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Abstract 

With the release of the multi-site Autism Brain Imaging Data Exchange, many researchers have 
applied machine learning methods to distinguish between healthy subjects and autistic individuals by 
using features extracted from resting state functional MRI data. An important part of applying 
machine learning to this problem is how to extract these features. Specifically, whether to include 
anti-correlations between brain regions as relevant features and how best to define these features. For 
the second question, the graph theoretical properties of the brain network may provide a reasonable 
answer. In this study, we investigated the first issue by comparing three different approaches. These 
included using the unaltered correlation matrix, the absolute value of the correlation matrix or the 
inverted correlation matrix (negative of the original) as the starting point for extracting relevant 
features using graph theory. We then trained a multi-layer perceptron in a leave-one-site out manner 
in which the data from a single site was left out as testing data and the model was trained on the data 
from the other sites. Our results show that on average, using graph features extracted from the anti-
correlation-based matrix led to the highest accuracy and AUC scores. We also show that adding the 
PCA transformation of the original correlation matrix to the feature space leads to an increase in 
accuracy. This suggests that anti-correlations should not simply be discarded as they may include 
useful information that would aid the classification task. 

1 Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that is growing in prevalence in 
recent years [1].  While it is usually diagnosed by carefully monitoring a child’s behavioral 
development [2], recent studies have shown that brain imaging can also be used to aid in that 
diagnosis by identifying underlying differences between the ASD and Healthy Control (HC) 
Brain[3], [4].  

Functional Magnetic Resonance Imaging (fMRI) is one of the most widely used tools for such 
studies due to its high spatial resolution. It monitors the changes in the Blood Oxygen Level 
Dependent (BOLD) signal which indirectly measures the neuronal activity [5]. This allows 
researchers to examine the human brain at a network level and understand how each brain region is 
connected to the rest of the brain by analyzing the BOLD activation patterns. A variant of the 
technique call Resting State fMRI (rs-fMRI) has been widely used to examine brain networks while 
subjects are at rest [6], [7].Graph theory is one of the more novel methods being used for the 
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network-level analysis of the brain. It provides a mathematical framework for quantifying network 
characteristics and quantitively analyze the differences between different brain networks [8], [9]. 
Machine learning is another relatively new technique that is being applied to rs-fMRI data to extract 
insights such as important biomarkers as well as to develop novel algorithms with the hope of 
automatically diagnosing brain disorders from medical imaging data. [10], [11]. The network 
characteristics that is provided by graph theory has been used as the input to machine learning 
algorithms to identify diseases such as Alzheimer’s [12], Parkinson’s [12], [13], and Autism [14]. 

One of the variables that can affect the results of the analysis is how the graph construction step was 
performed. After the initial preprocessing of the rs-fMRI data, a correlation matrix is created by 
calculating the correlation of each brain region with the other regions. The correlation matrix is then 
transformed into a sparse binary matrix representing the existence connections between different 
regions. This transformation is usually performed by a thresholding step in which only the two 
strongest correlations are kept [8], [9]. However, this step ignores the anti-correlations which may be 
biologically relevant [15].  This problem will be even more severe if the preprocessing pipeline 
includes the regression of the global mean signal (GSR) from the time-series,  known to result in the 
removal of motion, cardiac and respiratory signals, which may result in the presence of more 
anticorrelations in the correlation matrix [16]. The use of GSR is a controversial matter in the field. 
Although there is evidence suggesting that the anticorrelations introduced through GSR have no 
biological basis [17], a recent study has shown using GSR in the preprocessing pipeline for rs-fMRI 
leads to better prediction accuracies of behavioral measures [18]. 

There has been evidence of network-level changes in the ASD brain compared to a HC brain[4], [19], 
[20]. Therefore, using graph theory to extract features for classification of ASD is likely to provide 
good results. However, this approach is affected by how the graph theory analysis is formulated. This 
claim was previously examined by training a SVM classifier on graph theoretical features to classify 
between ASD and HC [14]. However, the methodology of that paper was limited to using only the 
positive correlations in order to construct the brain graph, potentially ignoring some informative 
connections. 

