Forest yeast sampling biases

1	Quantifying th	e efficiency	and biases	of forest S	accharomyces	sampling stra	ategies
-				01 101 000 0		5 m p m 8 5 m 6	

2

- 3 Primrose J. Boynton^{*1}, Vienna Kowallik², Doreen Landermann¹, Eva H.
- 4 Stukenbrock^{1,3}
- 5
- 6 1) Max-Planck Institute for Evolutionary Biology, Environmental Genomics Research
- 7 Group, Plön, Germany
- 8 2) Okinawa Institute of Science and Technology, Okinawa, Japan
- 9 3) Christian-Albrechts Universität, Botanisches Institut, Kiel, Germany

- 11 * To whom correspondence should be addressed:
- 12 pboynton@evolbio.mpg.de
- 13 August-Thienemann-Str. 2, 24306 Plön, Germany
- 14
- 15 Keywords: Saccharomyces paradoxus, Saccharomyces cerevisiae, forest, enrichment
- 16 culture, soil, environmental isolates

Forest yeast sampling biases

17 Abstract

18 Saccharomyces yeasts are emerging as model organisms for ecology and evolution, and researchers need environmental Saccharomyces isolates to test 19 20 ecological and evolutionary hypotheses. However, methods for isolating 21 Saccharomyces from nature have not been standardized and isolation methods can influence the genotypes and phenotypes of studied strains. We developed a direct 22 23 isolation method for forest floor Saccharomyces and compared its success and 24 phenotypic biases to a previously published enrichment-based isolation method. In a 25 European forest, direct isolation was more successful at isolating S. paradoxus, but 26 also more labor intensive, than enrichment culturing. Average growth rates of S. 27 paradoxus isolates collected using the two methods did not differ at the enrichment 28 isolation temperature, but variances in growth rates did: direct isolation produced a 29 collection of S. paradoxus isolates with less variation in growth rates than enrichment 30 culturing. In other words, enrichment culturing sampled more phenotypic diversity 31 than direct isolation. Enrichment culturing also sampled more *Saccharomyces* species 32 diversity than direct isolation, including our only isolations of rare S. cerevisiae. 33 Enrichment culturing may sample higher *Saccharomyces* phenotypic and species 34 diversity because of variations in interactions between yeasts and the other microbes 35 that were present in the soil and leaf litter samples. We recommend direct culturing 36 for researchers interested in randomly sampling their study habitats and enrichment 37 culturing for researchers interested in discovering new Saccharomyces phenotypes or 38 rare Saccharomyces species from natural environments. We include step-by-step 39 sampling protocols in the supplemental materials.

40

Forest yeast sampling biases

41 Introduction

42	Naturally-occurring Saccharomyces populations are models for ecology and
43	evolution (Boynton & Greig, 2014). Use of these models has led to exciting
44	discoveries about the ecology and evolution of microbial phenotypes; for example,
45	adaptation to climate can lead to speciation (Leducq et al., 2014), domesticated S.
46	cerevisiae is more phenotypically diverse than wild S. paradoxus (Warringer et al.,
47	2011), and interspecific hybrids can have high fitnesses in stressful environments
48	(Bernardes, Stelkens, & Greig, 2017; Stelkens, Brockhurst, Hurst, Miller, & Greig,
49	2014). These studies made inferences based on the phenotypes and genotypes of
50	isolates collected from wild and domesticated substrates. And Saccharomyces
51	substrates are diverse: wild substrates include tree bark, insect guts, leaf litter, soil,
52	fruits, and parasitic Cyttaria galls, (Kowallik & Greig, 2016; Libkind et al., 2011;
53	Mortimer & Polsinelli, 1999; Sampaio & Goncalves, 2008; Stefanini et al., 2012), and
54	domesticated substrates include wine, beer, bread, kimchi, kombucha, palm wine, and
55	pulque, among many other substrates (Boynton & Greig, 2016; Carbonetto,
56	Ramsayer, Nidelet, Legrand, & Sicard, 2018; Estrada-Godina et al., 2001; Ezeronye
57	& Okerentugba, 2001; Gallone et al., 2016; Greenwalt, Steinkraus, & Ledford, 2000;
58	Jeong, Jung, Lee, Jin, & Jeon, 2013). One challenge of environmental yeast sampling
59	is to minimize sampling biases so researchers can assure that differences among
60	source environments, not sampling techniques, are responsible for observed
61	phenotypic patterns.
62	Enrichment culturing is a reliable and frequently-used method for isolating
63	difficult-to-culture microbes, including Saccharomyces, from natural environments
64	(Schlegel & Jannasch, 1967; Sniegowski, Dombrowski, & Fingerman, 2002) (Figure
65	1A). Microbiologists have been relying on enrichment cultures for over a century

Forest yeast sampling biases

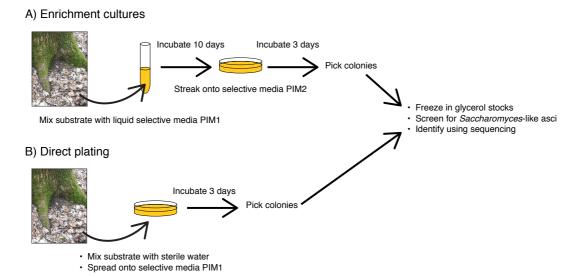


Figure 1: Schematic illustration of sampling strategies used to isolate *Saccharomyces* for this project. A) Enrichment culturing B) Direct plating. Photo: Doreen Landermann

66	(Beijernick, 1961), and have used enrichment culturing to isolate many of the model				
67	Saccharomyces strains commonly used in laboratory studies (Johnson et al., 2004;				
68	Liti et al., 2009; Sniegowski et al., 2002). To isolate a microbe using enrichment				
69	culturing, a researcher adds a small amount of natural material to a growth medium				
70	designed to be hospitable to the target microbe and inhospitable to other microbes				
71	(Liti, Warringer, & Blomberg, 2017; Schlegel & Jannasch, 1967). If the enrichment				
72	medium is well-designed, the target microbe is expected to grow in abundance, and				
73	after some incubation time, this enrichment culture can be streaked to solid media and				
74	colonies of the target microbe can be easily isolated. An alternative to enrichment				
75	culturing is to spread a microbial substrate directly onto a selective solid medium,				
76	with or without dilution, and to pick colonies which morphologically resemble the				
77	target microbe (Stefanini et al., 2012) (Figure 1B).				
78	Because it can be difficult to isolate Saccharomyces from natural substrates,				
79	many investigations of wild Saccharomyces rely on enrichment culturing, usually in				
80	high-sugar, acidic media (Charron, Leducq, Bertin, Dube, & Landry, 2014; Robinson,				
81	Pinharanda, & Bensasson, 2016; Sniegowski et al., 2002; Sweeney, Kuehne, &				

