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Abstract 
 
Interacting proteins and protein domains coevolve on multiple scales, from their 

correlated presence across species, to correlations in amino-acid usage. Genomic 

databases provide rapidly growing data for variability in genomic protein content and in 

protein sequences, calling for computational predictions of unknown interactions. We 

first introduce the concept of direct phyletic couplings, based on global statistical models 

of phylogenetic profiles. They strongly increase the accuracy of predicting pairs of 

related protein domains beyond simpler correlation-based approaches like phylogenetic 

profiling (80% vs. 30-50% positives out of the 1000 highest-scoring pairs). Combined 

with the direct coupling analysis of inter-protein residue-residue coevolution, we provide 

multi-scale evidence for direct but unknown interaction between protein families. An in-

depth discussion shows these to be biologically sensible and directly experimentally 

testable. Negative phyletic couplings highlight alternative solutions for the same 

functionality, including documented cases of convergent evolution. Thereby our work 

proves the strong potential of global statistical modeling approaches to genome-wide 

coevolutionary analysis, far beyond the established use for individual protein complexes 

and domain-domain interactions. 

 

Author summary 
 
Interactions between proteins and their domains are at the basis of almost all biological 

processes. To complement labor intensive and error-prone experimental approaches to 

the genome-scale characterization of such interactions, we propose a computational 

approach based upon rapidly growing protein-sequence databases. To maintain 

interaction in the course of evolution, proteins and their domains are required to 

coevolve: evolutionary changes in the interaction partners appear correlated across 

several scales, from correlated presence-absence patterns of proteins across species, 

up to correlations in the amino-acid usage. Our approach combines these different 

scales within a common mathematical-statistical inference framework, which is inspired 
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by the so-called direct coupling analysis. It is able to predict currently unknown, but 

biologically sensible interaction, and to identify cases of convergent evolution leading to 

alternative solutions for a common biological task. Thereby our work illustrates the 

potential of global statistical inference for the genome-scale coevolutionary analysis of 

interacting proteins and protein domains. 

 

Introduction 

Essential to life at the molecular level is the interplay of molecules and macromolecules. 

Interactions contribute to diversity and coordination of reactions to accomplish feats that 

would be impossible if all parts worked fully in isolation. Proteins are no exceptions and 

many of them undergo concerted interactions to achieve their full potential. Many 

interactions have been described in detail, including inter- and intra-protein domain-

domain interactions, which will be the focus of this work. However, many more 

meaningful interactions await to be discovered and explored. An issue with the 

experimental description of such interactions is that many are transient and that high-

throughput technologies to identify such interactions are very error prone [1]. Advances 

in sequencing technology and the subsequent accumulation of vast sequence 

databases have fueled the generation of mathematical frameworks which aim to identify 

protein-protein interactions [2, 3]. Some of these techniques rely on the correlated 

evolution of interacting proteins [4-10]. Whenever interactions are conserved across 

many organisms, sufficient sequence examples are now in principal available to 

computationally identify novel interactions relying on sequences alone. 

We suggest a statistical approach based on the coevolution of interacting protein 

domains. Coevolution can be detected at very different scales, ranging from the 

correlated presence or absence of related proteins (or their genes) across genomes, 

down to the correlated usage of amino-acids in residues, which are located in different 

proteins but in contact across the interface. Each scale contains valuable information for 

detecting and understanding interactions between proteins and their domains, and 

adapted methods have been designed to unveil this information from data. However, 

none of the scales contains exhaustive information. Therefore, our work proposes a 
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coherent mathematical-algorithmic framework bridging different scales, thereby 

combining the information content of the different scales.  

The first, largest scale concerns the correlated presence and absence of 

interacting proteins in genomes. If a biological function depends on two proteins 

simultaneously (not necessarily via their direct physical interaction, but via any 

functional relation), we will either observe both proteins in a genome, i.e. the function is 

present, or none of them, i.e. the function is absent. More rarely we may observe the 

presence of only one of the two proteins. This idea is at the basis of a classical method 

called phylogenetic profiling [4, 5], which uses presence/absence correlations across 

genomes to predict interactions. Its accuracy suffers, however, from a number of 

shortcomings and confounding factors: 

1. Phylogenetic relationships between considered genomes may introduce correlations 

unrelated to biological function; single evolutionary events may be statistically 

amplified when closely related species are included in the data. Evolutionary models 

taking into account the underlying species tree, have been proposed [11-13] to 

prune such correlations. 

2. Correlations may result from direct couplings, e.g., when two domains or proteins 

interact physically, but they may be caused by intermediate partners: If A co-occurs 

with B, and B with C, also A and C will show correlations. Analyses based on partial 

correlations [14] and spectral analysis [15] have been proposed to disentangle direct 

from indirect correlations. 

3. Simple presence/absence patterns cannot discriminate physical interaction from 

more general relationships, like co-occurrence in a biological pathway or genomic 

co-localization. Here, using full amino-acid sequences instead of presence/absence 

patterns may help to refine the analysis, e.g. via the comparison of protein-specific 

phylogenetic trees [6].  

This last point actually suggests to change resolution, and to consider coevolution at the 

residue scale to refine the analysis of phylogenetic profiles. The last decade has seen 

important progress in this respect [16, 17], related to methods like Direct Coupling 

Analysis (DCA) [18, 19], Gremlin [20] or PsiCov [21]. DCA-type methods were initially 

developed to capture the correlated amino-acid usage of residues in physical contact. 
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Concerning interacting proteins, they have triggered a breakthrough in using sequence 

covariation for inter-protein residue-residue contact prediction [16, 17], which in turn is 

used to guide computational quaternary structure prediction [22-25]. 