The release of the Autism Brain Imaging Data Exchange I (ABIDE I) dataset[21] allowed researchers 
to examine ASD in large sample sizes. Nielsen et al. [22] conducted one of the earliest classification 
studies on ABIDE and were able to achieve an accuracy of 60% over all samples. More recently, 
Heinsfeld et al [23] were able to achieve an accuracy of 70%, evaluated by 10 fold cross-validation, 
on the entire dataset by utilizing neural networks and transfer learning. They Also reported the leave-
one-site out performance of their model averaging at 65% accuracy. Plitt et al [24] achieved a higher 
accuracy, 69.71% when using only 178 subjects from the ABIDE I dataset.  

A recent study by Hallquist et al. [25], examining 106 papers (with only 2 papers focusing on ASD 
(using graph theoretical measures, shows that 79.2% of graph theoretical studies either did not 
specify how they handled negative correlations or discarded them. Another 9.4% used absolute 
values of the correlation matrix. However, this is mostly an arbitrary choice. 

In this paper, we study the effect of different approaches to handling anti-correlations for the 
classification accuracy of a machine learning model on the ABIDE dataset. We trained a regularized 
deep learning neural network using features extracted from transforming the correlation matrix using 
three pipelines: The positive correlation pipeline which does not change the matrix, the anti-
correlation pipeline which prioritizes negative correlations, and the absolute value pipeline which 
disregards the sign of the correlations. Our model was evaluated using a leave-one-site out approach.  
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Our results show that on average, the anti-correlation pipeline results in better accuracy and area 
under curve (AUC) score with a small loss in sensitivity. Furthermore, our model performed on-par 
with previous state-of the art models [23] when using only graph theoretical features. Interestingly, 
adding the PCA transformation of the original correlation matrix increased the accuracy, sensitivity, 
specificity and AUC score for all pipelines. 

2 Materials & Methods 

2.1 Data & Preprocessing: 

This study used a publicly available dataset from the ABIDE Initiative [26]. To ensure that our 
results were not affected by any custom preprocessing pipeline, we used the preprocessed data 
provided by ABIDE in the C-PAC [27] pipeline. The preprocessing included the following steps. The 
Analysis of Functional Neuro Images (AFNI)[28] software was used for removing the skull from the 
images. The brain was segmented into three tissues using FMRIB Software Library (FSL) [29]. The 
images were then normalized to the MNI 152 stereotactic space[30][31] using Advanced 
Normalization Tools (ANTs) [32]. Functional preprocessing included motion and slice-timing 
correction as well as the normalization of voxel intensity. Nuisance signal regression included 24 
parameters for head motion, CompCor[33] with 5 principal components for tissue signal in 
Cerebrospinal fluid and white matter, linear and quadratic trends for Low-frequency drifts and a 
global bandpass filter (0.01 to 0.1 Hz). GSR was also applied to remove the global mean from the 
signals. These images where then co-registered to their anatomical counterpart by FSL. They were 
then normalized to the MNI 152 space using ANTs. The average voxel activity in each Region of 
Interest (ROI) of the Craddock 200 atlas [34] was then extracted as the time-series for that region. 
We also used data from the anatomical automatic labeling(AAL)[35] in order to replicate our results 
on the Craddock 200 atlas. This resulted in data from 1035 subjects. The demographics of whom are 
outlined in Table 1.  

2.2 Network Construction, Graph Extraction and Feature Extraction: 

To construct the brain network, the timeseries for each atlas ROI where correlated, using Pearson 
correlation, with the other regions. The strengths of these correlations were used as the strengths of 
the connection between different ROIs. In graph terms, this represents a fully connected graph with 
each of the nodes being in the center of the corresponding ROIs and each edge weight is the 
correlation between the two nodes on the opposite ends of the edge. Three different pipelines were 
obtained based on selecting only the positive values, only the negative values, or taking the absolute 
value of the correlation matrix. These graphs were then subjected to a thresholding step in which 
only the 20-50% strongest connections were set to one and the other edges were discarded. This 
threshold was incremented in 2% steps. This resulted in sparse binary graphs. This step was done 
because binary graphs have been shown to have more easily defined null models and are more easily 
characterizable [8]. Several measures of integration (characteristic path length and e�ciency), 
segregation (clustering coe�cient and transitivity), centrality (betweenness centrality, eigenvector 
centrality, participation coe�cient and within module z-score) and resilience(assortativity) [9] were 
then extracted from the binary brain network graph. These steps were done using the Python libraries 
brainconn (https://github.com/FIU-Neuro/brainconn) and network (https://networkx.github.io/). This 
resulted in 3 feature sets of 1404 features for each group. The main body of this paper focuses mainly 
on only using the graph features in the analysis. In the supplementary material, we report the results 
of adding the PCA transformation [36] of the unaltered correlation matrix to the graph features. 