Forest yeast sampling biases

82	Sniegowski, 2004). Comparative studies of Saccharomyces genomes have been
83	carried out using Saccharomyces strains isolated using disparate strategies, including
84	both enrichment and direct culturing (Liti et al., 2009; Peter et al., 2018). However,
85	isolation strategy can influence the genotypes and phenotypes of isolated microbes
86	(Stefani et al., 2015), and we were concerned about the biases that might be
87	introduced during enrichment culturing of Saccharomyces yeasts. Specifically, we
88	were concerned that isolation method might bias results in studies of Saccharomyces
89	phenotypes. For example, enrichment culturing might select for individuals with high
90	relative fitness in the enrichment medium. Such potential biases in sampled yeast
91	phenotypes are likely to lead to biases in sampled genotypes because genetic
92	information is responsible for expressed phenotypes. Isolation biases have also been
93	suggested as potential explanations for differences between results of culture-
94	dependent and culture-independent studies of environmental Saccharomyces
95	(Alsammar et al., 2018).
96	This study's goals were to compare isolation success between enrichment
97	culturing and a direct culturing strategy, and to quantify biases in Saccharomyces
98	phenotypes (and therefore genotypes) that might be introduced when sampling a
99	forest environment. We tested the assumption that it is easier to sample
100	Saccharomyces from forest substrates using enrichment cultures than direct plating.
101	We also compared growth rates between S. paradoxus isolated using enrichment and
102	direct strategies. Enrichment culturing might decrease or increase sampled S.
103	paradoxus phenotypic diversity compared to direct plating, thereby decreasing or
104	increasing variance among S. paradoxus growth rates. For example, variance among
105	growth rates would be low (and average growth rates high) among S. paradoxus
106	isolated using enrichment cultures if the enrichment temperature and media select for

Forest yeast sampling biases

107	the fastest growing S. paradoxus present in every sample. Conversely, variance
108	among growth rates would be high for S. paradoxus isolated using enrichment
109	cultures if diversity in the non-Saccharomyces microbial communities present on
110	sampled substrates select for diverse S. pardoxus among samples.
111	To test these predictions, we compared Saccharomyces sampling success and
112	isolates' growth rates among soil and leaf litter samples from a well-studied northern
113	German forest (Kowallik & Greig, 2016; Kowallik, Miller, & Greig, 2015). A
114	previous study showed that S. paradoxus, the wild sister species of the lab model S.
115	cerevisiae, is readily isolated using enrichment cultures from oak leaf litter in this
116	forest (Kowallik & Greig, 2016). We were also previously able to isolate S.
117	paradoxus directly from these forest substrates without enrichment (Kowallik, 2015).
118	
119	Methods
120	Field sampling and yeast isolation
121	All isolates were sampled from a mixed hardwood and conifer forest in
122	Nehmten, Schleswig-Holstein, northern Germany (Nehmtener Forst). We sampled
123	leaf litter and soil material from close to the bases of ten oak trees at four sampling
124	dates (Table 1), although not all trees were sampled at every date. Trees were between
125	12 and 744 m from one another. At each date, samples were collected from leaf litter
126	and the top organic layer of soil within one meter of the base of each tree. Paired leaf
127	litter and soil samples were collected on the north, south, east, and west side of each
128	tree at all collection days except 7 April, when samples were collected at an arbitrary
129	two of the four cardinal directions.
130	Material was collected simultaneously for the direct plating and enrichment
131	collections at each sampling point (Figure 1). First, leaf litter was collected by

Forest yeast sampling biases

point meru	point includes one entrement and one entret plating sample)								
	21 March 2017		7 April	7 April 2017		12 June 2017		10 July 2017	
	soil	litter	soil	litter	soil	litter	soil	litter	
Tree 1	4	4	2	2	4	4	4	4	
Tree 2	4	4	2	2	4	4	4	4	
Tree 3	4	4	2	2	4	4	4	4	
Tree 4	4	4	2	2	4	4	4	4	
Tree 5	4	4					4	4	
Tree 6			2	2	4	4	4	4	
Tree 7			2	2	4	4	4	4	
Tree 8			2	2	4	4	4	4	
Tree 9					4	4	4	4	
Tree 10							4	4	

Table 1: Number of sampling points from each tree at each timepoint (each samplingpoint includes one enrichment and one direct plating sample)

134

aseptically transferring litter into sterile collection tubes: approximately 5 ml of 135 136 compressed leaf litter was collected for the direct plating method and approximately 137 2 ml for the enrichment method. Then, the remaining leaf litter was removed from the 138 soil surface and the top approximate 2 cm of soil (mostly composed of soil organic 139 layer) were aseptically transferred into sterile collection tubes. As for leaf litter, 140 approximately 5 ml of compressed soil was collected for the direct plating method 141 and approximately 2 ml for the enrichment method. Instruments were sterilized 142 between samples using 70% ethanol. Samples were transported between the field and lab at ambient temperature and processed within four hours of collection. 143 144 For **direct plating** (Figure 1A), material was mixed with 20 ml sterile water in 145 a sterile 50 ml tube, the mixture was vigorously mixed for at least 10 seconds with a 146 vortex mixer on its highest setting, and 0.2 ml of the resulting dirty liquid was 147 pipetted on each of two plates containing solid modified selective media PIM1 (3 g 148 yeast extract, 5 g peptone, 10 g sucrose, 3 g malt extract, 1 mg chloramphenicol, 80

- 149 ml ethanol, 5.2 ml 1 M HCl, and 20 g agar per liter) (Kowallik & Greig, 2016;
- 150 Sniegowski et al., 2002). Liquid was spread on plates using sterile glass beads, and

Forest yeast sampling biases

plates were left open in a laminar flow hood until dry. Plates were incubated for threedays at 30 °C before colonies were picked.

