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Abstract

The self-assembly of proteins into protein quaternary structures is of fundamental

importance to many biological processes, and protein misassembly is responsible for a

wide range of proteopathic diseases. In recent years, abstract lattice models of protein

self-assembly have been used to simulate the evolution and assembly of protein

quaternary structure, and to provide a tractable way to study the genotype-phenotype

map of such systems. Here we generalize these models by representing the interfaces as

mutable binary strings. This simple change enables us to model the evolution of

interface strengths, interface symmetry, and deterministic assembly pathways. Using the

generalized model we are able to reproduce two important results established for real

protein complexes: The first is that protein assembly pathways are under evolutionary

selection to minimize misassembly. The second is that the assembly pathway of a

complex mirrors its evolutionary history, and that both can be derived from the relative

strengths of interfaces. These results demonstrate that the generalized lattice model

offers a powerful new framework for the study of protein self-assembly processes and

their evolution.
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Author summary

Protein complexes assemble by joining individual proteins together through interacting

binding sites. Because of the long time scales of biological evolution, it can be difficult to

reconstruct how these interactions change over time. We use simplified representations

of proteins to simulate the evolution of these complexes on a computer. In some cases

the order in which the complex assembles is crucial. We show that biological evolution

increases the strength of interactions that must occur earlier, and decreases the strength

of later interactions. Similar knowledge of interactions being preferred to be stronger or

weaker can also help to predict the evolutionary ancestry of a complex. While these

simulations are not realistic enough to make exact predictions, this general link between

ordered pathways in assembly and evolution matches well-established observations that

have been made in real protein complexes. This means that our model provides a

powerful framework for the study of protein complex assembly and evolution.

Introduction 1

Many proteins self-assemble into protein quaternary structures, which fulfill a multitude 2

of functions across a wide range of biological processes [1]. Abstract models trade off 3

the complexity arising from conformations, buried surfaces, cooperative binding, etc., 4

but still retain qualitative realism. A general class of polyomino tile self-assembly 5

models have strong analytic potential while maintaining semblance to protein quatenary 6

structure. 7

The polyomino self-assembly model [2] combines lattice tile self-assembly with a 8

quantification of biological complexity, examining the relationship between genetic 9

description length and phenotypic complexity. The same model was developed and 10

expanded with evolutionary dynamics by Johnston et al. [3], and used to probe general 11

properties of genotype-phenotype maps by Greenbury et al. [4]. 12

Here we develop a generalization of interactions using binary strings in these 13

polyomino assembly models, in particular introducing variable binding strengths and 14

relaxing the rejection of misassembly. 15

Binding affinity is difficult to assess experimentally but central to making 16
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predictions on assembly [5]. A dominant cause in altering the affinity is mutations to 17

polar or charged groups [6]. While our binary interface polyomino self-assembly model 18

does not account for the variety of amino acids and their particular properties, it 19

provides a reasonable coarse-grained approach. Similar models of protein interactions 20

using binary subunit interfaces have linked protein-protein interaction properties to 21

experimental observations on protein family evolution [7, 8]. 22

Adding these features into polyomino models enables preliminary explorations into 23

the evolution of binding strengths and the implications binding strengths can have on 24

preferred evolutionary pathways. 25

Several recent studies have revealed the deep relationship between evolutionary 26

pathways and assembly properties like stoichiometry [9], symmetry [10], interaction 27

topology [1], and binding strengths [11]. We aim to reproduce several of these 28

observations in the framework of our generalized polyomino model in order to highlight 29

its potential as a tool for the study of protein assembly and its evolution. 30

Self-assembly algorithm 31

Any self-assembling system requires two ingredients: assembly subunits with binding 32

sites, and a method for determining the strength of an interaction between two such 33

sites. The arrangement of the sites and their interactions can be described in the form 34

of an assembly graph [12]. From these simple components, structures can be formed 35

through the following stochastic assembly process: 36

� The process starts with a randomly chosen initial subunit. 37

� The structure grows by placing a randomly chosen subunit with random 38

orientation in a random adjacent position to the existing structure. 39

� If the interaction interface between adjacent binding sites is sufficiently strong, 40

the placed subunit binds irreversibly to the existing structure. 41

� The growth process repeats until no further bindings are possible. At this stage, 42

assembly terminates and the final structure forms a single connected set of one or 43

more subunits. 44
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If the subunits are square tiles on a lattice, connected sets of tiles are called 45

