region of KAP3, 461-660, is required for both nuclear and cilium base 

targeting and nuclear targeting is RanGTP dependent, we wanted to investigate whether KAP3-

dependent ciliogenesis and cilium length regulation (Sarpal et al., 2003; Mueller et al., 2004), 

was also RanGTP dependent. We were further interested in Ran-dependent ciliary phenotypes 

and KAP3 localization due to previously reported shared mechanisms between nuclear and 

ciliary import processes (Dishinger et al., 2010; Takao et al., 2014; Del Viso et al., 2016; Takao 

et al., 2017; Endicott et al., 2018) and conflicting conclusions about the effect of RanGTP on 

ciliogenesis (Dishinger et al., 2010; Fan et al., 2011; Torrado et al., 2016). Wild-type Ran and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/562272doi: bioRxiv preprint 

https://doi.org/10.1101/562272
http://creativecommons.org/licenses/by/4.0/


	 7 

three well-characterized dominant negative Ran mutants (RanQ69L, RanG19V and RanT24N) 

were used in this study. First, we studied the intracellular localization of these proteins in 

hTERT-RPE cells in serum-starved condition which induce ciliogenesis. As shown in Figure 4A, 

all the mutants are predominantly localized in the nucleus which is similar to that of wild-type 

Ran. These data indicate that expression of these point mutants did not dramatically affect 

intracellular localization of Ran. To analyze the role of these mutants in cilium formation and 

length regulation in hTERT-RPE cells, wild type and mutant Ran expression plasmids were 

transfected into hTERT-RPE cells. 24 hours post-transfection, low serum media were added for 

24 hours to induce cilium formation. As shown in Figure 4B and 4D, ectopic expression of 

either the GTP locked mutants RanQ69L/RanG19V or the GDP-locked mutant RanT24N had no 

obvious effect on cilium length. In contrast, cells transfected with these dominant negative 

mutants could reduce ciliation percentage compared the un-transfected control cells (Figure 
4C). Further, different Ran mutants had different effects on ciliation percentage. RanQ69L has 

higher affinity to GTP and resulted in a dramatically reduction in ciliation percentage compared 

to RanG19V, which has relatively low affinity to GTP (Lounsburg et al., 1996) (Figure 4C). 

These data indicate that the RanGTP level in hTERT-RPE cells is a determinant of initiation of 

cilium formation. Taken together, the ability to bind and hydrolyze GTP by Ran in vivo, revealed 

by different dominant Ran mutants, regulates its essential functions on the generation of cilia. 

To determine why there is reduced cilium formation in RanQ69L-expressing RPE cells, we 

further investigated the localization of other important components, like the IFT complex and 

kinesin-II. As shown in Figure 4E, IFT81, a component of the IFT-B complex, is still localized in 

the ciliary base of hTERT-RPE cells expressing RanQ69L, suggesting that IFT-B targeting is not 

affected and is unlikely to be the primary cause of defective cilium formation. In contrast, the 

kinesin-II associated protein KAP3 didn’t localize to the ciliary base. This data suggests that, in 

addition to potential roles for RanGTP in ciliary entry, ciliary targeting of the heterotrimeric 

kinesin-II is also RanGTP-dependent.  
 

RanGTP regulates ciliary length and ciliary trafficking of KAP under steady-state 
conditions in Chlamydomonas  

To see if mechanisms of Ran-dependent ciliary targeting and entry are broadly conserved, 

we tested the effect of Ran manipulation on assembly and kinesin-II motor targeting in 

Chlamydomonas cilia. The unicellular green algae Chlamydomonas is an excellent model to 

study ciliary length regulation and protein trafficking. In addition to the extensive body of 

literature on motor trafficking and ciliary assembly in this organism, the small G-protein Ran and 
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key residues required for GTP hydrolysis are well conserved between humans and 

Chlamydomonas (Suppl. Figure 1). We therefore examined the role of Ran-like protein (Ran1), 

the ortholog of human Ran, on ciliary length regulation in wild-type Chlamydomonas CC-125 

cells. Importazole (IPZ), a small molecular inhibitor which specifically blocks RanGTP-importin 

β1 interaction (Soderholm et al.,2011), was used to perturb RanGTP function. The result 

indicated treatment CC-125 cells with IPZ for 2 hours shortens ciliary length in a dose-

dependent manner (Figure 5, A and B).  