153	For enrichments (Figure 1B), material was mixed with 10 ml liquid selective
154	media PIM1 (composition as for solid PIM1 but without agar) in a 15-ml sterile tube,
155	mixtures were inverted, and tubes were incubated, slightly open and without shaking,
156	at 30 °C. After 10 days, a sterile wooden stick was inserted into each enrichment tube
157	and a small amount of liquid was streaked onto a single plate with solid selective
158	media PIM2 (20 g Methyl-(alpha)-D-glucopyranoside, 1 ml 5% Antifoam Y-30
159	emulsion, 6.7 g Yeast Nitrogen Base without amino acids, 4 ml 1M HCl, and 20 g
160	agar per liter) (Kowallik & Greig, 2016; Sniegowski et al., 2002), and plates were
161	incubated 4 days at 30°C before colonies were picked.
162	We include these procedures as step-by-step protocols for the convenience of
163	future researchers in the supplementary materials (Supplemental File 1).
164	
165	Yeast identification
166	After incubation, we streaked colonies with yeast-like morphology to fresh
167	YPD media (10 g yeast extract, 20 g peptone, 20 g dextrose, and 25 g agar per liter).
168	For each method, up to 6 (March and April sampling days) or 12 (June and July
169	
107	sampling days) colonies per sample were selected. After one day of growth on YPD at
170	
	sampling days) colonies per sample were selected. After one day of growth on YPD at
170	sampling days) colonies per sample were selected. After one day of growth on YPD at 30 °C, cultures were frozen at -80 °C in 20% glycerol and a small amount of each
170 171	sampling days) colonies per sample were selected. After one day of growth on YPD at 30 °C, cultures were frozen at -80 °C in 20% glycerol and a small amount of each culture was transferred to sporulation media (20 g potassium acetate, 2.2g yeast

Forest yeast sampling biases

175	cultures were incubated for at least three days at room temperature before being
176	screened under a compound microscope for Saccharomyces-like asci (tetrads).
177	All cultures producing tetrads were identified using sequencing of the internal
178	transcribed sequence (ITS), a region neighboring rRNA-coding DNA (Schoch et al.,
179	2012). We sequenced every strain using the ITS1/ITS4 primer pair (White, Bruns,
180	Lee, & Taylor, 1990). PCR mixes were 7-15 μ l in volume and contained one yeast
181	colony, 0.5 μ M each primer, and either 50% Phusion® High-Fidelity PCR master mix
182	with HF buffer or 1x HF-buffer, 100 μM dNTP mix, 3% DMSO, and 1 U/50 μl
183	Phusion DNA polymerase. PCR reactions were cycled at 98 °C for 30 s, then 35
184	cycles of 98 °C for 5 s, 62 °C for 20 s, and 72 °C for 30 s, plus a 10 min terminal
185	extension at 72 °C. PCR products were cleaned using illustra [™] ExoProStar [™]
186	according to the manufacturer's instructions, and sequenced on an ABI 3130xl
187	sequencer.
187 188	sequencer. ITS sequences were compared to sequences from the type or neotype strains of
	-
188	ITS sequences were compared to sequences from the type or neotype strains of
188 189	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus</i> , <i>S. cerevisiae</i> , <i>S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession
188 189 190	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus</i> , <i>S. cerevisiae</i> , <i>S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession numbers NR_138272.1, NR_111007.1, KY105195.1, and KY105198.1). If a
188 189 190 191	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus</i> , <i>S. cerevisiae</i> , <i>S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession numbers NR_138272.1, NR_111007.1, KY105195.1, and KY105198.1). If a sequence did not align with <i>Saccharomyces</i> sequences, we compared the sequence
188 189 190 191 192	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus, S. cerevisiae, S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession numbers NR_138272.1, NR_111007.1, KY105195.1, and KY105198.1). If a sequence did not align with <i>Saccharomyces</i> sequences, we compared the sequence with all sequences in the NCBI database from type strains using BLAST (Zhang,
188 189 190 191 192 193	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus</i> , <i>S. cerevisiae</i> , <i>S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession numbers NR_138272.1, NR_111007.1, KY105195.1, and KY105198.1). If a sequence did not align with <i>Saccharomyces</i> sequences, we compared the sequence with all sequences in the NCBI database from type strains using BLAST (Zhang, Schwartz, Wagner, & Miller, 2000). If the sequence aligned with <i>Saccharomyces</i>
188 189 190 191 192 193 194	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus, S. cerevisiae, S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession numbers NR_138272.1, NR_111007.1, KY105195.1, and KY105198.1). If a sequence did not align with <i>Saccharomyces</i> sequences, we compared the sequence with all sequences in the NCBI database from type strains using BLAST (Zhang, Schwartz, Wagner, & Miller, 2000). If the sequence aligned with <i>Saccharomyces</i> sequences but had more than one base pair different from its closest match, we
188 189 190 191 192 193 194 195	ITS sequences were compared to sequences from the type or neotype strains of <i>S. paradoxus, S. cerevisiae, S. kudriavzevii</i> , and <i>S. mikatae</i> (Genbank accession numbers NR_138272.1, NR_111007.1, KY105195.1, and KY105198.1). If a sequence did not align with <i>Saccharomyces</i> sequences, we compared the sequence with all sequences in the NCBI database from type strains using BLAST (Zhang, Schwartz, Wagner, & Miller, 2000). If the sequence aligned with <i>Saccharomyces</i> sequences but had more than one base pair different from its closest match, we supplemented ITS sequences with sequences from the gene for translation elongation

Forest yeast sampling biases

199	species. We counted these colonies as Saccharomyces if sequences from one of the
200	species was Saccharomyces.

201

202 <u>Growth rates</u>

203	We compared the distributions of maximum growth rates between two groups
204	of S. paradoxus strains: strains collected using enrichment culturing and strains
205	collected using direct plating. To avoid confounding effects of environmental source
206	(<i>i.e.</i> , combination of substrate, date collected, and tree), we compared growth rates for
207	pairs of S. paradoxus strains originating from the same environmental source. In other
208	words, we collected a dataset of S. paradoxus growth rates from two groups of strains
209	with equal representations of combinations of substrate, date collected, and tree, and
210	differing only in the method used to isolate the strains. To ensure that all isolates were
211	pure S. paradoxus cultures, we streaked all isolates used for growth rate
212	measurements to single-colony cultures a second time and reidentified these cultures
213	by mating them with a <i>S. paradoxus</i> tester strain (NCYC 3708, α, ura3::KANMX,
214	ho::HYGMX). In total, 110 isolates (55 from each sampling method) were measured.
215	Growth rates were measured using an Epoch 2 microplate reader (Biotek
216	Instrument, Inc., Winooski, VT, USA) and calculated using the included Gen5
217	software version 3.03.14 (Biotek Instrument, Inc., Winooski, VT, USA). We first
218	inoculated strains in 0.2 ml liquid YPD media (composition as for solid YPD, but
219	without agar) in a 96-well microplate and incubated cultures without shaking or
220	measurement in the microplate reader at 30 °C for 24 hours to condition strains to
221	microplate reader conditions. We then transferred 2 μ l from each culture to 198 μ l
222	fresh liquid YEPD in a new microplate and incubated the new microplate under the
223	same conditions for 20-24 hours. OD_{660} was measured during the second incubation