2.3 Leave-One-Site-Out (LOSO) Cross-Validation: 
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The structure of the ABIDE I dataset allows for an interesting cross-validation approach that captures 
the multi-site nature of it. Our data was divided into 17 cross-validation sets. In each one, one site 
was used as the test set and the other 16 sites were used as the training set.  

2.4 Model Training and Evaluation: 

In this study, we used a multilayer perceptron with two hidden layers. The model was implemented 
with Keras and using the Tensorflow 1.13 backend [37]. This model was chosen due to its ability to 
construct data driven features before using them for the final classification task. Both layers consisted 
of 512 rectified linear neurons. Due to the limited number of samples, the model was heavily 
regularized. The first hidden layer is subjected to L1 regularization in order to force the network to 
have some feature selection capabilities. A dropout layer is then applied before the second hidden 
layer. L2 regularization was used in the second hidden layer. Finally, a dropout layer was included 
before the output layer. The output layer is a single neuron which is activated by a sigmoid function. 

The model training process is as follows. First, each feature was standardized by removing the mean 
and scaling to unit variance. Then the training data was ran through the neural network. The model 
used binary cross-entropy as its loss function and an Adam optimizer with �� � 0.99, �� � 0.01, and 
an initial learning rate of � � 0.0002. The learning rate was decayed by a factor of 0.5 base on the 
validation loss calculated on a random 10% of the training data withheld during the process.  The 
model parameters were tuned on only one of the left out sites (PITT) to ensure low information leak. 
The trained model was then evaluated on the test set. We repeated the above steps 5 times for each 
LOSO fold and report the average accuracy, sensitivity, specificity and AUC score over the 5 
repetitions. It is worth noting that the healthy subjects were given a label of 1 and the ASD subjects 
were given label 0. Thus, sensitivity should be interpreted as the percentage of HCs correctly 
identified. Likewise, specificity is the percentage of ASDs correctly identified. 

2.5 Statistical Evaluation: 

We performed two statistical analyses to compare model results for each left out site between 
different pipelines. First, we compared the 5 trials performance of the best model for each pipeline 
for each site against each other using a Welch’s t-test [38]. We also compared model performance in 
a threshold-wise manner, comparing each threshold results for each pipeline against the same 
threshold results in another pipeline using the same test. The significance level is set to p<0.05. 

3 Results 

In order to manage the different thresholds, we report the performance measures of the best 
performing threshold according to AUC score for each site. This applies to all following paragraphs 
unless explicitly specified. The effects of this choice are discussed further in the discussion. 

 Our results (Tables 2-A to C) show that, on average, the negative correlation pipeline can achieve 
higher accuracies and AUC score than the other two pipelines. This is mostly due to a rise in 
specificity. The average sensitivity of the model remains unchanged over the pipelines while being 
slightly lower for the absolute value pipeline. Specifically, the model was able to achieve a higher 
specificity, increasing its ability to correctly identify ASDs. This is interesting because it suggests 
different feature extraction pipelines will allow some flexibility between interchanging sensitivity 
and specificity.  
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The same results held when adding the PCA transformation of the original correlation matrix as input 
features. However, the overall performance of the model was improved. Suggesting that information 
from the original correlation matrix supplements the information available in only graph features 
(Supplementary tables 1-A to C). To test whether these observations were dependent on the choice of 
the atlas, we applied the same methodology on a different atlas When using the AAL parcellation, the 
negative pipeline performed the best as well. Thus, strengthening the hypothesis that this result holds 
across different parcellation atlases (Supplementary tables 2-A to C).  Another variable in the dataset 
was gender. The negative correlation pipeline was still the best performing pipeline on average when 
only modelling the male subjects. Interestingly, overall model performance was lowered when the 
training and test data only included from male subjects. (Supplementary tables 3-A to C). 