Polyominoes [13]. 46

Genotypes and Phenotypes 47

We can define a genotype that encodes a set of subunit interactions as a sequence, in 48

which each sequence position represents the type of a particular binding site on a 49

subunit. The assembly process maps a given genotype to a single polyomino (in the case 50

of a deterministic genotype) or a statistical distribution of several different polyominoes 51

(for a nondeterministic genotype). In either case these polyominoes can be thought of as 52

abstract biological phenotypes. 53

The assembly process is independent of the order in which the subunits are 54

represented in the genotype, and translations, rotations, or reflections of a given 55

polyomino are not considered unique. The implementation of this invariance is outlined 56

in S1 Appendix. 57

An example of the mapping from genotype to phenotype is shown in Fig 1, using the 58

integer binding site conventions of existing polyomino models. Certain binding sites are 59

noninteracting (labeled 0) while interactions of equal strength occur between fixed pairs 60

of positive integers. The interacting pairs are 1↔ 2, 3↔ 4, etc. 61

Nondeterminism 62

Repeated assemblies of the same genotype do not necessarily produce the same 63

polyomino, a property referred to as nondeterminism. There are many sources of 64

nondeterminism, ranging from unbound aggregations of subunits to branching pathways 65

in the course of the assembly process. A more general insight into nondeterminism in 66

polyomino self-assembly is given by Tesoro, Ahnert, and Leonard [12]. 67

Deterministic genotypes are significantly outnumbered by nondeterministic ones, and 68

the addition of interactions typically increases the fraction of nondeterministic 69

genotypes. In a biological context nondeterministic genotypes can be viewed as less 70

desirable than deterministic ones, as the functions of many proteins strongly rely on the 71

accuracy and reproducibility of their structures. We can therefore use nondeterminism 72

in the polyomino self-assembly model to represent protein misassembly and thereby 73
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Fig 1. Assembly sequence from genotype to phenotype in the standard
Polyomino self-assembly model. The full sequence of generating a phenotype from
a genotype for deterministic (left) and nondeterministic (right) assemblies. The binding
sites on the subunits are transcribed from the genotype in a clockwise fashion. The
assembly graph encodes all possible interactions (0s noninteracting, 1s and 2s interact
with each other, 3s and 4s interact with each other, etc.) among the subunits, indicated
by solid lines. In the case of nondeterministic genotypes, different polyominoes may
emerge as the outcomes of the stochastic assembly process. Here we perform 10
repeated assemblies, and define the phenotype of a genotype as the polyomino that
appears most often. Other definitions of a phenotype from the distribution of
polyominoes are also possible.

study the conditions under which proteins may evolve towards more stable and reliable 74

assemblies. 75

Generalized model framework 76

In this paper we generalize the standard Polyomino self-assembly model as outlined 77

above by introducing interfaces that take the form of binary strings rather than integers. 78

This definition of interfaces gives rise to further definitions of interface strength and 79

symmetry. It also allows for non-transitive interactions between interfaces. 80

The assembly process outlined earlier is unchanged, with only the sites and thus how 81

to determine interactions between them being redefined, as seen in Fig 2. 82

The number of bits per binding site is given by LI , providing 2LI unique binding site 83

configurations. Since the subunits are always encoded in a genotype following a 84

common convention (e.g. clockwise around a tile), two adjoined sites have a “head to 85
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Fig 2. Generalized binding sites (a) Explicit subsite interactions (dotted lines)
between two binding sites, showing the “head to tail” alignment. The Hamming
distance between the counter-aligned sites is 4, and so the interaction strength is Ŝ = .5.
(b) Taking the critical strength Ŝc = .75, these two subunits encode two interactions in
the assembly graph. The interactions have different strengths (indicated by line
thickness), with the upper interaction stronger (Ŝ = .875) than the lower (Ŝ = .75).

tail” alignment (see Fig. 2). 86

The interaction strength between two sites relates to the Hamming distance dH 87

between one site and the reversed alignment of the other, normalized by LI . As such, 88

the interaction strength Ŝ ∈ [0, 1], and binding can occur if the strength is above some 89

chosen critical strength Ŝ ≥ Ŝc. The stochastic assembly process as outlined above is 90

now extended to include a binding probability as a function of interaction strengths. 91