To exclude that the phenotype was caused by the off-target effect of the inhibitor, the GTP-

locked Ran1 mutant Ran1Q73L, corresponding to human RanQ69L, was transformed into 

Chlamydomonas. As shown in Figure 5C, there is strong Ran1Q73L expression as expected in 

Chlamydomonas (green arrow), despite a portion of expressed Ble-2A-Ran1Q73L fusion 

proteins being incompletely processed due to the cleavage efficiency of 2A peptide in 

Chlamydomonas (red arrow). Compared to control cells with normal ciliary length and cell 

division, the cells expressing high levels of Ran1Q73L exhibits either clumpy cells or shortened 

ciliary length. One possible explanation for clumpy cells may be that there are no cilia to secrete 

ectosomes containing lytic enzyme to break the cell wall after cell division (Wood et al., 2013). 

These results demonstrated that RanGTP plays pivotal roles in ciliary length regulation in 

Chlamydomonas. 

We showed that KAP3, but not IFT81, couldn’t be targeted to ciliary base in hTERT-RPE 

cells constitutively expressing GTP-locked RanQ69L. It was reported that RanGTP regulates 

ciliary entry of the other motor KIF17, which is localized in the nucleus as KAP3 (Dishinger et al., 

2010). Based on these data, we tested whether perturbing Ran function affected ciliary targeting 

or entry of KAP, the ortholog of human KAP3, in the Chlamydomonas KAP-GFP reporter strain 

CC-4296.  As shown in Figure 5D, KAP-GFP is distributed in both the cilium (pink arrows) and 

cilium base in control cells treated with DMSO. In contrast, KAP-GFP cilium entry is impaired  

(yellow arrows ) in cells treated with IPZ. These results indicate that ciliary entry of KAP is 

regulated by RanGTP in Chlamydomonas. 

 

RanGTP directly regulates ciliary protein incorporation during cilia regeneration in 
Chlamydomonas 

One advantage of the Chlamydomonas model system in this context is the significant 

available information about requirements for nuclear regulation of ciliary assembly. During ciliary 

regeneration after ciliary severing (deciliation), new ciliary proteins need to be synthesized and 

transported to assembly sites for incorporation into cilia (Figure 6A). This process requires 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/562272doi: bioRxiv preprint 

https://doi.org/10.1101/562272
http://creativecommons.org/licenses/by/4.0/


	 9 

initiating gene expression, which would be dependent on nuclear import of specific transcription 

factors like XAP5 (Li et al., 2018). Therefore, it is possible that RanGTP regulates cilium length 

by indirectly affecting nuclear import and ultimately new transcription/ciliary protein synthesis. 

To tease apart nuclear and non-nuclear effects, we were able to use the small molecular 

inhibitor cycloheximide (CHX) to inhibit new protein synthesis during cilia regeneration. As 

shown in Figure 6A, in wild-type Chlamydomonas cells, this typically results in growth of cilia to 

half-length (6 µm) which shows the ability of these cells to incorporate already-synthesized 

proteins to generate half-length cilia without the production of new proteins from the burst of 

transcription post-deciliation (Rosenbaum et al., 1969). As expected, when blocking new protein 

synthesis with CHX, the existing ciliary proteins can build short cilia as shown in Figure 6B. If 

RanGTP exclusively inhibits nuclear import, but not ciliary import, inhibition of Ran function 

should allow existing ciliary proteins to still incorporate and assemble cilia to half-length (Figure 
6A, Model 1). If inhibiting Ran function blocks both nuclear import and direct ciliary import, even 

the existing ciliary proteins shouldn’t incorporate and build cilia, resulting in bald cells (Figure 
6A, Model 2).  Our data fit Model 2 and show that when the deciliated cells are treated with IPZ 

to inhibit Ran function (with CHX to block any new protein synthesis), there is no cilium 

formation during regeneration. This demonstrates that IPZ can directly block incorporation of the 

existing ciliary proteins into cilia for assembly (Figure 6B).  To confirm that the lack of ciliary 

growth wasn’t due to cell toxicity and that IPZ only impacts the ability of existing proteins to 

enter cilia, we washed out IPZ but still continued CHX treatment to inhibit new protein synthesis. 