Forest yeast sampling biases

224	every ten minutes, and maximum growth rate (mOD ₆₆₀ /min) was calculated from the
225	maximum slope of each growth curve over four points (30 min total) using Gen5
226	software. Reported growth rates for each isolate are means of three replicates.
227	
228	Statistical analyses
229	We compared sampling success across substrates (leaf litter or soil) and
230	methods (direct plating or enrichment) using a generalized linear mixed-effects model
231	with probability of isolating Saccharomyces (including S. paradoxus and S.
232	cerevisiae) as the response variable, substrate and method as fixed effects, and tree
233	and date as random effects. We selected the best model using a top-down strategy,
234	comparing Akaike's Information Criteria (AIC) after removing predictors from a full
235	model one by one.
236	We compared growth rate distributions by first comparing variances using
237	Levene's test (Levene, 1960) for homogeneity of variance, and then comparing
238	medians using a paired Wilcoxon signed rank test. Statistics were computed using R
239	version 3.3.1 (R Development Core Team, 2016) and the car and lme4 packages
240	(Bates, Machler, Bolker, & Walker, 2015; R Development Core Team, 2016).
241	Graphics were produced using the ggplot2 package (Wickham, 2016).
242	
243	Results
244	Influence of sampling method on success isolating Saccharomyces
245	Direct plating was more successful than enrichment culturing for isolating
246	<i>Saccharomyces</i> from natural substrates ($z = 6.1$, $p < .001$) (Tables 2, 3, Figure 2). We
247	found Saccharomyces isolates in 45% of direct plating cultures and 19% of
248	enrichment cultures. However, enrichment culturing produced the only S. cerevisiae

Forest yeast sampling biases

- found in this study: we found six *S. cerevisiae* isolates from a single enrichment
- 250 culture from tree 3 in March of 2017. All other *Saccharomyces* isolates found in this
- 251 study were S. paradoxus. Other detected yeast species included Saccharomycodes
- 252 ludwigii, Torulaspora delbrueckii, Pichia membranifaciens, and Hanseniaspora
- 253 osmophila, all of which have previously been found alongside Saccharomyces yeasts
- in beverage fermentations (Domizio et al., 2011; Gschaedler, 2017).

5	Table 2: Model selection (Mixed-effects generalized linear model)					
	model	fixed effects	random effects	AIC	compared	better
					to	model
	1	method + substrate + method:substrate	1 tree + 1 month	447.20		
	2	method + substrate + method:substrate	1 month	470.94	model 1	1
	3	method + substrate + method:substrate	1 tree	451.99	model 1	1
	4	method + substrate	1 tree + 1 month	446.76	model 1	4
	5	method	1 tree + 1 month	480.34	model 4	4
	6	substrate	1 tree + 1 month	485.71	model 4	4

255

256

257 Table 3: Model summary table (model 4)

	Estimate	Std. Error	Ζ	р
intercept	-2.5324	0.4599	-5.506	< .001
method (plating)	1.5494	0.2559	6.054	< .001
substrate (soil)	1.4445	0.2542	5.683	< .001

258

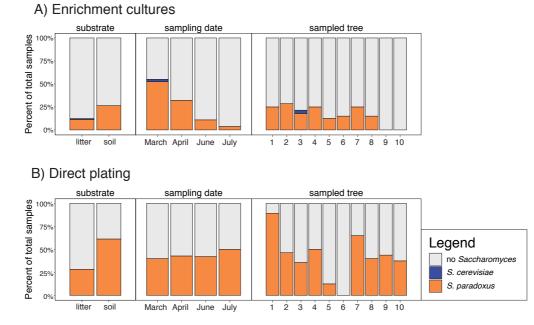
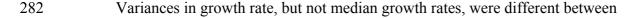


Figure 2: Percentages of samples in which *Saccharomyces* could be detected using A) enrichment cultures or B) direct plating. Bars represent all samples for each category of sampling, and colors represent *Saccharomyces* species. *S. paradoxus* and *S. cerevisiae* were the only detected *Saccharomyces* species.

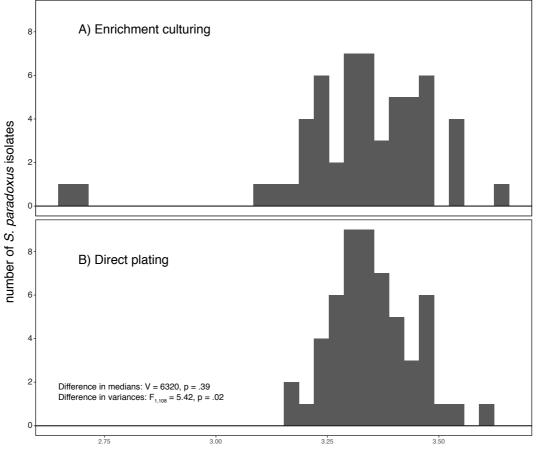
Forest yeast sampling biases

259	While the direct plating method was more successful than the enrichment
260	method, it was also more labor-intensive (Table 4). We screened 3.4 times as many
261	colonies for tetrads when using the direct plating method than we did using the
262	enrichment method. Only 32% of the processed direct plating colonies were S.
263	paradoxus, compared to 74% of enrichment colonies.

- 264
- 265 Table 4: Colonies processed and sampling success for each method


		sequenced colonies with	
method	total colonies picked	Saccharomyces-like ascus morphology	Saccharomyces isolates
enrichment	284	246 (87%)	211 (74%)
plating	969	344 (35%)	307 (32%)

266


267	Both methods isolated Saccharomyces colonies from both substrates, most
268	trees, and all timepoints (Figure 2). We had significantly more sampling success on
269	soil than leaf litter substrates ($z = 5.7$, $p < .001$, Table 3), but other relationships
270	among sampling success, sampling method, and sampling environments were
271	idiosyncratic. For example, direct plating did not produce any Saccharomyces
272	isolates from tree 6, while three enrichment samples from this tree isolated S.
273	paradoxus, and enrichments produced more Saccharomyces isolates in March than
274	direct plating did (Figure 2). Because our sampling effort was not the same for all
275	trees at all months, we did not model tree habitat or sampling month as fixed effects;
276	instead, we modeled these parameters as random effects, and found that models
277	including tree and month fit the data better than models without tree and month (Table
278	2). A list of sequenced yeasts from each sample is included in the supplemental
279	materials (Supplemental File 2).
280	

281 Phenotypes of sampled S. paradoxus

Forest yeast sampling biases

- strains isolated using the two methods (Figure 3). Growth rates of *S. paradoxus*
- isolated using enrichment culturing had a larger variance than growth rates of *S*.
- 285 *paradoxus* isolated using direct plating (Levine's test $F_{1,108} = 5.42$, p = .02). Median
- growth rates for the two groups of *S. paradoxus* strains did not differ (Wilcoxon
- signed rank test V = 6320, p = .39). Measured growth rates of each strain are included
- in the supplemental materials (Supplemental File 2).

Maximum growth rate (mOD/min)

Figure 3: Histograms representing distributions of growth rates for *S. paradoxus* clones isolated using A) enrichment culturing or B) direct plating.