As evident in the performance tables, there is a high variability in model performance between sites. 
One possible explanation for this may be related to the age of the subjects in that site. To investigate 
this, we plotted the AUC scores of the 5 trials for each site against their age means. A quadratic 
regression was applied on this data and is shown in Figure 2.  In the case of added PCA features, the 
sites at opposing ends of the age mean scale performed worse than the sites closer to the mean. This 
phenomenon was less pronounced in the case of using only graph features with it being almost non-
existent in the case of the positive correlation pipeline. 

Supplementary tables Table 4-A and B show the p-values of between pipeline differences compared 
to the anti-correlation pipeline for the graph-features-only method. When comparing the best models, 
based on what threshold led to the highest AUC score, trained with only graph features for each site, 
the negative pipeline achieved a higher AUC than the other pipelines except in the following sites. 
OLIN, OHSU, NYU and SBL for the unchanged pipeline and OHSU and NYU for the absolute value 
pipeline. Of these sites, Only OHSU (p = 0.024) and NYU (p = 0.020) were significantly different 
(p<0.05) between the unchanged and negative pipelines. For accuracy, the same comparison holds 
between the negative and unchanged pipelines. OSHU (p = 0.014) and NYU (p = 0.014) results were 
again significantly different. The absolute value pipeline was able to achieve better accuracies than 
the negative pipeline for the following site: OLIN, OHSU, NYU. Likewise, the AAL atlas results did 
not show many statistical significances in the site accuracies between different pipelines.  

As it may not be fair to compare different thresholds for each site, we also performed threshold 
matched comparisons for the graph-only craddock-200 atlas results. A Welch’s t-test was performed 
on the performance metrics of each pipeline pair for each site. Figure 3 shows these comparisons in a 
heatmap style plot. Interestingly, no site showed consistent difference in performance over the tested 
threshold range, suggesting that this value should be treated as a parameter than can affect the 
accuracy of machine learning predictions using graph theory and tuned for the task at hand. 

Although not the main goal of this study, our model was able to, on average, perform on-par with the 
deep learning model described in the Heinsfeld et al paper[23] when only using the graph features. 
The sites CALTECH, KKI, MAX_MUN, NYU, OHSU, STANFORD and TRINITY showcased 
lower accuracy in our model. However, when the PCA features were also used as input features, our 
model was able to achieve an average accuracy of 68% and a weighted average (based on the test set 
size) of 69%. The sites that still showcased lower accuracy were CALTECH, KKI, MAX_MUN, 
SBL and STANFORD.  

4 Discussion: 
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Our results consistently showed that using graph theoretical features from the negative pipeline 
increases the MLP model accuracy in distinguishing between HC and ASD. This suggests that anti-
correlations in the brain network contain important information that aids our model in distinguishing 
between ASD and HC. One reason for the higher performance of the anti-correlation method could 
be that contrary to some previous studies [16][17], GSR introduced anti-correlations may in fact stem 
from real neurological basis and not spurious [38]. Unfortunately, as we do not know of any gold 
standards to test this hypothesis in real data, it should only be interpreted as a speculation made based 
on the results of this study.  

Previous studies have concluded that the use of absolute value graph metrics in the presence of GSR 
may be compromised [37]. This was attributed to the fact that in the presence of GSR, the topologies 
of the anti-correlation and correlation matrix will be mixed when using an absolute value pipeline as 
the anti-correlations have comparable magnitude to the correlations. However, our model trained 
with the absolute value graph features was able to perform on-par with the positive correlation 
pipeline. 

The small amount of significantly different within-site metrics between the three pipelines may be 
attributed to the way they were calculated. Each leave-one-site fold was run 5 times in order to offset 
any effects of random weight initialization and random training-validation set splits. Thus, increasing 
the number of repetitions may lead to higher levels of difference significance between the reported 
metrics. Another possible explanation is that there is enough information available in all pipelines for 
most of these sites.  