As shown in Figure 6 C and D, ciliary biogenesis is restored upon IPZ washout. These data 

clearly showed that under conditions where only existing ciliary proteins can enter cilia, RanGTP 

has direct effects in regulating ciliary protein incorporation. We also released CHX inhibition to 

test if, regardless of the presence of new proteins, blocking Ran function can regulate 

incorporation of existing ciliary proteins expected to enter cilia upon deciliation (Figure 6E ad 
6F). In these conditions, if IPZ blocked nuclear entry of transcription factors needed for the spike 

in ciliary proteins but did not directly affect ciliary entry of existing proteins, cilia would still reach 

half-length from the already-synthesized ciliary protein pool. Our data indicated IPZ can 

completely block incorporation of ciliary proteins, which cannot be explained exclusively from 

nuclear transport block. Ultimately, given the dual role of RanGTP in mediating ciliary import 

and nuclear import, it is important to segregate nuclear and direct ciliary effects of Ran 

perturbation. Here we are able to show that in spite of its demonstrated roles in regulating 

nuclear protein import, RanGTP has direct roles in mediating ciliary protein incorporation for cilia 

formation. 
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Discussion 

Although most kinesin motors are localized in the cytoplasm, different conditions allow 

some kinesin motors to transport into the nucleus including KAP3, KIF4, KIF17, and KIF17B 

(Morris et al., 2004; Seungoh et al., 2001; Dishinger et al., 2010; Macho et al., 2002). KAP3 and 

KIF4 can redistribute to the nucleus during mitosis (Morris et al., 2004; Seungoh et al., 2001). 

During mouse spermatid development, KIF17B shuttles from nucleus to cytoplasm (Macho et al., 

2002). We observed that both the isoforms of the heterotrimeric kinesin-II accessory subunit 

KAP3A and KAP3B are localized in the nucleus, and that their nuclear localization is RanGTP 

dependent. Considering KIF17B can function as a transcription regulator (Macho et al., 2002), it 

is possible that KAP3 participates in regulation of gene expression in the nucleus. However, 

nuclear roles of KAP3 need to be further investigated. 

It was reported that the armadillo repeats of KAP3 are responsible for binding to motor 

subunits KIF3A/3B, and the C-terminal conserved domain is responsible for specific cargo 

binding (Haraguci et al., 2005; Nagata et al., 1998; Jimbo et al., 2002; Deacon et al, 2003). Our 

data showed the armadillo repeats 6-9 (ARM6-9) are required for KAP3 targeting to the ciliary 

base, probably mediated by RanGTP. It is possible that the heterodimeric KIF3A/3B and 

RanGTP collaboratively regulate KAP3 targeting to the ciliary base. It is also noteworthy that 

cells expressing the truncated KAP3A (186-660), containing only the armadillo repeat domain, 

have normal cilia length, whereas cells expressing the truncated KAP3 (186-792), containing 

both the armadillo repeats and cargo-binding domains, have no cilia. Given that loss of the 

cargo-binding domain dramatically decreases KAP3 binding to KIF3A/3B (Haraguci et al., 2005), 

our data suggest that the dominant negative function of KAP3 truncations is dependent upon 

their binding ability to the KIF3A/KIF3B motor subunits. 