Beyond structure prediction, DCA was suggested for the identification of 

interacting proteins [9, 10, 26, 27]. Such analysis requires the construction of a large 

joint multiple-sequence alignment (MSA) of two protein families, with each line of the 

MSA containing two potentially interacting proteins. However, when proteins possess 

numerous paralogs inside the same genome, the matching of potentially interacting 

paralog pairs becomes computationally hard [8, 28]. In some cases, genomic co-

localization (e.g. bacterial operons) helps to identify the interacting paralogs [18, 23, 24]. 

Residue-residue coevolution itself has recently been proposed as a means to match 

paralogs, and to identify specific interaction partners [26, 27]. While results for individual 

protein pairs are promising, the computational cost is prohibitive for genome-wide 

analysis, i.e., for systematically investigating all pairs of present protein families for 

signatures of coevolution and thus interaction.  

Our work addresses this issue, together with Points 2 and 3 given above. We 

propose a common statistical-modeling framework, which is applied successively to the 

genomic and the residue scale (presence/absence patterns and amino-acid sequences) 

of coevolution. It is intended to extract information from data, which cannot be extracted 

at each individual scale. Performing the genome-wide analysis on the coarse scale of 

presence/absence patterns, we can identify promising protein-domain pairs, which are 

subsequently analyzed using DCA at the fine residue scale.  

For the genome scale, we introduce thereby the concept of direct phyletic 

couplings into phylogenetic profiling. Using a thoroughly constructed test set of positive 

relations between protein domains in the bacterium Escherichia coli, we show that 

phyletic couplings substantially improve the accuracy of our prediction over mere 

correlations. We compare results to those obtained by a phylogeny-aware method [29], 

observing some interesting connections between Points 1 and 2 above. Negative 

phyletic couplings (i.e. one protein is typically present in a genome when the other is 

absent) pointedly identify alternative solutions for the same functionality, including 

documented cases of convergent evolution. 
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Still, a number of protein pairs with strong phyletic couplings are not contained in 

our positive test set. They constitute a first level of prediction of novel interacting 

partners. As discussed before, phyletic couplings are an indicator for a functional 

dependence between proteins. To detect direct physical interaction, we apply the DCA-

based paralog matching discussed above. The resulting domain-domain pairs are highly 

coupled both in their joint presence across genomes, and in their evolution at the 

amino-acid scale. An in-depth discussion of the highest-scoring examples for such 

predicted but currently unknown protein-protein interactions illustrates that many of 

them are biologically sensible; the predictions can be tested directly in future 

experiments. 

 

Results 
 

Phyletic couplings improve the prediction of domain-domain relationships 
beyond correlations 

 

The analysis starts with a fairly standard construction of phylogenetic profiles [5], as 

outlined in Fig. 1. Multiple-sequence alignments are needed at a later stage to perform 

inter-protein DCA. Since Pfam MSA have been extensively used in this respect, the 

analysis is performed on the domain level [30], using Pfam [31] as the input database. 

Pfam is based on reference genomes and we use the 1041 bacterial ones. The 

bacterial model organism Escherichia coli is used as a reference, i.e. only the 2682 

domain families existing inside the K12 strain of E. coli are considered (the Supplement 

shows that the results are robust with respect to this choice). Since our method is based 

on covariation of presence and absence of domains in genomes, only variable domains 

existing in at least 5% and at most 95% of the considered genomes are considered, 

leaving 2041 domains. Note that the upper limit removes domains, which are 

omnipresent in the bacteria – mostly related to central life processes like replication, 

transcription and translation. However, being omnipresent, these domains cannot give 

any covariation signal within phylogenetic profiling. They could be analyzed using the 

finer residue-scale of coevolution, which might bring complementary evidence for 
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interactions between these domains, but this analysis is out of scope in the current 

paper. The final input data are given by a binary phylogenetic profile matrix (PPM) of M 

= 1041 rows (species) and N = 2041 columns (domains), with entries 1 if a domain is 

present at least once in a genome, and zero if it is absent, cf. Methods and Fig. 1.  

 

 
Figure 1: Schematic representation of the inference of phylogenetic couplings – The composition of 

bacterial genomes in terms of protein families is extracted from the Pfam database. The presence and 

absence of each family is coded into the binary phylogenetic profile matrix (PPM); note that this matrix 

does not account for the presence of multiple paralogs of a domain. The statistics of the PPM is 

reproduced by a global statistical model P(n1,...,nN) for a full genomic phylogenetic profile, the model 

corresponds to a lattice gas model in statistical physics. The strongest positive couplings (domain-domain 

co-occurrence) are expected to stand for positive relationships between domains, like domain-domain 

interactions or genomic co-localization. Negative couplings (avoided co-occurrence) is expected to 

indicate alternative solutions for the same biological function, like in cases of domain families in a 

common Pfam clan, or for convergent evolution.  

 

 An important breakthrough in coevolutionary analysis at the residue level was the 

step from a local correlation analysis to global maximum-entropy models [16, 32], which 

are able to disentangle indirect (i.e. collective) effects in correlations, and to explain 

them by a network of direct couplings. Here we show that the same idea can be 

adapted to phylogenetic profiling, and leads to a strongly increased accuracy in 

predicting relationships between domains. The method, which we call Phyletic-Coupling 
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Analysis (PhyCA), infers a statistical model P(n1,...,nN) for the phylogenetic profile of an 

entire species, i.e. by a binary vector (n1,...,nN) signaling the presence or absence of all N 

considered domains in the corresponding species, cf. Methods for details. The PhyCA 

model resembles a lattice-gas model in statistical physics, describing N coupled 

particles that can be present or absent. The phyletic coupling Jij between particles / 

domains i and j can be positive – i.e. the presence of one domain favors the presence of 

the other. In this case we expect a positive relationship between the two domains, 

corresponding to biological processes requiring both domains. The coupling Jij can also 

be negative – i.e. the presence of one domain favors the absence of the other. We 

would expect that these domains have overlapping functionalities, and one of the two is 

sufficient to guarantee this functionality in a species. Fig. 2A shows a histogram of the 

couplings found for the phylogenetic coupling matrix. We observe clear bulk of small 

coupling values concentrated around zero, with a broad tail for larger positive values, 

and a less pronounced tail for negative values. 