289

290 Discussion

291 Direct plating detects *S. paradoxus* more frequently than enrichment culturing

Forest yeast sampling biases

292	Enrichment culturing did not increase Saccharomyces sampling success from
293	forest leaf litter and soil over direct plating, in spite of researchers' long history of
294	using enrichment culturing to isolate Saccharomyces from forest environments
295	(Kowallik & Greig, 2016; Naumov, Naumova, & Sniegowski, 1998; Sniegowski et
296	al., 2002). We expect reliable Saccharomyces isolation from this forest using direct
297	plating to be a result of high S. paradoxus abundance on forest floor substrates.
298	Indeed, it is common to find hundreds to tens of thousands of S. paradoxus cells per
299	gram of leaf litter near the bases of oak trees in this forest (Kowallik & Greig, 2016).
300	We expect direct plating to be less successful in environments in which
301	Saccharomyces are rarer, and note that enrichment culturing is frequently used to
302	isolate Saccharomyces from tree bark, which may be a habitat with lower
303	Saccharomyces density than the forest floor habitats we sampled (Kowallik et al.,
304	2015; Sniegowski et al., 2002).
305	
306	Isolation using enrichment culturing samples more phenotypic diversity than direct
307	plating
308	Conditions in enrichment cultures resulted in isolating a different (albeit
309	higher) phenotypic diversity than random colony selection on plate cultures did
310	(Figure 3). There are several potential methodological and ecological explanations for
311	the high phenotypic diversity in enrichment isolates. But we expect that interactions
312	with microbes during the enrichment culturing are most likely to be responsible for
313	the increased phenotypic diversity among enrichment-sourced S. paradoxus isolates.
314	Microbes that potentially interact with S. paradoxus were doubtless present in
315	our enrichment cultures, and it is realistic to expect these microbes to influence the
316	phenotypes of the S. paradoxus that were ultimately recovered. Our enrichment

Forest yeast sampling biases

317	cultures contained all of the microbes that were present in the soil and leaf litter
318	samples, and soil and leaf litter include a wide diversity of bacterial and fungal taxa
319	that can interact with fungi (Curd, Martiny, Li, & Smith, 2018; Glassman et al., 2018;
320	Santonja et al., 2018). For example, some agricultural soils contain Bacillus and
321	Pseudomonas species that secrete compounds toxic to phytopathogenic fungi (Islam,
322	Jeong, Lee, & Song, 2012; Petatán-Sagahón et al., 2011). Conversely, some soil
323	bacteria promote mycorrhizal fungal growth and host plant colonization (Xie et al.,
324	2018).
325	We expect a variety of similar inhibition and facilitation interactions to
326	determine the identities of the Saccharomyces strains that ultimately reached high
327	frequencies in enrichment cultures. Bacteria and fungi co-occurring with S. paradoxus
328	on oak bark can both inhibit and facilitate S. paradoxus growth (Kowallik et al.,
329	2015). These effects are dependent on temperature and interacting microbe identities,
330	and likely also depend on other environmental conditions and S. paradoxus genotype.
331	The Saccharomyces strains recovered at the end of our enrichment cultures were
332	probably the fittest Saccharomyces strains present in the cultures, but this high
333	relative fitness was as likely to be a result of interactions with co-occurring microbes
334	that occur by chance in the same enrichment cultures as it was to be the result of
335	intrinsic growth rate. Microbial diversity during enrichment may similarly explain our
336	idiosyncratic sampling success across months and trees (Figure 2). For example, it is
337	possible that a bacterium that facilitates rare S. paradoxus growth in the enrichment
338	medium was more common in spring than summer months, resulting in higher
339	enrichment sampling success in spring than summer. Unfortunately, we did not
340	measure the microbial diversity of the enrichment cultures and do not know which
341	microbes may have interacted with Saccharomyces.

Forest yeast sampling biases

342 It is also possible, although in our opinion less likely, that methodological 343 biases resulted in relatively low phenotypic diversity among directly plated S. paradoxus compared to enrichment S. paradoxus. While we aimed to randomly select 344 345 colonies with Saccharomyces-like morphologies from direct culture plates, biases in 346 colony picking could have selected for low variance in S. paradoxus phenotypes. For 347 example, if a S. paradoxus colony had an unusual morphology, it might have been 348 mistaken for a bacterial colony and not isolated. However, direct culturing isolated 349 more non-Saccharomyces yeast isolates than enrichment culturing did, and we expect 350 interspecific morphological variation to be higher than intraspecific morphological 351 variation. We therefore consider it unlikely that biases in colony picking decreased 352 phenotypic variance among S. paradoxus isolates. 353 We continue to expect plate culturing to be a more random sampling of 354 Saccharomyces diversity than enrichment culturing. Colonies are physically isolated 355 on a plate and unlikely to influence each other's growth, and plated colonies come

356 from a well-mixed mixture of environmental substrate and sterile water. We therefore

357 expect *Saccharomyces* colonies on plates to accurately reflect the diversity of

358 Saccharomyces strains present in nature, as long as all strains are able to grow on the

359 selective media chosen. Biases in sample *success* can still be introduced to direct

360 plating samples by the presence of morphologically similar yeast species. On petri

361 dishes, a high density of non-Saccharomyces yeasts with morphologies similar to

362 Saccharomyces could have prevented us from detecting Saccharomyces. This issue

363 can be mitigated by designing a more selective isolation medium, picking more

364 colonies per plate (we picked up to 6 or 12 colonies across two plates), or replica

365 plating selective plates to media containing a color indicator for the target yeast (e.g.,