Several lines of evidence suggest that RanGTP is involved in ciliary protein trafficking 

(Dishinger et al., 2010; Hurd et al., 2001; Fan et al., 2011; Maiuri et al., 2013). RanGTP was 

reported to regulate ciliary entry of the homodimeric motor KIF17 and RP2 (Dishinger et al., 

2010; Hurd et al., 2001). RanGTP was also reported to facilitate ciliary export of huntingtin 

Maiuri et al., 2013). However, there are several inconsistent conclusions about the role of 

RanGTP on cilium formation. Two groups demonstrated that RanGTP has no effect on ciliary 

biogenesis (Dishinger et al., 2010; Torrado et al., 2016), whereas another group showed that 

manipulation of RanGTP concentration via RanBP1 knockdown could drive cilia formation in 

MDCK cells (Fan et al., 2011). Our results indicate that different dominant negative forms of 
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Ran have different effects on cilia formation, although these mutants have no effect on 

regulating cilium length. Furthermore, GTP locked mutant RanQ69L more dramatically affects 

percent ciliation than that of RanG19V. The difference between RanQ69L and RanG19V is that 

RanQ69L has much higher affinity for GTP than RanG19V, thus RanQ69L-expressing cells 

have less free RanGTP than RanG19V-expressing cells. Taken together, our results suggest 

that precise manipulation of intracellular free RanGTP is critical for regulating cilium formation. 

In addition to RanGTP, the importin transport receptors also participate in ciliary protein 

trafficking (Fan et al., 2007; Dishinger et al., 2010; Hurd et al., 2001; Torrado et al., 2016; 

Madugula et al., 2016; Han et al., 2017). There is also some disagreement about which importin 

is utilized for ciliary protein trafficking. Importin β1 was responsible for transmembrane protein 

Crumbs3 ciliary trafficking (Fan et al., 2007), and importin β2 was identified as the transport 

receptor for ciliary targeting of either transmembrane or soluble proteins like KIF17, Gli2 and 

GLi3 (Dishinger et al., 2010; Hurd et al., 2001; Madugula et al., 2016; Torrado et al., 2016; Han 

et al., 2017). However, additional data has shown that importin α1 and α6, but not importin β2, 

are responsible for ciliary targeting of soluble KIF17 (Funabashi et al., 2017). In general, 

importin β1, alone or in cooperation with importin α, transports substrates with a conventional 

NLS (Lange et al., 2007), whereas importin β2 transports substrates that contain the non-

conventional PY-NLS (Lee et al., 2006). Consistent with this, ciliary targeting of the 

transcriptional factor Gli2/Gli3, which utilizes transport receptor importin β2, relies on its PY-NLS 

motif. PY-NLS mutations also result in the loss of Gli2/Gli3 ciliary targeting (Han et al., 2017). It 

is reported that the NLS-like sequence in the C-terminal region of KIF17 is required for its ciliary 

targeting (Dishinger et al., 2010). This NLS-like sequence was further confirmed as a classical 

mono-partite NLS (Funabashi et al., 2017). However, we noticed that PL, the PY variant, is 

located in the immediate downstream region of this NLS. So it is worth investigating whether or 

not this C-terminal NLS of KIF17 is a PY-NLS and which importin is used for KIF17 ciliary 

trafficking. Recently, a ternary complex consisting of importin β2, small GTPase Rab8 and 

ciliary targeting signals was reported to guide transmembrane protein trafficking to cilium 

(Madugula et al., 2016). This data suggests that spatial structure of the ternary complex, but not 

specific ciliary targeting sequences, are required for ciliary targeting of membrane proteins. This 

highlights that the detailed working model for how importin mediates ciliary import needs to be 

further clarified.  

There is increasing data that nuclear import and ciliary import shares similar mechanisms, 

at least in part (Dishinger et al., 2010; Kee et al., 2012; Takao et al., 2014; Del Viso et al., 2016; 

Takao et al., 2017; Endicott et al., 2018). First, both the NPC and the ciliary pore complex form 
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a diffusion barrier (Kee et al., 2012; Endicott et al., 2018). Second, the RanGTP/importin 

transport system is also used for ciliary protein trafficking (Fan et al., 2007; Dishinger et al., 