 
Figure 2: Phylogenetic couplings predict domain-domain relationships – Panel A shows a histogram 

of couplings Jij as inferred using pseudo-likelihood maximization (PLM), cf. Methods. The histogram 

shows a dominant central peak around zero (note the logarithmic scale of the counts) with a pronounced 

fat tail for positive couplings. A small tail for negative couplings is visible, too, but much less pronounced. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2019. ; https://doi.org/10.1101/558379doi: bioRxiv preprint 

https://doi.org/10.1101/558379
http://creativecommons.org/licenses/by/4.0/


Panel B shows the PPV (positive predictive value), defined as the fraction of known domain-domain 

relations in between the strongest couplings or correlations. A random prediction would correspond to a 

flat line close to zero; a perfect prediction would follow the dashed black line. Note that the curves 

corresponding to phylogenetic couplings (inference vis PLM or MF (mean field), cf. Methods) are 

substantially higher than those using correlation measures. Panel C shows, in bins of 100 domain pairs 

ordered by their phyletic couplings, the number of pairs belonging to the different parts of the positive-

relation list (note that the categories are not exclusive, so the sum of different categories may exceed 

100). We find enrichment of co-localized and interacting domain pairs, but not of related enzymes.  
 

The performance of PhyCA can be assessed by comparing the domain pairs of 

strongest phyletic couplings to a carefully compiled list of 8,091 known domain-domain 

relations. As is explained in Methods, we have included genomic, functional and 

structural relationships: Domains may coexist inside a single protein, they may be co-

localized in an operon, they may be in contact in an experimental crystallographic 

structure or an interaction might be known according to other experimental techniques, 

or they may belong to enzymes catalyzing related reactions.  

The PhyCA couplings Jij are ordered by size, and the fraction of positive relations 

in between the highest-scoring domain-domain pairs is calculated (PPV = positive 

predictive value). Fig. 2B shows the results: we observe a strong enrichment in known 

positive relations in between strongly phyletically coupled domain-domain pairs. This 

enrichment is much stronger than for local correlation measures like Hamming distance, 

Pearson correlation or p-value of Fisher’s exact test applied individually to two domains 

(i.e. two columns of the PPM): E.g., for the first 1000 predictions we observed a PPV of 

about 0.8 for the phyletic couplings, and only 0.3-0.5 for the different correlation 

measures. As is shown in Fig. 2C, interacting and co-localized domain pairs are 

enriched in the predictions of large positive couplings, whereas enzymes from related 

metabolic reactions are not. 

 Databases of genome-wide protein-protein or domain-domain interactions are 

currently incomplete. We therefore expect the real PPV to be even higher than the one 

measured in Fig. 2: strongly coupled domain-domain pairs not belonging to our list of 

positives may actually be considered as predictions for new, currently unknown 

relations. According to the observations in Fig. 2C, these relations might be direct 
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physical interactions, but also genomic co-localization (frequently related to joint 

biological function). Before exploring these possibilities in more detail and on the finer 

scale of the residue-residue coevolution, we compare the PhyCA results to phylogeny-

aware correlation analysis and investigate the negative tail of the Jij distribution. 

 

Comparison of phyletic couplings to phylogeny-aware analysis of correlated 
presence/absence patterns 
 

Phyletic couplings are, like simpler correlation measures, based on counting co-

presence and co-absence of proteins or domains. However, due to the uneven 

phylogenetic distribution of species in our dataset, single evolutionary event may be 

amplified when appearing in an ancestor of several closely related species. More 

importantly in the context of this study, phylogeny may introduce spurious correlations in 

the presence and absence of domains, which are not related to biological function. 

 To remove this bias, several methods have been proposed, cf. [11, 13], which 

use evolutionary models to decide, if observed correlations can be explained by 

phylogeny alone (i.e. by independent evolution on a phylogenetic tree), or remain 

significant even when such phylogenetic effects are removed. Since this idea is 

complementary to the one behind PhyCA, it is important to compare the outcome of 

both approaches. 

 To this end, we have used the CoPAP (coevolution of presence-absence 

patterns) server [29]. It uses the same type of binary input matrix of our approach, and 

is able to efficiently treat matrices of more than 2,000 domains across more than 1,000 

species. As an output, CoPAP provides p-values measuring the significance of 

correlated domain presence and absence, as compared to independently evolving 

domains on the same phylogenetic tree. The group of maximum significance (𝑙𝑜𝑔!"𝑝 <

−7.9) contains 3,611 domain pairs, out of which 1,251 (34.6%) are true positives in our 

list of known domain-domain relationships.  

Since a further sorting of these pairs using CoPAP results is not possible (p-

values are calculated using finite simulations), we compare them to the first 3,611 
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domain pairs extracted by PhyCA, and to the 3,611 domain pairs of highest Pearson 

correlation. The Venn diagram in Fig. 3 allows for a number of interesting observations: 

• While CoPAP and PhyCA have similar global PPV, with an advantage for CoPAP 

(34.6%) over PhyCA (31.2%), Pearson correlation performs substantially worse 

(PPV 19.7%). 

• Very small fractions of the correlated pairs, which are discarded by PhyCA or 

CoPAP, are TP: PhyCA discards 2,890 pairs of PPV 6%; CoPAP discards only 

1,998 pairs, but with even lower PPV (1.2%). 

• 74% of the 721 correlated pairs, which are retained by PhyCA, are TP. Note that 

almost all of them (719/721) show also a significant CoPAP signal. 

• Only 43% of the correlated pairs, which are retained by CoPAP, are TP. PhyCA 

divides them into two groups of comparable size but distinct PPV. For the 719 pairs 

retained also by PhyCA, the PPV rises to 74%. The other 894 pairs have weak 

phyletic couplings, so their significant correlation has to be interpreted as dominated 

by indirect effects. Actually only 18% are TP. 