Interacting subunits are no longer guaranteed to bind, but binding that does occur 92

remains irreversible. 93

Binding probability can be linked to interaction strength via an abstract 94

temperature T ∈ [0,∞). More complex forms may have more physical justification, but 95

a useful form of binding probability is 96

Prbinding = H(Ŝ − Ŝc)ŜT

where H is the Heaviside function, taking H(0) = 1. The average number of 97

attempts an interaction will take, effectively the binding time, is the reciprocal of the 98

binding probability. With the choice T > 0, stronger bonds are expected to assemble 99

more quickly than weaker bonds. 100

Results 101

Using this model, even a small number of subunits can give rise to a large array of 102

potential Polyomino structures. We focused our attention on a subset of six assembly 103

graphs that contained both deterministic and nondeterministic phenotypes and 104

transitions, and in which each of the four more complex assembly graphs are in 105
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principle accessible from two other members of the set via point mutations. The 106

assembly graphs and phenotypes are shown in Fig 3. 107

Fig 3. Example system of six assembly graphs. The interactionless initial
condition and an example system of six assembly graphs with associated polyominoes.
The assembly graphs (and polyominoes) are grouped into vertical columns that are
ordered by the number of interactions (from left to right: one, two, and three
interactions). Three assemblies are nondeterministic, and are marked with a ∗. In the
nondeterministic cases we only show the most common Polyomino structure, which also
corresponds to our formal definition of the phenotype.

Evolution was modeled with a fixed-size haploid population undergoing discrete 108

generations of selection and mutation. Reproduction was asexual, and mutations 109

occurred with a fixed probability to flip each bit in a genotype. Non-negative fitnesses 110

were assigned to every individual according to their phenotype properties, with more fit 111

members proportionally more likely to reproduce into the next generation. 112

Nondeterminism was punished by an individual only receiving a fraction of its potential 113

fitness equal to the frequency of correct assembly exponentiated by a parameter 114

γ ∈ R≥1. 115

Binding strength dynamics 116

Accessing information on the evolution of real protein binding strengths over sufficiently 117

long time scales is effectively impossible. There are potential proxies, like looking at 118

homologous proteins across an evolutionary tree [14]. Experimental work has suggested 119
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a link between ordered assembly pathways and the constraints they place on 120

evolution [11], but focused on subunits fusing together rather than individual strengths 121

evolving. 122

Here we show how the generalized polyomino model can simulate evolutionary 123

selection for assembly order, such as observed in [11] for real protein complexes. The 124

possibility of nondeterminism in our generalized model, combined with variable binding 125

strengths, give rise to a space in which evolution can optimize binding strengths in order 126

to maximize the probability that critical assembly steps occur in the right order for a 127

desirable phenotype. 128

Baseline strength prediction 129

As mutations accumulate over the course of evolution, interaction binding strengths are 130

unlikely to remain static. Predicting how binding strengths will evolve over time in a 131

simplistic limit provides a comparative reference when examining evolution simulations. 132

Several assumptions help reduce the mathematical complexity of the prediction, 133

including 134

� no direct fitness advantage for stronger interactions 135

� falling below the critical strength is fatal 136

� infinite population 137

� only single mutations 138

Since selection can only operate on phenotypes, it is “blind” to the underlying 139

genotypic details. Hence bonds present in the phenotype can be considered equal, 140

justifying the lack of direct fitness advantage for interaction strengths. The remaining 141

assumptions are fairly weak and satisfied by any reasonable choice of simulation 142

parameters. These assumptions and the mutation-selection dynamics can be framed as 143

a Markov process, giving both transient and steady-state expectations for the evolving 144

interaction strengths. Details on this Markov process and calculating its expectations 145

are in S2 Appendix. 146
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Simulated evolution 147

Interactions can be categorized on two distinct levels: phenotype and interaction 148

topology. Selection acts on phenotypes, and so evolutionary dynamics may differ 149

between phenotypes. Interaction topology can be characterized using two properties: 150

The first is whether an interaction is inter- or intra-subunit, while the second is if either 151

binding site in the interaction are involved in other interactions or if they are unique. 152