2010; Hurd et al., 2011; Han et al., 2017). Third, some nucleoporins also localize in the ciliary 

base to regulate barrier diffusion ability (Dishinger et al., 2010; Del Viso et al., 2016; Endicott et 

al., 2018). Our data have shown that RanGTP can regulate cilium formation and ciliary 

trafficking of KAP3. One remaining critical question is whether RanGTP has direct effects in 

modulating ciliary protein transport. One possibility is that the effect of RanGTP is an indirect 

result of inhibiting nuclear import of proteins, like transcriptional factors, which are required for 

ciliary formation. By using the unicellular green alga Chlamydomonas as a model organism, we 

clearly demonstrated that RanGTP function directly regulates ciliary incorporation of the existing 

pool of already-synthesized ciliary proteins, which is not dependent on new transcription. In 

addition, the dominant negative mutant RanQ69L blocked ciliary trafficking of KAP3. Given that 

KAP is required for localization of KIF3A/3B to the assembly sites (Muller et al., 2005), RanGTP 

may control cilia formation by directly regulating ciliary targeting of the heterotrimeric kinesin-II 

motor. This will in turn affect ciliary assembly and length maintenance due to the importance of 

ciliary recruitment and entry of kinesin-II motor KIF3A/3B/KAP in these processes (Engel et al., 

2009; Ludington et al., 2013). Further work will determine if this is a generalized mechanism for 

ciliary protein import and will identify additional RanGTP-regulated ciliary proteins (cargoes) 

required for cilium assembly, length control, and function. 

 

Materials and Methods 
Compounds 
DMSO, Importazole (IPZ, #SML0341) and Cycloheximide (C1988) were purchased from Sigma-

Aldrich. Indicated concentrations and specific incubation times are used in this study. 

 

DNA constructs 
Plasmids for HA-tagged human KAP3A and KAP3B were kindly from Dr. Benjamin Allen 

(University of Michigan). Plasmids for wild-type Ran and point mutants RanG19V and RanT24N 

are a generous gift from Dr. Kristen Verhey (University of Michigan). Plasmids expressing MBP 

and M9M were from Dr. Yuh Min Chook (University of Texas Southwestern Medical Center). 

Plasmids pmCherry-C1-RanQ69L (#30309) was obtained from Addgene under the material 

transfer agreement. GeneArtTM Chlamydomonas protein expression vector pChlamy_4 was from 

Therm Fisher Scientific. Recombinant plasmids pChlamy_4_Ran1Q73L, EGFP or HA-tagged 
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KAP3 truncations were generation by ligation-independent cloning strategy as described before 

(Zhu et al., 2010) and sequenced in full. 

 
Chlamydomonas strains, mammalian cells and antibodies 
Wild-type and KAP-GFP reporter strains were obtained from the Chlamydomonas resource 

center (CC-125 mt+ and CC-4296).  Strains were grown in liquid Tris-Acetate-Phosphate (TAP) 

liquid medium for 18-24 hours prior to experimentation. Mammalian COS-7 and MDCK Cells 

were cultured in Dulbecco's Modified Eagle's Medium (DMEM; Invitrogen) supplemented with 

10% fetal bovine serum (FBS; Invitrogen). Human TERT-RPE cells were cultured in 

DMEM+F12 (1:1) (Invitrogen) containing 10% FBS. Antibodies used in this study are as follows 

(IF and WB are short for immunofluorescence and western blot, respectively): Mouse anti-

acetylated α-tubulin (#T6793, 1:500 for IF) was from Sigma-Aldrich (St. Louis, MO, USA). 

Rabbit anti-Cep164 (#22227-1-AP, 1:50 for IF) and rabbit anti-IFT81 (#11744-1-AP, 1:50 for IF) 

were from Proteintech. Mouse anti-KAP3A (#610637, 1:20 for IF) was from BD Transduction 

Laboratories™. Mouse anti-Myc (AB_390912, 1:100 for IF) was from Roche. Rabbit anti-V5 

(#13202, 1:1000 for WB), rabbit anti-HA (#3724, 1:100 for IF) and Rabbit anti-GFP (#2956, 

1:100 for IF and 1:1000 for WB, respectively) were from Cell Signaling Technology. 