• When going to lower Pearson correlations, both CoPAP and PhyCA decrease their 

accuracy. However, their intersection shows 613 pairs with a high PPV of 63%.  

• The 2,277 pairs only identified by PhyCA have a low PPV of only 9%. This is 

coherent with Fig. 2B, which shows a sharp PPV drop in PhyCA after the first ca. 

1,000 phyletic couplings. We have therefore compared these 1,000 domain pairs 

separately to CoPAP. A vast majority of 855 pairs have the highest possible 

significance in CoPAP, this intersection has a PPV of 81%. The other 15% have 

lower CoPAP scores and lower PPV (52%). Interestingly, only 21% of the 2,756 

strongest CoPAP without strong coupling are TP, illustrating again the capacity of 

PhyCA to – at least partially – disentangle direct couplings from indirect correlations. 

In principle, CoPAP and PhyCA treat very different confounding factors of 

coevolutionary analysis – phylogenetic biases and indirect correlations. So, it might 

appear astonishing that almost none of the correlated pairs, which are strongly coupled 

in PhyCA, are actually discarded by CoPAP. The reason might be given by the spectral 

properties of the covariance matrices of the input data, and their relation to phylogeny 

and direct couplings. As shown in [33], the phylogenetic bias is most evident in the 
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largest eigenvalues of the data-covariance matrix. These correspond mostly to 

extended eigenmodes, which in turn give rise to a dense network of small couplings [15, 

34]. On the contrary, the strongest pairwise couplings are related to small eigenvalues 

with more localized eigenmodes, which give rise to strong, sparse couplings. 

Phylogenetic biases and strong direct couplings are thus related to different tails of the 

eigenvalue spectrum of the covariance matrix, the strongest PhyCA couplings are thus 

robust with respect to phylogenetic biases. On the other hand, there are non-

phylogenetic but indirect correlations, therefore PhyCA separates the CoPAP output 

into strongly coupled pairs of high PPV, and weakly coupled pairs of reduced PPV.  

 

 
 
Figure 3: Comparison of simple correlations, phyletic couplings and phylogeny-corrected 
correlations – Panel A shows a Venn diagram for the 3,611 first predictions of each of the three 

coevolution measures as extracted by Pearson correlation (red), PhyCA (blue) and CoPAP (green). 

Numbers are the size of the corresponding intersection, and the PPV indicating the fraction of true 

positives according to our list of positive domain-domain interactions.  Panel B compares the first 3,611 

CoPAP predictions of highest possible significance, with the most significant 1,000 PhyCA predictions. 

Most of them (855) are found to be significant by CoPAP, and of very high PPV (81%). However, not all 

CoPAP pairs are strongly coupled, and thus PPV is reduced (21%). 
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Negative phylogenetic couplings appear between alternative solutions for the 
same biological function, including cases of convergent evolution 

 

A smaller tail of negative phylogenetic couplings can be observed in Fig. 2A. A negative 

coupling disfavors the joint presence of two domains in the same genome, i.e., if one of 

the negatively coupled domains is present in a genome, the other is less likely to be 

present, too. Intuitively this suggests similar functionalities, one of the two domains is 

sufficient, the joint presence unnecessary or even costly for a bacterium. Such pairs, 

called anti-correlogs in [14] were used in [35] to identify analogous enzymes replacing 

missing homologs in biochemical pathways. 

When using E. coli as a reference genome, the number of such negative 

couplings is limited, since only domain pairs co-occurring in E. coli are analyzed. To 

better understand the meaning of negative couplings, we have therefore extended the 

original analysis to all 9,358 families containing bacterial protein domains. While results 

restricted a posteriori to E. coli are very robust (96% correlation, cf. Supplement), the 

extended analysis leads to a substantially higher number of negative couplings. 

 To explore these in some detail, we analyzed the 20 domain pairs with the 

strongest negative couplings, cf. Table 1 (an extended list is given in the Supplement). 

From their detailed analysis it is evident that protein pairs can be classified into three 

distinct groups. First, we find several cases of convergent evolution as evidenced by 

proteins with the same or similar activities but distinct protein structures (rankings 1, 2, 

9, 14, 15, 16). Second, we find domain pairs of the same fold and, where known, of 

similar activity. For various reasons these are not described by the same Pfam HMM 

(rankings 3, 4, 6, 7,8, 10,11, 17,19), but typically belong to the same Pfam clan 

indicating distant homology. Lastly, there are several cases of relatively unknown 

activity, and some domains have no known structure (rankings 5, 12, 13, 18, 20). 

 
 PFAM 1 PFAM 2 JIJ DOMAIN 1 DESCRIPTION DOMAIN 2 DESCRIPTION 

1 PF00303 PF02511 -0,9978 Thymidylate synthase Thymidylate synthase 

complementing protein 

2 PF01220 PF01487 -0,9277 Dehydroquinase class II Type I 3-dehydroquinase 

3 PF02834 PF13563 -0,9075 LigT like Phosphoesterase 2'-5' RNA ligase superfamily 
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4 PF00406 PF13207 -0,8258 Adenylate kinase AAA domain 

5 PF01205 PF02594 -0,7077 Uncharacterized protein 

family UPF0029 

Uncharacterised ACR, YggU 

family COG1872 

6 PF13623 PF13624 -0,7051 SurA N-terminal domain SurA N-terminal domain 

7 PF04816 PF12847 -0,6316 tRNA (adenine(22)-N(1))-

methyltransferase 

Methyltransferase domain 

8 PF00636 PF14622 -0,6281 Ribonuclease III domain Ribonuclease-III-like 

9 PF00186 PF02511 -0,6281 Dihydrofolate reductase Thymidylate synthase 

complementing protein 

10 PF01227 PF02649 -0,6118 GTP cyclohydrolase I Type I GTP cyclohydrolase 

folE2 

11 PF06745 PF13481 -0,5844 KaiC AAA domain 

12 PF02677 PF08331 -0,581 Uncharacterized BCR, 

COG1636 

Domain of unknown function 

(DUF1730) 