In the case of added PCA, plotting the accuracies of the negative pipeline against number of 
participants did not provide any further insight into why some sites performed worst. Plotting the 
same against the age of the participants revealed that there may be a link between age and the ability 
of our model to make accurate predictions. Age has been previously shown to affect network 
properties of subject within the ABIDE dataset [39]. KKI and STANFORD are the two sites with the 
lowest average ASD and HC age. Of the 4 sites with the highest average ASD age, 3 of them, 
CALTECH, MAX_MUN and SBL showed lower accuracies. Interestingly, CMU, did not follow this 
behavior. However, the standard deviation of the age of CMU’s participants was lower than those of 
the other 3. The larger age SD may have hindered the algorithm’s ability to perform well for the sites 
with high average age. 

Interestingly, the model trained only on the graph features was able to perform relatively well on 
SBL despite that site having the highest age mean and performed worst on OHSU, the site with the 
least number of subjects. While this could have happened purely by chance, it is an interesting 
avenue for further insights about the nature of our model. Furthermore, these models were more 
robust to the effects of age as shown in figure 2 suggesting age-related information is better captured 
in the graph theoretical features than the PCA transformation of the correlation matrix. 

Another intriguing observation about our results is that some thresholds and pipelines were better 
suited for classifying specific sites. This suggest that an ensemble model, such as training different 
models on each of these combinations and assigning the most selected label for each subject between 
these models, may achieve better performance on this dataset. 

In this study we utilized a leave-one-site out cross validation approach in order to capture the multi-
site nature of the ABIDE I dataset. We believe this approach leads to a better estimate of how this 
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model will perform in the real world as it allows for better generalization across previously unseen 
imaging sites and protocols. 

Using graph theoretical measures to analyze and classify neurological and neurodevelopmental 
diseases is not a novel idea. However, the practice of thresholding the connectivity matrix in order to 
produce a binary graph introduces an artificial bias towards some of the correlations. While this bias 
can be avoided by using the absolute value of the correlation matrix, this may disregard the important 
information that the positive correlation and anti-correlation networks hold. We have shown that, in 
the presence of GSR, focusing on the anti-correlation network lead to better classification 
performance in the case of ASD vs HC. We also showed that by adding non-graph features to the 
anti-correlation graph features, classification metrics are improved suggesting that a different process 
may be needed to accurately capture the graph properties of both the positive and negative correlation 
networks. 

One limitation in the present study may be the use of multiple threshold values in constructing the 
functional graph. Here we reported the results from the threshold resulting in the highest AUC for 
each site. A fairer approach may be to average the results of all thresholds for each site. This led to a 
significant decrease in model performance however the negative correlation pipeline still 
outperformed the other pipeline. 

Another limitation of this study was the inclusion of all age ranges in our dataset. As different sites 
have different demographics, this may affect the power of our model. Furthermore, identifying ASD 
is most important in earlier stages of life. The ABIDE I dataset included only a small number of 
children under the age of 10 (146 subjects) spread across multiple sites and none below the age of 5. 
Thus, the results presented in this study may not generalize to studies on younger children.  

The ABIDE I data exhibits numerous inherent variability due to its multi-site nature. Here we 
presented a deep learning model that was able to navigate the intricacies of this data and generalize 
over multiple sites by using graph theoretical features. Our model was able to perform on-par or 
better than previously reported deep learning models using the same number of subjects. 
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Table 1. Subject demographics. M: Male, F: Female, ASD: Autism spectrum disorder, HC: Healthy 
control, SD: Standard deviation. Some sites did not include female subjects, these have been 
identified with a “_”. The term “X” for SD means that there was not enough samples to calculate SD. 

  Age Mean (SD) Count 
Group ASD HC ASD HC 
Sex F M F M F M F M 
Site                 

CALTECH 
24.35 
(6.91) 

28.27 
(11.08) 

22.77 
(4.31) 

29.51 
(11.83) 

4 15 4 14 

CMU 
27.00 
(6.93) 

26.18 
(5.88) 

26.00 
(5.29) 

27.10 
(6.12) 

3 11 3 10 

KKI 
9.61 
(1.85) 

10.12 
(1.38) 

9.49 
(0.81) 

10.22 
(1.23) 

4 16 8 20 

LEUVEN 
14.00 
(1.41) 

18.18 
(5.09) 