Classifying interactions in this way allows different dynamics to be isolated, revealing 153

the underlying causes. 154

Fig 4 displays the evolution of interaction strengths in the partial system. The three 155

deterministic phenotypes (top left, bottom left, bottom middle) have similar behaviour, 156

all approximately following the transient expectations of the Markov process (dotted 157

black line), regardless of ancestral phenotype or interaction topology. Conversely, the 158

three nondeterministic phenotypes (top middle, top right, bottom right) diverge from 159

the expectations of the Markov process, with long-term interaction strengths being 160

driven both above and below the Markov values. Notably, one interaction in the 161

nondeterministic 16-mer does follow the Markov prediction, because it does not matter 162

whether this particular assembly step occurs first or last. 163

Fig 4. Binding strength evolutions. Each box corresponds to a different
phenotype, with marker styles indicating interaction topology. Line colours (online)
match the box colour of the direct ancestor, with “open” markers (print) indicating the
ancestor is from an upper panel. Individual simulations are noisy, but averaging over
many simulations yields stable trends. Black dashed lines in the panels are from the
Markov prediction. The ∗ again indicates the three nondeterministic assemblies.
Interface strengths in deterministic assemblies evolve predictably, while
nondeterministic assemblies diverge rapidly.
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Selective ordering 164

In all three nondeterministic phenotypes the nondeterminism originates from the 165

multiple possible orderings of individual assembly steps. Greater determinism can 166

therefore be achieved by making sure that certain assembly steps occur earlier than 167

others, by increasing the strength of the corresponding interactions. This is precisely 168

what the evolutionary algorithm achieved through selection, with interactions 169

strengthening or weakening across evolution to optimize determinism. 170

Such an effect is only observed in cases with steric nondeterminism, where for 171

example the heterotetramer can be assembled with near 100% determinism if 172

inter-subunit interaction binds much sooner than the intra-subunit interaction. Similar 173

selective pressure for determinism drives the interaction strengths for the other 174

nondeterministic assemblies. 175

Universality 176

The choice of parameters, like nondeterminism punishment γ and “temperature” T , 177

only have qualitative significance. Provided there is some fitness benefit to being more 178

deterministic (γ > 1) and stronger interactions bind preferentially (T > 0), then the 179

same patterns of behaviour are observed across a range of parameters. Exact values of 180

the steady states vary intuitively with the choice of parameters, but the behaviour is 181

near universal (see S1 Fig for more details). 182

Evolutionary pathways 183

In the steady-state limit of the evolutionary simulations, mutation and selection 184

effectively eliminate any trace of ancestry in the interface strengths. The steady state 185

properties of interaction strengths depend only on the current phenotype. However, 186

shortly after a new shape has evolved, it is possible to deduce ancestry from interface 187

strengths. In the case of the 12-mer and the 16-mer, where we have one 188

nondeterministic ancestor and one deterministic one, this is obvious as the interface 189

strength distributions of the two ancestors differ considerably. As a result the two 190

alternative ancestries for each of these two polyominoes can be clearly distinguished by 191

bond strengths up to about 50 generations. 192
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But even where we have deterministic ancestors, namely for the octomer and the 193

heterotetramer, we notice that at the earliest time points the interface that is also 194

present in the ancestor is stronger than the interface that is absent in the ancestor. This 195

latter observation mirrors results found in real protein complexes, where the ordering of 196

interface strengths often reflects the order of evolution, with the strongest interface as 197

the oldest [10]. 198

Phenotype phase space 199

Deterministic assemblies, by definition, always produce the same polyominoes. On the 200

other hand, nondeterministic assemblies can produce polyominoes with different 201

frequencies due to the inherent stochasticity of the assembly process. In the limit of 202

infinite repeated assemblies, these polyomino frequencies become deterministic and can 203

be calculated a priori. The frequencies can be represented in a “phase space” for a set 204

of nondeterministic interaction topologies. The ratio of interaction strengths provide the 205

coordinates for the phase space. 206

These phase spaces can be calculated through a decision tree of assembly steps. 207

Each branch in the decision tree is new binding step during assembly, and is weighted 208

by the strength of that step’s interaction normalized by all possible step strengths. So 209

the the final result does not depend on absolute values of interaction strengths, but 210

rather ratios of the competing interaction strengths. The dimensionality of the phase 211

space depends on how many competing interactions there are. 212

These trees quickly reach unusable levels of complexity due to exponential branching. 213