13 PF02696 PF03190 -0,5651 Uncharacterized ACR, 

YdiU/UPF0061 family 

Protein of unknown function, 

DUF255 

14 PF00311 PF02436 -0,5432 Phosphoenolpyruvate 

carboxylase 

Conserved carboxylase 

domain 

15 PF02502 PF06026 -0,5371 Ribose/Galactose 

Isomerase 

Ribose 5-phosphate 

isomerase A 

(phosphoriboisomerase A) 

16 PF00245 PF05787 -0,5333 Alkaline phosphatase Bacterial protein of unknown 

function (DUF839) 

17 PF00075 PF13456 -0,5317 RNase H Reverse transcriptase-like 

18 PF01169 PF02659 -0,5294 Uncharacterized protein 

family UPF0016 

Putative manganese efflux 

pump 

19 PF01321 PF05195 -0,5165 Creatinase/Prolidase N-

terminal domain 

Aminopeptidase P, N-

terminal domain 

20 PF02594 PF09186 -0,5139 Uncharacterised ACR, 

YggU family COG1872 

Domain of unknown function 

(DUF1949) 

 
Table 1: The 20 domain pairs of top negative phyletic couplings 
 

Cases of convergent evolution include PF00303 and PF02511, which describe 

two different thymidylate synthases, the former a 5,10-methylenetetrahydrofolate, the 

latter a flavin dependent enzyme [36]. Interestingly, PF00186, dihydrofolate reductase is 

also strongly negatively coupled with PF02511 (but positively to PF00303), since the 
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former is not needed to regenerate 5,10-methylenetetrahydrofolate when the flavin-

dependent enzyme is used. Other cases of convergent evolution are PF01220 and 

PF01487 that describe two classes of dehydroquinases with similar activity but 

significantly different primary and secondary structure [37]. PF00311 and PF02436 

describe proteins in oxaloacetate biogenesis, the former from phosphoenolpyruvate, the 

later from pyruvate and ATP. PF00245 and PF05787 describe two classes of bacterial 

alkaline phosphatases, termed PhoA and PhoX with distinct protein folds [38]. PF02502 

and PF02436 distinguish two classes of ribose- or phosphoribo-isomerases with 

differing enzyme folds.  

Structurally similar proteins that are identified by different Pfam families are of 

less interest and will not be separately described. The fact that they are distinct enough 

in sequence to be covered by separate Pfam families suggests a level of divergent 

evolution, i.e. one or the other domain has distinct features such us additional 

interaction partner, distinct activity regulation etc. 

Of special interest are domain pairs with unknown function. Ideally, if the function 

of one Pfam family becomes available one can infer the function of the other family as 

well. In addition, the evolutionary importance of a given protein family and its activity is 

often judged by its conservation across different phyla and organisms. This however 

neglects cases of unknown convergent evolution. Among the highest negatively coupled 

pairs, we did not find any, where the function of one has been clearly identified and the 

function of the other has not. However, there are several instances, where a potential 

role has been loosely associated with one or the other domain. For instance, PF01205 

and PF09186 have been suggested to be involved in countering translation inhibition 

under starvation conditions [39]. These domains are strongly negatively coupled with 

PF02594, suggesting that the latter might also serve a role in countering translation 

inhibition. PF01169 and PF02659 are both putative transporters, the former for calcium 

[40], the latter for manganese ions [41]. Their coupling suggests overlapping 

specificities or roles. PF02677 and PF08331 describe two entirely unstudied bacterial 

proteins. The later appears associated with iron-sulfur cluster domains, suggesting a 

potential role in redox regulation. Lastly, we find a negative coupling between domains 

PF02696 and PF03190. Both proteins are entirely unstudied in bacteria, but they are 
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also common in Eukaryotes where the latter is a proposed redox protein that has been 

implicated in fertility regulation in mammals [42]. It would be interesting to unveil their 

function in the bacteria.  

In summary, where known, negative couplings are associated with function and 

potential new function might be derived from this list. 

 

A residue-scale DCA analysis of phylogenetically coupled domain pairs unveils 
directly coevolving pairs 

 

As seen in Fig. 2C, a large positive phyletic coupling is a strong signal for a positive 

relationship between two domains, but not necessarily for a direct physical interaction of 

the two domains within a protein complex. Furthermore, co-localization of two domains 

either inside the same protein (i.e. an evolutionary conserved protein architecture) or 

inside the same operon may lead to strong phyletic couplings.  

Relying only on the coarse scale of coupled presence and absence in genomes, 

does not reveal more detailed information. Since the number of domain-domain pairs 

under question is limited as compared to all domain pairs existing in E. coli, we can 

afford computationally more expensive approaches, which study coevolution of domain 

pairs at the individual residue scale. To this effect, we use the procedure suggested in 

Gueudré et al. [27]: Two Pfam MSA for the two domain families are matched using a 

variant of DCA such that (a) only sequences appearing inside the same species are 

matched and (b) the inter-domain covariation as measurable by DCA is maximized. In 

[27] it was shown that this idea allows to identify protein-protein interactions via a large 

coevolutionary score between the two domains at a sufficiently large joint MSA. DCA 

scores above 0.2 at an effective sequence-pair number of at least 200 (sequences 

below 80% sequence identity, cf. Supplement) can be considered as a strong indicator 

for a potential interaction [10, 27]. On the contrary, according to [43], a low DCA score is 

not necessarily a sign for the absence of a physical interaction. A low score might also 

originate from a relatively small or structurally not well conserved interface, both 

resulting in a weak coevolutionary signal.  
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We have applied the progressive paralog matching procedure of [27] to the 500 

most strongly coupled domain pairs, which are not in our previously constructed test set 

of positive domain-domain relations, i.e. to the first 500 predictions at the scale of 

phyletic couplings. The results are presented in Fig. 4A: 360 domain pairs have an Meff 

above 200, and DCA results can thus be considered reliable. Of those 45 pairs have an 

inter-domain DCA score above 0.2 (24 put of the first 200 PhyCA predictions). This 

number is significantly larger than randomly selected protein pairs, cf. Fig. 4B: only 10 

pairs have a score above 0.2 and Meff above 200, mostly related to short amino-acid 

sequences. This shows that the preselection by high phylogenetic couplings leads to a 

subsequent enrichment of high DCA scores also at the residue scale. For comparison, 

we have also applied the matching procedure to the 200 domain-domain pairs, which 

are known to interact by iPfam [44], and which have high phylogenetic couplings, cf. Fig 