 

Cell culture and transfection 

COS-7, MDCK and hTERT-RPE cells were maintained in a humidified atmosphere at 37°C and 

5% CO2. Cells for transfection were seeded in an 8-well chamber slide (Lab-Tek) with 0.4 mL 

culture medium per well. After overnight growth, the cells became 70-80% confluent and were 

transfected with the corresponding plasmids using the transfection reagent FuGENE 6 (Roche) 

according to the manufacturer’s instructions. In normal condition, COS-7, MDCK and hTERT-

RPE cells are fixed with 4% paraformaldehyde for intracellular localization assay 24 hours post-

transfection. In serum starvation condition for cilium induction, hTERT-RPE cells were cultured 

in complete medium for 24 hours post-transfection, then followed to culture in DMEM+F12 (1:1) 

with 0.25% FBS for other 24 hours. 

 

Chlamydomonas transformation 
Electroporation transformation was used form rapid transformation of Chlamydomonas with the 

electroporator NEPA (Nepa Gene, Japan). Transformation was performed following the 

published protocol with some modifications (Yamano et al., 2013). The typical 4 days were 

necessary to perform the transformation. Day 1: pre-cultivation stage: the cells were grown in 5 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/562272doi: bioRxiv preprint 

https://doi.org/10.1101/562272
http://creativecommons.org/licenses/by/4.0/


	 14 

mL TAP liquid medium for overnight culture. Day 2: pre-cultured cells from day 1 were 

transferred into a new 50 mL TAP medium in a 250 mL flask with a final OD730 of 0.1 (usually 1-3 

mL pre-cultures added) for overnight culture with 120 rpm/25°C. Day 3: cells were harvested by 

centrifugation when the cell density reached OD730 of 0.3-0.4, and washed by GeneArt MAX 

Efficiency Transformation Reagent (Invitrogen) 3 times and resuspended in 250 μL TAP 

medium containing 40 mM sucrose. 1.6 μg linearized DNA (pChlmay_4_Ran1Q73L) was mixed 

with 160 μL of the cell suspension for electroporation. After electroporation, the cells were 

transferred into 10 mL TAP plus 40 mM sucrose for overnight culture in dim light. Day 4:  cells 

were collected and plated onto 1.5% TAP-agar plate with 10 μg/mL zeocin for growth. The 

colonies will be visible 5-7 days later. 

 
Immunofluorescence staining 
Cells were washed with cold PBS twice, and then fixed with 4% paraformaldehyde in HEPES 

(pH 7.4) for 15 min at room temperature. Cells were washed three times with cold PBS and then 

incubated with 0.1% Triton X-100 in PBS (pH 7.4) for 10 min. Permeabilized cells were washed 

with PBS three times, and then incubated in PBS with 10% normal goat serum and 1% BSA for 

1 hour at room temperature to block non-specific binding of the antibodies. Cells are incubated 

with diluted primary antibody in PBS with 1% BSA overnight at 4°C. After three times wash with 

PBS, cells are incubated with the secondary antibody in PBS with 1% BSA for 1 hour at room 

temperature in the dark. After washing three times with PBS, cells are mounted with ProLong 

Antifade mounting medium with or without DAPI, and kept at 4°C in the dark for further imaging. 

 

Ciliary regeneration 
Chlamydomonas cells were deciliated by pH shock as described before (Witman et al., 1972), 

and ciliary regeneration was induced in normal TAP liquid medium. After deciliation, cells were 

immediately treated with 10 μg/mL Cycloheximide and/or 10 μM IPZ for 60 min. For IPZ 

washout experiment, treated cells were washed 3 times and cultured in fresh TAP liquid 

medium (or with 10 μg/mL Cycloheximide). Cells were fixed with 1% glutaraldehyde for 15 min 

at room temperature, and cilia length was measured using the line segment tool in ImageJ. 
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Figure legends 
 
Figure 1. Kinesin-associated protein KAP3 localizes in both the cilium and nucleus. A. HA 