Heuristics can eliminate many terms in the final expressions, identifying steps which are 214

indistinguishable or deterministic. The decision tree calculation for a heterotetramer 215

can be found in Fig 5. 216

Simulated pathways 217

Phenotype transitions in a population are difficult to define precisely, so two general 218

forms, fixations and failures, are introduced. Fixating transitions are those contained in 219

any evolution history spanning the duration of the simulation, indicating they were 220

beneficial transitions. Failures on the other hand, are transitions that quickly go extinct 221

despite having higher fitness potential. Not all transitions fall within these two groups, 222
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Fig 5. Decision tree for heterotetramer The assembly graph has interaction
strengths A and B. Each seed is a starting point for the decision tree, incrementally
progressing until assembly terminates. In this situation, once a gray subunit is placed,
assembly deterministically ends with the heterotetramer, rendering further branching
unnecessary. The lower branchings have an extra weighting factor of two, due to two
indistinguishable assembly steps.

but the remainder are artifacts of finite population size and can be explicitly ignored. 223

The success rate of transitions does not only depend on the properties of the 224

descendant, but also depend on immediate ancestry, as shown in Fig 6 (a). Transitions 225

to the heterotetramer for example, have very different success rates coming from the 226

dimer or homotetramer, despite their qualitative similarity. The resolution to this 227

apparent discrepancy is understanding the connection between a transition’s success 228

rate and its location in the descendant’s phase space. Critically, the average location in 229

this phase space can be predicted based on the ancestor’s steady state behaviour. The 230

location in phase space in turn provides the level of nondeterminism and thus 231

estimations on success rate, seen in Fig 6 (b) and (c). 232

There are 3 pairs of transitions that are interesting to examine: those to the 233

heterotetramer, 16-mer, and 12-mer. For the heterotetramer, as can be seen from its 234

phase space in Fig 6 (b), the assembly is most deterministic if the inter-subunit 235

interaction is significantly stronger than the intra-subunit interaction. The average 236

transition from the dimer is much closer to this constraint than the average transition 237

from the homotetramer, and this is reflected in the success rates (80% compared to 30% 238

respectively). 239

As noted earlier, one interaction in the 16-mer does not compete in assembly order, 240

and the 16-mer actually shares the same decision tree as the heterotetramer. Trivially 241

the heterotetramer will evolve to its own optimal interface strength ratio, and thus 242

transition in the optimal location for the 16-mer. This is reflected with its effectively 243

deterministic success rate (95%). The 8-mer is effectively the dimer once discounting 244
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Fig 6. Phenotype transition success and ancestry. (a) Transitions to
deterministic assemblies have high success, tending to perfect in an infinite population.
Conversely, transitions to nondeterministic assemblies (marked with ∗) typically have
less success. Transition rates between nondeterministic assemblies vary considerably,
due to the varying overlap between the interfaces of an ancestor and the stronger
interfaces of the descendant. Interaction strength is indicated by line thickness. The
transition locations in phase space of ancestors are shown for the heterotetramer and
12-mer in (b) and (c) respectively. (b) For transitions from both the dimer and
homotetramer, one bond has been strengthened through evolution (black) and one is
new and at minimum value (gray). Compared to the evolutionary equilibrium of the
heterotetramer, the dimer has a much more favorable ratio of strengths than the
homotetramer, as indicated by its closer position in phase space. Likewise in (c), the
evolutionary equilibrium of the 8-mer has much more similar ratios of interaction
strength to the 12-mer than the heterotetramer has. In addition to the heterotetramer
being further down the determinism gradient, it more frequently misassembles the
phenotype, lowering its transition success even further.

the non-competing interaction, and transitions in the same region with similar successes 245

of about 80%. 246

The 12-mer phase space is more complicated, with three competing interactions and 247

three possible polyominoes, although only the 12-mer and “misassmbled” states are of 248

February 19, 2019 13/22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/557272doi: bioRxiv preprint 

https://doi.org/10.1101/557272
http://creativecommons.org/licenses/by/4.0/


interest here. Analogous to before, the 8-mer transitions higher on the determinism 249

gradient and thus is more successful than the heterotetramer. However, these assembly 250

graphs can misassemble more often than they assemble the 12-mer, and thus produce an 251

unfit phenotype. The average transition for the heterotetramer is fatal, because it 252

occurs in the misassembly region, seen in Fig 6 (c). Stochastic fluctuations can shift the 253

individual transition locations, but such an event is a “second-order probability”. As 254

such, the heterotetramer to 12-mer is strongly constrained, and has a meager 3% 255

success rate. 256

More exact calculations can be done to predict transition success rates from phase 257

space locations, but these depend explicitly on the nondeterminism parameter γ and 258

how much more fit each descendant is. However, as before, the behaviour is 259

qualitatively near-universal. These transitions are taken directly from the simulations 260

displayed before, again with parameters chosen to highlight these dynamics clearly. 261