4C. 29 have a significant DCA score at large enough sequence number. Interestingly, 

the signal is only marginally stronger than for the newly predicted relations, which are 

discussed in more detail below. 

 

 
Figure 4: DCA identifies strong residue-scale coevolution between phyletically coupled domain 

pairs – Panel A shows the effective sequence number (defined as the sequence number at 80% 

maximum sequence identity, cf. Supplement for the precise definition) and the DCA scores for the 500 

domain pairs of strongest phyletic coupling not belonging to the positive-relation set (i.e. the 500 most 
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significant predictions). The interesting region is the red one, where sequence numbers are sufficient to 

provide reliable DCA results, and DCA scores are beyond 0.2 as established in [10]. Panel B shows, as a 

comparison, the results for 500 randomly selected domain pairs. Only very few pairs show substantial 

scores, most of them related to very short peptides. Panel C shows a positive control, the 200 pairs of 

highest phylogenetic couplings belonging to iPfam are analyzed analogously. The fraction and the 

amplitude of high DCA scores is slightly increased with respect to Panel A, but the qualitative behavior is 

similar. 
 

Discussion 
 

In this work, we propose a coevolutionary analysis connecting signals at the 

phylogenetic level (correlated presence of domain pairs across genomes) with the 

residue level (correlated occurrence of amino acids between proteins). At the 

phylogenetic level, we introduce the concept of phyletic couplings: By using a global 

statistical model, we are able to disentangle direct and indirect correlations in the 

presence and absence of protein domains across more than 1000 fully sequenced 

representative bacterial species. Couplings substantially increase the capacity to find 

relations between domains beyond correlations; these relations can be physical 

interactions, but also genomic co-localization (and thus likely functional relations). 

Standard correlation measures used in phylogenetic profiling only reach 30-50% of true 

positives between the first 1000 predictions. In contrast the positive predictive value of 

phylogenetic couplings reaches about 80%. The results are very robust: when applying 

the same methodology to all 9358 Pfam domains appearing in the bacteria, and 

selecting only later the couplings between domains present in E. coli, couplings have 

96% correlation with the couplings found by the procedure described before. 

The high accuracy of phyletic couplings in predicting domain-domain relations, 

along with the robustness of these couplings when extensively changing the data set, 

allows us to hypothesize that large couplings not corresponding to known relations 

predict novel, unknown relations. A list of the 500 first predictions is provided in the 

Supplement.  

As mentioned, a large phyletic coupling does not automatically imply a direct 

physical interaction. Two proteins may have a strong phyletic coupling because they 
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belong to the same multi-protein complex, without touching each other. They may have 

a strong phyletic coupling, because they act within the same biological process or 

pathway, again without any direct interaction. To refine the results and predict physical 

interactions, we have added a coevolutionary analysis on the scale of residue-residue 

covariation, as provided by DCA, in the version with paralog matching as recently 

proposed in [27]. We find that 72% of the 500 phylogenetically most coupled pairs 

correspond to large enough alignments to run DCA, and 12.5% of these have significant 

DCA scores. 

These domain pairs are our strongest candidates for predicted domain-domain 

interactions. Since they are not co-localized in the same protein, they also provide 

predictions for new protein-protein interactions. We analyzed in detail the 24 pairs with a 

score larger than 0.2, which result from the first 200 PhyCA predictions filtered with 

DCA. 

Among these 24 pairs we find several examples of known interactions that have 

not yet been structurally resolved. These include K+ transporter subunits KdpC 

(PF02669) and KdpA (PF03814) [45], Sigma54 activator (PF00158) and Sigma54 

activator interacting domain (PF00309) [46] and exonuclease VII subunits domains 

PF02609, PF2601 and PF13742 [47].  

For several additional positively coupled pairs an interaction seems functionally 

very likely but to our knowledge no interaction studies are available. These are all 

proteins involved in pilus formation or maturation. Domain PF06750 is a putative methyl 

transferase domain in the prepilin peptidase PppA, and proposed to interact with 

methylation motif domain PF07963, found in numerous pilin proteins and with PF05157, 

a type II secretion system protein [48, 49]. PF05157 is also predicted to interact with 

domain PF05137 found in the PilN fimbrial assembly protein required for mating in liquid 

culture [50].  

Of interest, there are predicted interactions for several members of biosynthetic 

pathways catalyzing either consecutive or closely following reactions. These include 

domains PF02542 and PF13288 of isoprenoid biosynthesis enzymes Dxr and IspF, 

domains PF00885 and PF00926 of riboflavin biosynthesis enzymes RisB and RibB and 

domains PF01227 and PF01288 of tetrahydrofolate biosynthesis enzymes Gch1 and 
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HppK. A more complex connection is predicted between multiple domains of 

molybdenum cofactor biosynthesis enzyme MoaC (PF01967), MoeA (PF03453 and 

PF03454) and MoaA (PF06463). Similarly, scores suggest a protein-protein interaction 

between domains of hydrogenase maturation enzymes HypF (PF07503) with HybG 

(PF01455) and HycI (PF01750). 