-tagged KAP3A and KAP3B were transfected into hTERT-RPE cells. After 24 hours transfection, 

cilium was induced under 0.25% serum starvation for another 24 hours. Cells were fixed with 4% 

paraformaldehyde (PFA) and stained with rabbit anti-HA and mouse anti-ac-α-tubulin antibodies. 
B. HA-tagged KAP3A or KAP3B were expressed in non-ciliated COS-7 cells, After 24 hour 

transfection, cells were fixed with 4% PFA and stained with anti-HA antibody. Cell nuclei are 

pseudo-colored blue, following staining with DAPI. C. EGFP tagged KAP3A and KAP3B were 

expressed in MDCK cells. D. Schematic illustration of EGFP tagged KAP3 truncated derivatives. 

E. Western blotting analysis of the expression of EGFP tagged KAP3 transiently transfected 

MDCK cells. F. Mapping the domains required for nuclear localization of KAP3A in MDCK cells: 

a series of EGFP tagged KAP3A truncations were transfected into MDCK cells. 24 hours after 

transfection, cells were fixed with 4% PFA and stained with mouse anti-HA antibody and DAPI.  

 

Figure 2. RanGTP regulates nuclear translocation of KAP3.  A. Dominant negative form of 

Ran blocked nuclear localization of KAP3 in COS-7 cells. mCherry tagged wild-type Ran or GTP 

bound dominant mutant RanQ69L were co-transfected with EGFP-KAP3 into COS-7 cells. After 

24 h transfection, cells were fixed with 4% PFA and stained with anti-EGFP antibody and DAPI 
B. Mapping the domains within KAP3 that is mediated by RanGTP mediated nuclear import. a 

series of EGFP tagged KAP3 truncations were co- transfected with GTP-locked Ran mutant 

Q69L into COS-7 cells. After 24 h transfection, cells were fixed with 4% PFA and stained with 

anti-EGFP antibody and DAPI. C. nuclear translocation of KAP3 is not dependent on importin 

β2. The plasmid myc-MBP-M9M expressing myc-MBP fused inhibitory peptide M9M of importin 

β2, or its control merely expressing myc-MBP, was co-transfected with EGFP-KAP3 into COS-7 

cells. 24 hours after transfection, cells were fixed with 4% PFA and co-stained with mouse anti-

myc (Red) and rabbit anti-EGFP antibodies (green). nuclei are stained with DAPI (blue). 

 

Figure 3. Armadillo repeat domain 6-9 targets KAP3 to the ciliary base. A. Schematic 

illustration of full-length human KAP3 and its truncated derivatives for analyzing ciliary targeting. 

B. Ciliary base localization of KAP3 truncations in hTERT-RPE cells. hTERT-RPE cells were 
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transfected with various truncated constructs of KAP3. After 24 h transfection, the cells suffered 

serum starvation for cilium induction for another 24 hours and fixed with 4% PFA and co-stained 

with mouse anti-acetylated α-tubulin (red) and rabbit anti-EGFP antibodies (green). nuclei are 

stained with DAPI (blue). 

 
Figure 4. Dominant negative Ran mutants reduced percent ciliation in hTERT-RPE cells. 
A. Subcellular localization of wild-type Ran, RanQ69L, RanG19V and RanT24N in serum 

starved hTERT-RPE cells.  Plasmids for expressing wild-type Ran or its point mutants were 

transfected into hTERT-RPE cells. Cells were fixed after 24 h transfection, and intracellular 

localization of these proteins was visualized via immunofluorescence staining. B. dominant 

negative Ran mutants blocked cilia formation in hTERT-RPE cells. The plasmids expressing 

Ran mutant were transfected into hTERT-RPE cells. 24 h after transfection, Cilium was induced 

via serum starvation for another 24 h. The cells were fixed and labeled for acetylated α-tubulin 

and nuclei are stained with DAPI. C. hTERT-RPE cells expressing dominant Ran mutant 

reduced the percentage of ciliated cells. D. Quantification of cilia length. Data are presented as 

the mean±S.D. The unpaired t-test analysis was performed. P-value of great than 0.05 was 

considered no significant difference. E. Localization of IFT81 and KAP3 in ciliated hTERT-RPE 

cells expressing RanQ69L. Cilium was induced in hTERT-RPE cells expressing RanQ69L via 

serum starvation. The cells were fixed and co-stained with acetylated α-tubulin and IFT81, or 

KAP and Cep164. Nuclei are stained with DAPI. 