13.56 
(0.75) 

19.01 
(5.05) 

3 26 5 29 

MAX_MUN 
35.33 
(8.50) 

24.76 
(15.27) 

32.00 
(X) 

24.37 
(8.81) 

3 21 1 27 

NYU 
18.62 
(9.14) 

14.14 
(6.59) 

15.37 
(6.45) 

15.76 
(6.10) 

10 65 26 74 

OHSU _ 
11.43 
(2.18) 

_ 
10.09 
(1.12) 

_ _ _ 14 

OLIN 
19.00 
(5.00) 

16.06 
(3.04) 

17.50 
(3.54) 

16.54 
(3.78) 

3 16 2 13 

PITT 
12.60 
(0.95) 

20.03 
(7.38) 

16.07 
(3.60) 

19.36 
(6.97) 

4 25 4 23 

SBL _ 
35.00 
(10.43) 

_ 
33.73 
(6.61) 

_ 15 _ 15 

SDSU 
12.44 
(X) 

14.89 
(1.70) 

13.26 
(2.69) 

14.58 
(1.46) 

1 13 6 16 

STANFORD 
10.02 
(1.63) 

9.99 
(1.68) 

9.01 
(1.01) 

10.19 
(1.66) 

4 15 4 16 

TRINITY _ 
16.81 
(3.17) 

_ 
17.08 
(3.77) 

_ 22 _ 25 

UCLA 
12.46 
(3.42) 

13.08 
(2.34) 

12.82 
(0.89) 

13.03 
(2.04) 

6 48 6 38 

UM 
13.53 
(3.12) 

13.11 
(2.30) 

14.78 
(2.82) 

14.82 
(3.85) 

9 57 18 56 

USM _ 
23.46 
(8.33) 

_ 
21.29 
(8.35) 

_ 46 _ 25 

YALE 
12.88 
(3.00) 

12.70 
(3.14) 

13.52 
(2.64) 

12.34 
(2.79) 

8 20 8 20 
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Table 2-A. Results using the unchanged correlation matrix. ACC: ACURACY, SEN: 
SENSITIVITY, SPE: SPECIFICITY, AUC: Area under curve score, THRESH: Graph density 
threshold for the reported metrics 

Site ACC SEN SPE AUC THRESH 
PITT 0.61 0.66 0.56 0.61 0.24 
OLIN 0.70 0.64 0.75 0.69 0.46 
OHSU 0.58 0.66 0.50 0.58 0.50 
SDSU 0.72 0.73 0.70 0.71 0.20 
TRINITY 0.53 0.56 0.50 0.53 0.20 
UM 0.68 0.64 0.72 0.68 0.46 
USM 0.64 0.78 0.56 0.67 0.46 
YALE 0.67 0.74 0.60 0.67 0.50 
CMU 0.67 0.91 0.46 0.68 0.50 
LEUVEN 0.63 0.76 0.48 0.62 0.50 
KKI 0.53 0.36 0.77 0.56 0.46 
NYU 0.68 0.71 0.65 0.68 0.46 
STANFORD 0.54 0.32 0.78 0.55 0.38 
UCLA 0.64 0.71 0.58 0.65 0.50 
MAX_MUN 0.61 0.66 0.55 0.60 0.32 
CALTECH 0.57 0.78 0.37 0.57 0.20 
SBL 0.68 0.85 0.51 0.68 0.50 
Average 0.63 0.67 0.59 0.63 0.40 
Weighted 
Average 

0.64 0.68 0.61 0.64 0.42 

 