366 Wallerstein media) (Hall, 1971).

Forest yeast sampling biases

367

368 Recommendations for future yeast sampling

369	Researchers should consider both resources available for sampling and study
370	goals when choosing a Saccharomyces field sampling strategy. Our results identified
371	a tradeoff between resources spent on sampling and resources spent on sequencing:
372	enrichment culturing was less successful than direct plating at finding Saccharomyces
373	per sample collected, but more successful per ITS region sequenced (Figure 2, Table
374	4). Researchers with a few precious samples are therefore better off isolating
375	Saccharomyces using direct plating than enrichments, especially if Saccharomyces is
376	common on their substrates. Conversely, if samples are easy to get but funds available
377	for sequencing are limited, researchers may prefer to use enrichment culturing.
378	Researchers with limited time or freezer space who would like assurances that most
379	picked colonies are Saccharomyces may also prefer enrichment culturing.
380	However, the scientific question to be answered by environmental
381	
	Saccharomyces samples may be more important than sampling and sequencing
382	Saccharomyces samples may be more important than sampling and sequencing resource limitations, especially as sequencing becomes cheaper. Direct plating
382 383	
	resource limitations, especially as sequencing becomes cheaper. Direct plating
383	resource limitations, especially as sequencing becomes cheaper. Direct plating samples a more random collection of <i>Saccharomyces</i> cells from environmental
383 384	resource limitations, especially as sequencing becomes cheaper. Direct plating samples a more random collection of <i>Saccharomyces</i> cells from environmental samples than enrichment culturing, and we recommend that researchers who need
383 384 385	resource limitations, especially as sequencing becomes cheaper. Direct plating samples a more random collection of <i>Saccharomyces</i> cells from environmental samples than enrichment culturing, and we recommend that researchers who need random environmental samples to answer ecological and evolutionary questions rely
383384385386	resource limitations, especially as sequencing becomes cheaper. Direct plating samples a more random collection of <i>Saccharomyces</i> cells from environmental samples than enrichment culturing, and we recommend that researchers who need random environmental samples to answer ecological and evolutionary questions rely on direct plating. Researchers targeting phenotypic diversity, especially for applied
 383 384 385 386 387 	resource limitations, especially as sequencing becomes cheaper. Direct plating samples a more random collection of <i>Saccharomyces</i> cells from environmental samples than enrichment culturing, and we recommend that researchers who need random environmental samples to answer ecological and evolutionary questions rely on direct plating. Researchers targeting phenotypic diversity, especially for applied yeast biology (<i>e.g.</i> , food microbiology, drug discovery) may uncover more diversity

Forest yeast sampling biases

391 (Alsammar et al., 2018) may also have more success using enrichment culturing or a392 combination of enrichment and direct plating strategies.

393

394 Conclusions

395 Isolation protocols do indeed influence characteristics of isolated microbes. As 396 researchers continue to develop Saccharomyces yeasts as model organisms for 397 ecology and evolution, they must also consider how isolation history of environmental 398 strains can influence the ecological stories the strains can tell. The results of this study 399 highlight the need for consistent sampling within studies, and are a warning to 400 researchers comparing phenotypes (and perhaps also genotypes) among 401 Saccharomyces strains from different sources. Much of what we know about 402 Saccharomyces evolution has come from culture collections (Strope et al., 2015; 403 Warringer et al., 2011)-these collections are invaluable, as are the data and 404 conclusions they enable, but sampling information about deposited strains is not 405 always available. As technology improves and both genome sequencing and 406 phenotype assays become cheaper and more accessible (Porter & Hajibabaei, 2018; 407 Stewart et al., 2018; van Dijk, Auger, Jaszczyszyn, & Thermes, 2014; Zackrisson et 408 al., 2016), environmental sampling may emerge as a limiting step to studying 409 Saccharomyces ecology and evolution. Researchers should carefully consider the 410 consequences of their chosen sampling strategies as they conduct this exciting 411 microbiological research. 412

413 Acknowledgements

414 We would like to thank Danielle Stevens and Tjorben Nawroth for help in the field,

415 Jenna Gallie and the Gallie lab for help with growth curves, and Amine Hassani for

Forest yeast sampling biases

- 416 helpful conversations on microbial diversity in enrichment cultures. Thank you to
- 417 Christoph Freiherr von Fürstenberg-Plessen for permission to work in the Nehmten
- 418 forest. This work was supported through a Max Planck Fellowship to Eva H.
- 419 Stukenbrock.
- 420
- 421 Data Accessibility
- 422 All data for this project are included in Supplementary File 2.
- 423

424 **Figure Legends**

- 425 Figure 1: Schematic illustration of sampling strategies used to isolate *Saccharomyces*
- 426 for this project. A) Enrichment culturing B) Direct plating. Photo: Doreen
- 427 Landermann.
- 428
- 429 Figure 2: Percentages of samples in which *Saccharomyces* could be detected using A)
- 430 enrichment cultures or B) direct plating. Bars represent all samples for each category
- 431 of sampling, and colors represent *Saccharomyces* species. *S. paradoxus* and *S.*
- 432 *cerevisiae* were the only detected *Saccharomyces* species.
- 433
- 434 Figure 3: Histograms representing distributions of growth rates for *S. paradoxus*
- 435 clones isolated using A) enrichment culturing or B) direct plating.
- 436

437 <u>Citations</u>

- Alsammar, H. F., Naseeb, S., Brancia, L. B., Gilman, R. T., Wang, P., & Delneri, D.
 (2018). Targeted metagenomics approach to capture the biodiversity of *Saccharomyces* genus in wild environments. *Environmental Microbiology Reports*. doi:10.1111/1758-2229.12724
- Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting Linear MixedEffects Models Using Ime4. *Journal of Statistical Software*, 67(1), 1-48.