 
Figure 5. Inhibition of RanGTP function shortens cilia length and blocks ciliary trafficking 
of KAP under steady-state conditions in Chlamydomonas. A. Dose dependent inhibition of 

cilia length by the small molecular inhibitor IPZ, which disrupts RanGTP interacting with importin 

β. CC125 cells were treated with different concentration of IPZ for 120 min, fixed with 1% 

glutaraldehyde, and imaged by DIC microscope at 40× magnification. B. Quantification of cilia 

length. The unpaired t-test analysis was performed. P-value of less than 0.05 was considered 

significant difference.  C. Expression of the dominant negative mutant Ran1Q73L, 

corresponding to human RanQ69L, exhibits either clumpy cells or shortened ciliary length in 

Chlamydomonas. Linearized expression plasmid pChlamy-4-Ran1Q73L was transformed into 

CC-125 cells and initially screened by colony PCR. The expression of Ran1Q73L was finally 

detected by western blotting analysis via V5 antibody. Due to cleavage efficiency of 2A peptide 

in Chlamydomonas, Ran1Q73L was existed in two forms: Ran1Q73L (correctly processed, 
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green arrow) and Ble2-2A-Ran1Q73L (fused with the selection marker, red arrow). The 

representative images for the control Cells and Ran1Q73L expressing cells were shown. D.  
Inhibiting of Ran function by IPZ reduced ciliary localization of KAP. KAP-GFP reporter cells are 

treated with 20 μM IPZ for 2 h, fixed with 100% methanol, and mounted with prolong gold anti-

fade mounting medium. Ciliary localization of KAP (pink arrows) is dramatically reduced after 

IPZ treatment in Chlamydomonas (yellow arrow). Very infrequently, a cell could be seen with 

some ciliary KAP localization (blue arrow). 

 
Figure 6. RanGTP directly regulates ciliary protein incorporation in Chlamydomonas 
during ciliary regeneration A. Possible models of incorporation of existing ciliary protein into 

cilia after treated with cycloheximide (CHX)) and importazole (IPZ) during ciliary regeneration. 

Inhibition of new protein synthesis by CHX results in half-length cilia. B. Wild-type CC-125 cells 

were deciliated, and cilia were regenerated for 1 hour in the presence of different small 

molecular inhibitors: 10 μg/mL CHX, 10 μM IPZ or the combination of 10 μg/mL CHX and 10 μM 

IPZ. Cells were fixed with 1% glutaraldehyde and imaged by DIC microscope at 

40×magnification.  C. Schematic representation of IPZ washout assay under the absence of 

newly synthesized protein. D. Deciliated cells were treated with the combination of 10 μg/mL 

CHX and 10 μM IPZ for 60 min. Then IPZ, not CHX, was washed out, and cilia were 

regenerated for other 60 min. E. Possible models of RanGTP regulating ciliary protein 

incorporation, regardless of the presence of new proteins. F. Deciliated cells were treated 10 μM 

IPZ for 60 min and washed. Cilia were regenerated for another 60 min. 

 

Suppl. Figure 1. Alignment of human Ran with Chlamydomonas Ran like small GTPase 
(Ran1). Human Ran (NCBI reference sequence: NP_006316.1) and Chlamydomonas Ran1 

(Phytozome reference sequence: cre03.g191050.t1.2) were aligned using the Clustal Omega 

software. Conserved residues are indicated (asterisk indicates fully conserved residues; colon 

indicates residues with strongly similar properties; period indicates residues with weakly similar 

properties). The key residues required for GTP or GDP bound state of Ran are marked in red. 
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