Perhaps most intriguing are the observation of strongly coupled co-occurrence 

and potential protein-protein interactions of two proteins pairs. Ada (PF02805) and AlkA 

(PF06029) are two enzymes involved in DNA repair in response to alkylation damage 

[51, 52]. One of the proteins serves as demethylase of guanosyl residues whereas the 

other excises alkylated nucleotides. These seemingly complementary functions 

suggests that an interaction is plausible. The other pair is YoeB (PF06769) with HicA 

(PF07927). These two proteins constitute two toxins of distinct toxin-antitoxin systems. 

Both proteins inhibit translation by distinct and complementary mechanisms and an 

interaction seems plausible. YoeB blocks the ribosome A site leading to mRNA 

cleavage [53]. HicA interacts with mRNA directly and thus acts independent of the 

translation apparatus [54].  

Additional and perhaps plausible interactions are predicted between domains 

PF05930 and PF13356 of prophage protein AlpA and several phage integrase proteins 

as well as between domain PF13518 with PF13817, the former a HTH domain 

commonly associated with transposase domains and the latter a transposase domain. 

Insufficient information on the function of two domain pairs and their associated 

proteins does not allow us to draw any conclusions on the plausibility of interaction. 

These are for domains PF02021 and PF13335 of proteins YraN and YifB and domains 

PF01906 with PF02796, the former a metal binding domain and the latter a domain 

found in site specific recombinases. 

Lastly, we find three proposed interactions between domains found in ribosomal 

proteins RL36, RL34 and RL32 (PF00444, PF00468, PF01783) and also a protein of 

unknown function YidD (PF01809). We consider these to be likely false positive 

predictions since we previously observed spurious results for members of very large 

macromolecular complexes such as the ribosome [10]. At least the interaction between 
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YidD and RL36 seems plausible, as the former has been suggested to play a role as 

membrane protein insertion factor [55]. 

In summary, we are able to recapitulate several known or plausible but 

structurally unresolved interactions and find several examples of interaction that should 

be of interest for future experimental studies. 

 Similarly, negative phylogenetic couplings appear to be biologically reasonable. 

They disfavor the joint presence of two domains within the same genome. In our 

analysis of the pairs of the strongest negative couplings, presented above in Results, 

we actually find many pairs having the same functionality, including documented pairs 

of convergent evolution. Some pairs actually are of unknown function, and our method 

might help to transfer functional annotations from one domain to the other.  

An important extension would be the application of our approach beyond the 

bacteria. Bacteria, due to their compact genomes, are overrepresented in genomic 

databases, including the Pfam database, which we used for our analysis. To test the 

applicability to higher organisms, we have repeated the same procedure, concentrating 

on eukaryotic genomes and taking humans as the reference species. Data get much 

less abundant; the phylogenetic profile matrix now contains 5343 domains as compared 

to only 481 eukaryotic species. Still, phyletic couplings, when compared to a positive list 

extracted from domain architectures of human proteins (co-localization in one protein), 

from iPfam [44] and human entries in IntAct [56], show a similar performance as the 

bacterial case, cf. Fig. 5A: 75% of the first 1000 couplings correspond to known domain-

domain relations. Entries corresponding to protein-protein interactions (iPfam, IntAct) 

are again significantly enriched, even if to a lesser extent than in the bacterial case. The 

most important difference emerges, however, when using paralog matching and DCA 

on the 200 most coupled predictions (i.e. pairs with strong phylogenetic coupling but not 

belonging to the positive list), cf. Fig. 5B: Only 2-4 have sequence numbers that allow 

for reliable DCA results. More eukaryotic genomes are urgently needed to carry out our 

full procedure also in higher species. 
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Figure 5: Performance of our multi-scale coevolutionary analysis for human protein domains – 

Panel A shows the positive predictive value of the phyletic couplings for predicting positive domain-

domain relationships (including protein architecture, iPfam and human IntAct entries). While there is a 

clear overrepresentation of intra-protein localization in between the highest-scoring domain pairs, also 

physical interactions as captured by iPfam and IntAct are enriched in particular in the first ca. 103 phyletic 

couplings. The overall performance is coherent with the one found in the bacteria. Panel B shows the 

paralog-matching and DCA results for the 200 most coupled domain pairs, which are not in the positive-

relation dataset. We observe that currently the joint MSA are too small (Meff < 200) to allow for a reliable 

application of DCA to detect inter-protein residue-scale coevolution.  
 

To conclude, our work illustrates the potential of combining rapidly growing 

genomic databases and statistical modelling: the increasing number of fully sequenced 

genomes allows for extracting rich samples for the variability in protein content and 

protein sequences across hundreds and thousands of species; their statistical analysis 

helps us to detect multiple scales of coevolution between interacting or functionally 

related proteins.  

The genomic scale explores the correlated presence or absence of proteins (in 

the sense of homologous protein families) across species. This correlation has been 

used before within phylogenetic profiling to detect functional relations or direct 
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interactions between proteins. Within our work, we propose to infer direct phyletic 

couplings via global statistical models, and prove that this concept strongly improves 

our capacity to detect protein relations over local correlation measures. 

However, phylogenetic couplings cannot distinguish between functional relations 

or direct interactions between proteins. This problem can – at least partially – be 

resolved at the residue scale of inter-protein coevolution. Interacting proteins show a 

correlated usage of amino acids across their interface, and again global statistical 

modelling approaches like DCA have been used to discriminate between interacting and 

non-interacting protein pairs.  

Since the computational cost of the residue-residue scale analysis is high, it is 

possible to analyze all pairs of the order of 10-50 proteins, but not all pairs of the order 

of thousands of proteins forming a species’ proteome. It is the combination of both 

scales, which allows us to first explore the genomic scale and then refine promising 

results at the residue scale. Doing so, we have provided a number of biologically 

sensible predictions for currently unknown protein-protein interactions. We provide a list 

of these predictions, which in turn may be tested directly. 