Table 2-B. Results using the absolute value of the correlation matrix 

 
ACC SEN SPE AUC THRESH 

PITT 0.66 0.68 0.64 0.66 0.46 
OLIN 0.68 0.55 0.79 0.67 0.46 
OHSU 0.53 0.47 0.60 0.54 0.22 
SDSU 0.66 0.69 0.61 0.65 0.20 
TRINITY 0.58 0.59 0.56 0.58 0.48 
UM 0.68 0.63 0.75 0.69 0.28 
USM 0.65 0.75 0.60 0.67 0.44 
YALE 0.65 0.81 0.49 0.65 0.24 
CMU 0.65 0.75 0.56 0.66 0.30 
LEUVEN 0.58 0.76 0.36 0.56 0.38 
KKI 0.59 0.47 0.75 0.61 0.44 
NYU 0.67 0.69 0.65 0.67 0.24 
STANFORD 0.58 0.48 0.68 0.58 0.46 
UCLA 0.68 0.69 0.66 0.68 0.44 
MAX_MUN 0.61 0.69 0.52 0.60 0.30 
CALTECH 0.61 0.66 0.56 0.61 0.24 
SBL 0.59 0.84 0.35 0.59 0.20 
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Average 0.63 0.66 0.60 0.63 0.34 
Weighted 
Average 

0.64 0.67 0.62 0.64 0.34 

 

Table 2-C. Results using the negative correlation matrix 

 
ACC SEN SPE AUC THRESH 

PITT 0.66 0.79 0.54 0.67 0.28 
OLIN 0.68 0.64 0.71 0.67 0.38 
OHSU 0.48 0.47 0.50 0.49 0.46 
SDSU 0.73 0.65 0.86 0.76 0.30 
TRINITY 0.60 0.62 0.57 0.59 0.28 
UM 0.69 0.62 0.77 0.70 0.44 
USM 0.70 0.82 0.63 0.73 0.42 
YALE 0.68 0.66 0.69 0.68 0.38 
CMU 0.70 0.85 0.56 0.70 0.28 
LEUVEN 0.65 0.80 0.48 0.64 0.46 
KKI 0.61 0.46 0.81 0.64 0.20 
NYU 0.65 0.66 0.63 0.65 0.46 
STANFORD 0.58 0.39 0.78 0.58 0.44 
UCLA 0.71 0.74 0.69 0.71 0.32 
MAX_MUN 0.62 0.63 0.61 0.62 0.34 
CALTECH 0.61 0.73 0.48 0.61 0.32 
SBL 0.66 0.81 0.51 0.66 0.50 
Average 0.65 0.67 0.64 0.65 0.37 
Weighted 
Average 

0.66 0.67 0.65 0.66 0.38 
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Figure 1. Graphical framework of the experiment.  A. By averaging the BOLD activity in 
each ROI in the parcellation atlas, a time series is extracted representing brain activity in that 
region;Using Pearson’s correlation, a connectivity matrix is generated from the ROI time series 
quantifying the connectivity level between individual ROIs; The connectivity matrix is transformed 
using three pipelines: Pos. No change to the connectivity matrix, Neg: Multiplying the connectivity 
matrix by -1, Abs: calculating the absolute value of the matrix. Then, by treating the ROIs as graph 
nodes and the connectivity matrix as graph weights the brain network is expressed in graph form; A 
threshold is applied to keep only the 20-50% strongest connections in 2% increments; Graph 
theoretical analysis is applied to the resulting graph from to obtain a feature vector for each subject; 
E: Feature matrix for all subjects in the training fold; F. MLP architecture. First ReLU layer is l1-
regularized and second ReLU layer is l2-regularized. A dropout of 0.7 was applied between the first 
and second ReLU as well as the second ReLU and output; G. The model is tested on a previously 
unseen test set from a different site in the ABIDE dataset. The evaluation metrics are: Accuracy, 
Sensitivity, Specificity, AUC score. 
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Figure 2. AUC scores vs Age. The figures show the quadratic regression line of AUC score of a LOSO fold 
based on mean age associated with the left-out site. Top row plots the results from using both PCA and graph 
features while bottom row shows result from using only graph features. The sites that have extreme age ranges 
(either lowest or highest) perform worse than those closer to the population median. An inverted U-shape is 
observed in all pipelines other than the Pos pipeline in the case of using only graph features. Abbreviations: 
Pos: Positive pipeline, Neg: negative pipeline, Abs, Absolute value pipeline 
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Figure 3. Welch's t-test results, Figure columns represent the pipelines being compared and the rows 
represent the metric that is being compared. In each sub-figure, the title shows the pipelines being 
compared following by the metric. The X-axis represents different imaging sites and the Y-axis 
shows different thresholds. The heatmap values are p-values distributed based on the colormap to the 
right of each figure. Significant p-values(0.05) are highlighted in yellow 
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