444 445	Beijernick, M. W. (1961). Enrichment culture studies with urea bacteria (T. D. Brock, Trans.). In T. D. Brock (Ed.), <i>Milestones in Microbiology</i> . London, United
446	Kingdom: Prentice-Hall International.
447	Bernardes, J. P., Stelkens, R. B., & Greig, D. (2017). Heterosis in hybrids within and
448	between yeast species. Journal of Evolutionary Biology, 30(3), 538-548.
449	doi:10.1111/jeb.13023
450	Boynton, P. J., & Greig, D. (2014). The ecology and evolution of non-domesticated
451	Saccharomyces species. Yeast, 31(12), 449-462. doi:10.1002/yea.3040
452	Boynton, P. J., & Greig, D. (2016). Species richness influences wine ecosystem
453	function through a dominant species. Fungal Ecology, 22, 61-72.
454	doi:10.1016/j.funeco.2016.04.008
455	Carbonetto, B., Ramsayer, J., Nidelet, T., Legrand, J., & Sicard, D. (2018). Bakery
456	yeasts, a new model for studies in ecology and evolution. Yeast, 35(11), 591-
457	603. doi:10.1002/yea.3350
458	Charron, G., Leducq, J. B., Bertin, C., Dube, A. K., & Landry, C. R. (2014).
459	Exploring the northern limit of the distribution of Saccharomyces cerevisiae
460	and Saccharomyces paradoxus in North America. FEMS Yeast Research,
461	14(2), 281-288. doi:10.1111/1567-1364.12100
462	Curd, E. E., Martiny, J. B. H., Li, H. Y., & Smith, T. B. (2018). Bacterial diversity is
463	positively correlated with soil heterogeneity. Ecosphere, 9(1), 16.
464	doi:10.1002/ecs2.2079
465	Domizio, P., Romani, C., Comitini, F., Gobbi, M., Lencioni, L., Mannazzu, I., &
466	Ciani, M. (2011). Potential spoilage non-Saccharomyces yeasts in mixed
467	cultures with Saccharomyces cerevisiae. Annals of Microbiology, 61(1), 137-
468	144. doi:10.1007/s13213-010-0125-1
469	Estrada-Godina, A. R., Cruz-Guerrero, A. E., Lappe, P., Ulloa, M., Garcia-Garibay,
470	M., & Gomez-Ruiz, L. (2001). Isolation and identification of killer yeasts
471	from Agave sap (aguamiel) and pulque. <i>World Journal of Microbiology &</i>
472	<i>Biotechnology</i> , <i>17</i> (6), 557-560. doi:10.1023/a:1012210106203
473	Ezeronye, O. U., & Okerentugba, P. O. (2001). Genetic and physiological variants of
474	yeast selected from palm wine. <i>Mycopathologia</i> , 152(2), 85-89.
475	doi:10.1023/a:1012323721012
476	Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B.,
477	Verstrepen, K. J. (2016). Domestication and Divergence of <i>Saccharomyces</i>
478	<i>cerevisiae</i> Beer Yeasts. <i>Cell</i> , <i>166</i> (6), 1397-+. doi:10.1016/j.cell.2016.08.020
479	Glassman, S. I., Weihe, C., Li, J. H., Albright, M. B. N., Looby, C. I., Martiny, A. C.,
480	Martiny, J. B. H. (2018). Decomposition responses to climate depend on
481	microbial community composition. Proceedings of the National Academy of
482	Sciences of the United States of America, 115(47), 11994-11999.
483	doi:10.1073/pnas.1811269115
484	Greenwalt, C. J., Steinkraus, K. H., & Ledford, R. A. (2000). Kombucha, the
485	fermented tea: Microbiology, composition, and claimed health effects. <i>Journal</i>
486	of Food Protection, $63(7)$, 976-981. doi:10.4315/0362-028x-63.7.976
487	Gschaedler, A. (2017). Contribution of non-conventional yeasts in alcoholic
488	beverages. Current Opinion in Food Science, 13, 73-77.
489	doi:10.1016/j.cofs.2017.02.004
490 491	Hall, J. F. (1971). Detection of wild yeasts in the brewery. <i>Journal of the Institute of</i>
491	<i>Brewing</i> , 77(6), 513-516. doi:10.1002/j.2050-0416.1971.tb03413.x Islam, M. R., Jeong, Y. T., Lee, Y. S., & Song, C. H. (2012). Isolation and
492 493	Identification of Antifungal Compounds from <i>Bacillus subtilis</i> C9 Inhibiting
473	function of Anthrungal Compounds from <i>Bactilus subtilis</i> C9 Infibiling

494	the Growth of Plant Pathogenic Fungi. <i>Mycobiology</i> , 40(1), 59-66.
495	doi:10.5941/myco.2012.40.1.059
496	Jeong, S. H., Jung, J. Y., Lee, S. H., Jin, H. M., & Jeon, C. O. (2013). Microbial
497	succession and metabolite changes during fermentation of dongchimi,
498	traditional Korean watery kimchi. International Journal of Food
499	<i>Microbiology, 164</i> (1), 46-53. doi:10.1016/j.ijfoodmicro.2013.03.016
500	Johnson, L. J., Koufopanou, V., Goddard, M. R., Hetherington, R., Schafer, S. M., &
501	Burt, A. (2004). Population genetics of the wild yeast <i>Saccharomyces</i>
502	<i>paradoxus. Genetics, 166</i> (1), 43-52. doi:10.1534/genetics.166.1.43
503	Kowallik, V. (2015). <i>The natural ecology of Saccharomyces yeasts</i> . (Dr. rer. nat.),
504	Christian Albrechts University of Kiel,
505	Kowallik, V., & Greig, D. (2016). A systematic forest survey showing an association
506	of Saccharomyces paradoxus with oak leaf litter. Environmental Microbiology
507	<i>Reports</i> , 8(5), 833-841. doi:10.1111/1758-2229.12446
508	Kowallik, V., Miller, E., & Greig, D. (2015). The interaction of <i>Saccharomyces</i>
509	paradoxus with its natural competitors on oak bark. Molecular Ecology, 24(7),
510	1596-1610. doi:10.1111/mec.13120
511	Leducq, J. B., Charron, G., Samani, P., Dube, A. K., Sylvester, K., James, B.,
512	Landry, C. R. (2014). Local climatic adaptation in a widespread
513	microorganism. Proceedings of the Royal Society B-Biological Sciences,
514	281(1777), 9. doi:10.1098/rspb.2013.2472
515	Levene, H. (1960). Robust tests for equality of variances. In I. Olkin & H. Hotelling
516	(Eds.), Contributions to Probability and Statistics: Essays in Honor of Harold
517	Hotelling (pp. 278-292): Stanford University Press.
518	Libkind, D., Hittinger, C. T., Valerio, E., Goncalves, C., Dover, J., Johnston, M.,
519	Sampaio, J. P. (2011). Microbe domestication and the identification of the
520	wild genetic stock of lager-brewing yeast. Proceedings of the National
521	Academy of Sciences of the United States of America, 108(35), 14539-14544.
522	doi:10.1073/pnas.1105430108
523	Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Louis,
524	E. J. (2009). Population genomics of domestic and wild yeasts. Nature,
525	458(7236), 337-341. doi:10.1038/nature07743
526	Liti, G., Warringer, J., & Blomberg, A. (2017). Isolation and Laboratory
527	Domestication of Natural Yeast Strains. Cold Spring Harb Protoc, 2017(8),
528	pdb.prot089052. doi:10.1101/pdb.prot089052
529	Mortimer, R., & Polsinelli, M. (1999). On the origins of wine yeast. Research in
530	<i>Microbiology</i> , 150(3), 199-204. doi:10.1016/s0923-2508(99)80036-9
531	Naumov, G. I., Naumova, E. S., & Sniegowski, P. D. (1998). Saccharomyces
532	paradoxus and Saccharomyces cerevisiae are associated with exudates of
533	North American oaks. Canadian Journal of Microbiology, 44(11), 1045-1050.
534	doi:10.1139/cjm-44-11-1045
535	Petatán-Sagahón, I., Anducho-Reyes, M. A., Silva-Rojas, H. V., Arana-Cuenca, A.,
536	Tellez-Jurado, A., Cárdenas-Álvarez, I. O., & Mercado-Flores, Y. (2011).
537	Isolation of Bacteria with Antifungal Activity against the Phytopathogenic
538	Fungi Stenocarpella maydis and Stenocarpella macrospora. International
539	Journal of Molecular Sciences, 12(9), 5522-5537. doi:10.3390/ijms12095522
540	Peter, J., De Chiara, M., Friedrich, A., Yue, J. X., Pflieger, D., Bergstrom, A.,
541	Schacherer, J. (2018). Genome evolution across 1,011 Saccharomyces
542	cerevisiae isolates. Nature, 556(7701), 339-+. doi:10.1038/s41586-018-0030-
543	5