 

Methods 
 

Phylogenetic profiles 
 

Data are extracted from the Pfam 30.0 database [31]. For each of the 1,041 bacterial 

genomes present in Pfam, we extract all appearing protein-domain families, accounting 

to a total of 9,358 Pfam families. A restriction to Escherichia coli as reference genome 

(i.e. counting only domains contained in E. coli) reduces this to 2682 domain families. 

Since we are interested in the correlated presence / absence of domains across 

species, we remove all domain families with less than 5% or more than 95%, keeping 

only domains with at least 53 and at most 988 appearances. This removes in particular 

omnipresent domains related, e.g., to replication, transcription and translation. The final 

phylogenetic profile matrix (PPM) is a binary matrix containing M = 1,041 bacteria and N 

= 2,041 domains. Entries are one if a domain is present in a species (at least once), and 

zero if it is absent. Note that a zero entry typically indicates a true absence of the 
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domain in a genome, since the profile matrix is entirely built on fully sequenced 

genomes. 

In standard phylogenetic profiling [5], correlations between domains are 

evaluated via the Hamming distance, Pearson correlation or p-values of Fisher’s exact 

test, cf. the Supplement for the definitions in the context of our work. 

 

Phyletic couplings 
 

In analogy to the direct-coupling analysis on the level of amino-acid sequences, we 

model the phylogenetic profiles via the maximum-entropy principle by a global statistical 

model 

 

 

 

with (n1,...,nN) being a binary vector characterizing the presence (ni = 1) or absence (ni = 

0) of domain i in a species, and Z is a normalization constant also known as partition 

function in statistical physics. The phyletic couplings Jij and biases hi are to be 

determined such that the model P reproduces the one- and two-column statistics of the 

PPM (ni
a)i=1,…,N; a=1,…,M: 

 

 
 

with fi being the fraction of genomes in the PPM carrying domain i, and fij the fraction of 

genomes containing both domains i and j simultaneously. While the exact determination 

of the marginal distributions of P requires exponential-time computations, we apply the 

mean-field (MF) and pseudo-likelihood maximization (PLM) approximations successfully 
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positive couplings favor the joint presence or joint absence of two domains, signaling 

therefore a positive association between the two (genomic colocalization, functional 

relation, domain-domain interaction). Strong negative couplings favor the appearance of 

only one out of the two domains, signaling domains of similar function (e.g. convergent 

evolution).  

Before analyzing the phyletic couplings, we apply the so-called Average Product 

Correction (APC) [58], cf. Supplement. APC is widely used to suppress spurious 

couplings resulting from the heterogenous conservation statistics domain families 

across genomes (cf. [59]) as compared to functional couplings.   

 

Direct coupling analysis of inter-protein residue coevolution 
 

To assess the coevolution on the finer scale of residue-residue coevolution, we have 

applied exactly the progressive matching and analysis procedure recently published by 

part of us in [27], details about the procedure are given in the Supplement. It starts with 

two domain alignments, containing only bacterial protein sequences. It matches 

sequences between the domain families, such that (a) only sequences from the same 

species are matched and (b) the total inter-family covariation signal is maximized. 

Results are considered positive if (i) the effective number of matched sequences (at 

80% seq ID) exceeds 200 and (ii) the covariation score exceeds 0.2. It has been 

established in [10, 27] that larger scores are rarely obtained by unrelated protein 

families. Note that a smaller score may be related to a functional relationship rather than 

a physical protein-protein interaction, or also to a small or non-conserved interaction 

interface [43]. 

 

Known domain-domain relationships 
 

To assess the accuracy of our predictions, we have compiled a number of known 

relationships (provided in Supplement). They come from different databases, the same 

domain-domain pair may appear multiple times, but it is counted only once in the final 

list of positives: 
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1. Intra-protein localization: From the Pfam database [31], we have extracted a list of 

domain pairs, which co-occur inside single proteins in E. coli. Out of 3,116 proteins, 

952 contained multiple domains, giving rise to 799 distinct domain-domain relations. 

2. Intra-operon localization: Proteins, which are co-localized inside operons, frequently 

share at least part of their biological function. Using a list of operons from E. coli 

[60], we compiled a list of 4,087 colocalized domain pairs. 

3. Protein-protein interaction: The IntAct database [56] contains 5,318 pairs of 

experimentally found protein-protein interactions. At the domain level, we pair all 

domains in one protein with all domains in the second protein (adding possibly 

unrelated domain pairs to those interacting), obtaining 3,070 domain pairs. 

4. Domain-domain contacts in 3D structures: The iPfam database [44] contains 

domain-domain interactions extracted from structural domain-domain contacts in 

experimentally determined complex structures in the PDB. We included intra- and 

inter-chain contacts, i.e. domain-domain contacts inside a protein or between two 

proteins. Note that this list does not refer to E. coli as reference genome. In total, this 

accounts to 545 know relationships. 

5. Metabolic relationships between enzymes:  Using the reconstruction iJR904 of E. 

coli’s metabolic network [61] and filtering out “currency” metabolites involved in more 

than 50 reactions (such as water, ATP etc.), we considered three relationships: 

a. common substrate – pairs of enzymes catalyzing reactions with at least one 

common substrate; 

b. common product – pairs of enzymes catalyzing reactions with at least one 

common product; 

c. reaction chains – pairs of enzymes catalyzing subsequent reactions, i.e., one 

product of one reaction is substrate of the second. 

This lead to a total of 677 known relationships. 

The total list contains 8,091 domain-domain pairs, as compared to the 2,081,820 

possible pairs, which can be formed out of the 2,041 domains in our PPM. 

 

Availability of data and materials 
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A Supplement containing supplementary method information and results is available via 

the journal’s web page. The code for estimating phylogenetic couplings and data for 

results (list of positive domain-domain relations, phyletic couplings for bacteria with and 

without E. coli as reference, for eukaryotes with human reference, DCA-scores for top 

500 new predictions by phylogenetic couplings) are provided in the GitHub repository 

https://github.com/GiancarloCroce. 
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