544 545	Porter, T. M., & Hajibabaei, M. (2018). Scaling up: A guide to high-throughput
	genomic approaches for biodiversity analysis. <i>Molecular Ecology</i> , 27(2), 313-
546	338. doi:10.1111/mec.14478 B Davalarment Corp Team (2016) B: A language and Environment for Statistical
547	R Development Core Team. (2016). R: A language and Environment for Statistical
548	Computing. Vienna, Austria: R Foundation for Statistical Computing.
549	Rehner, S. A., & Buckley, E. (2005). A <i>Beauveria</i> phylogeny inferred from nuclear
550	ITS and EF1-alpha sequences: evidence for cryptic diversification and links to
551	Cordyceps teleomorphs. Mycologia, 97(1), 84-98.
552	doi:10.3852/mycologia.97.1.84
553	Robinson, H. A., Pinharanda, A., & Bensasson, D. (2016). Summer temperature can
554	predict the distribution of wild yeast populations. <i>Ecology and Evolution</i> , $6(4)$,
555	1236-1250. doi:10.1002/ece3.1919
556	Sampaio, J. P., & Goncalves, P. (2008). Natural populations of <i>Saccharomyces</i>
557	<i>kudriavzevii</i> in Portugal are associated with oak bark and are sympatric with S.
558	cerevisiae and S. paradoxus. Applied and Environmental Microbiology, 74(7),
559	2144-2152. doi:10.1128/aem.02396-07
560	Santonja, M., Foucault, Q., Rancon, A., Gauquelin, T., Fernandez, C., Baldy, V., &
561	Mirleau, P. (2018). Contrasting responses of bacterial and fungal communities
562	to plant litter diversity in a Mediterranean oak forest. Soil Biology &
563	<i>Biochemistry</i> , <i>125</i> , 27-36. doi:10.1016/j.soilbio.2018.06.020
564	Schlegel, H. G., & Jannasch, H. W. (1967). Enrichment cultures. Annual Reviews
565	<i>Microbiology, 21</i> , 49-70. doi:10.1146/annurev.mi.21.100167.000405
566	Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C.
567	A., Fungal Barcoding, C. (2012). Nuclear ribosomal internal transcribed
568	spacer (ITS) region as a universal DNA barcode marker for Fungi.
569	Proceedings of the National Academy of Sciences of the United States of
570	America, 109(16), 6241-6246. doi:10.1073/pnas.1117018109
571	Sniegowski, P. D., Dombrowski, P. G., & Fingerman, E. (2002). Saccharomyces
572	<i>cerevisiae</i> and <i>Saccharomyces paradoxus</i> coexist in a natural woodland site in
573	North America and display different levels of reproductive isolation from
574	European conspecifics. FEMS Yeast Research, 1(4), 299-306.
575	doi:10.1111/j.1567-1364.2002.tb00048.x
576	Stefani, F. O. P., Bell, T. H., Marchand, C., de la Providencia, I. E., El Yassimi, A.,
577	St-Arnaud, M., & Hijri, M. (2015). Culture-Dependent and -Independent
578	Methods Capture Different Microbial Community Fractions in Hydrocarbon-
579	Contaminated Soils. <i>PLoS One, 10</i> (6), 16. doi:10.1371/journal.pone.0128272
580	Stefanini, I., Dapporto, L., Legras, J. L., Calabretta, A., Di Paola, M., De Filippo, C., .
581	Cavalieri, D. (2012). Role of social wasps in <i>Saccharomyces cerevisiae</i>
582	ecology and evolution. Proceedings of the National Academy of Sciences of
583	<i>the United States of America, 109</i> (33), 13398-13403.
584	doi:10.1073/pnas.1208362109
585	Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D., Miller, E. L., & Greig, D. (2014).
586	The effect of hybrid transgression on environmental tolerance in experimental $L_{1} = \frac{1}{2} \frac{1}{2$
587	yeast crosses. Journal of Evolutionary Biology, 27(11), 2507-2519.
588	doi:10.1111/jeb.12494
589	Stewart, E. L., Croll, D., Lendenmann, M. H., Sanchez-Vallet, A., Hartmann, F. E.,
590	Palma-Guerrero, J., McDonald, B. A. (2018). Quantitative trait locus
591 502	mapping reveals complex genetic architecture of quantitative virulence in the what pathogan Zymogentoria tritici. Molecular Plant Pathology, 10(1), 201
592 503	wheat pathogen Zymoseptoria tritici. Molecular Plant Pathology, 19(1), 201- 216. doi:10.1111/mpp.12515
593	216. doi:10.1111/mpp.12515

594	Strope, P. K., Skelly, D. A., Kozmin, S. G., Mahadevan, G., Stone, E. A., Magwene,
595	P. M., McCusker, J. H. (2015). The 100-genomes strains, an S. cerevisiae
596	resource that illuminates its natural phenotypic and genotypic variation and
597	emergence as an opportunistic pathogen. Genome Research, 25(5), 762-774.
598	doi:10.1101/gr.185538.114
599	Sweeney, J. Y., Kuehne, H. A., & Sniegowski, P. D. (2004). Sympatric natural
600	Saccharomyces cerevisiae and S. paradoxus populations have different
601	thermal growth profiles. FEMS Yeast Research, 4(4-5), 521-525.
602	doi:10.1016/s1567-1356(03)00171-5
603	van Dijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-
604	generation sequencing technology. Trends in Genetics, 30(9), 418-426.
605	doi:10.1016/j.tig.2014.07.001
606	Warringer, J., Zorgo, E., Cubillos, F. A., Zia, A., Gjuvsland, A., Simpson, J. T.,
607	Blomberg, A. (2011). Trait Variation in Yeast Is Defined by Population
608	History. Plos Genetics, 7(6), 30. doi:10.1371/journal.pgen.1002111
609	White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and Direct
610	Sequencing fo Fungal Ribosomal RNA Genes for Phylogenetics. In M. A.
611	Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: a
612	Guide to Methods and Applications (pp. 315-322): Academic Press.
613	Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis: Springer.
614	Xie, L., Lehvavirta, S., Timonen, S., Kasurinen, J., Niemikapee, J., & Valkonen, J. P.
615	T. (2018). Species-specific synergistic effects of two plant growth-Promoting
616	microbes on green roof plant biomass and photosynthetic efficiency. PLoS
617	One, 13(12), 16. doi:10.1371/journal.pone.0209432
618	Zackrisson, M., Hallin, J., Ottosson, L. G., Dahl, P., Fernandez-Parada, E.,
619	Landstrom, E., Blomberg, A. (2016). Scan-o-matic: High-Resolution
620	Microbial Phenomics at a Massive Scale. G3-Genes Genomes Genetics, 6(9),
621	3003-3014. doi:10.1534/g3.116.032342
622	Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for
623	aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214.
624	doi:10.1089/10665270050081478
625	