Discussion 262

Ordered assembly 263

The time ordering of assembly steps in proteins is integral to the correct assembly of the 264

protein structure. This holds true on many length scales of assembly, with 265

cotranslational protein folding able to induce misassembly [15] all the way up to final 266

quaternary structure as examined here. Experimental methods for devising binding 267

strengths are still being developed [16], with an in silico approach recently introduced 268

focusing on multimeric complexes [17]. 269

One notable result was that given an equal rate of mutation, deterministic and 270

nondeterministic assemblies adapted at different rates. The peak observed rate of 271

binding strength increase in the 12-mer was approximately triple the rate in 272

deterministic assemblies. Such an observation is fairly intuitive, as mutations which 273

alter binding strength correctly or incorrectly are more strongly selected or purified 274

respectively in the nondeterministic assemblies. This is in good agreement with the 275

observation that unstable proteins adapt more quickly [18]. 276

Binding strengths that deviate from neutral expectations do so to optimize 277
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determinism, assembling a core of the final structure as quickly as possible before 278

adding further, peripheral elements. This evolutionary selection for a particular 279

assembly pathway has an equivalent in real protein complexes, in which gene fusions are 280

a way of cementing particular assembly order under evolutionary selection pressure in 281

order to minimize the risk of misassembly [11]. 282

Model implications 283

Generalizing the binding sites from integers to binary strings provides a range of 284

benefits. The number of binding site configurations is now fixed by a physically 285

meaningful parameter and is exponentially large. Previous models frequently had 286

identical binding sites at multiple locations, which is very unlikely in real proteins, 287

whereas now repeated binding sites are vanishingly rare. Additionally, interaction rules 288

in the integer model have trivial transitivity relations: Maintaining the notation of ↔ 289

for interactions, that is to say for sites A,B,C that 290

(A↔ B) ∧ (B ↔ C)→ (A = C)

However, the generalized model does not require the above relation to be true, with 291

knowledge of one interaction having little bearing on other interactions sharing a 292

binding site. That it is to say for sites D,E, F,G that 293

(D ↔ E) ∧ (E ↔ F ) ∧ (F ↔ G) 6→ (D = F ) ∨ (D ↔ G)

This allows more complex interaction patterns to form, but also allows different binding 294

sites to produce the same interaction behaviour, as seen in Fig 7. In addition, sites can 295

self-interact, interact with another binding site, or both, like sites D and E supporting 296

the interactions D ↔ E and E ↔ E. 297

Usefully, the generalized interactions are a superset of the integer model, and so any 298

previous results could be trivially recovered by choosing Ŝc = 1 (up to relabeling 299

binding sites). While the generalized model is still a very abstract representation of 300

biological self-assembly, the binary interfaces add physical realism and layered 301

complexity to an already promising model. 302
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Fig 7. Generalized interactions are not always transitive. In the generalized
model, knowledge of one interaction does not fix the binding sites of another related
interaction. Earlier in the nondeterministic case in Fig 1, this assembly graph had
A = 1, B = 2 fixing ? = 1. Here, choosing binding sites A and B still leaves 5
possibilities for ?. The possibilities marked with � self-interact, and so would technically
add an interaction to the assembly graph.

Extensions 303

Phenotype plasticity is another feature that is naturally introduced by the generalized 304

model. By incorporating a dynamic fitness landscape, one that alternatively favors two 305

(or more) phenotypes, the interaction strengths can continuously adapt to remain 306

optimal, shown in Fig 8. The ability to modify a phenotype in a controllable manner, 307

minimizing nondeterminism, is a huge advantage to survival. If a conformational change 308

of a protein, in response to an environmental change or other external conditions, 309

altered its binding strengths, it could quickly shift phenotypes. 310

Fig 8. Interaction strengths can adapt to changing fitness landscapes.
Periodically alternating the fitness landscape produces cyclic behaviour in interface
strengths. Despite starting from a range of initial conditions, all simulations eventually
converge to the optimal path to transition between the 10-mer and 12-mer and back.
The change in fitness landscape is indicated by the red or blue colours, with arrows
indicating the direction of flow. Both phenotypes are produced with the same three
interactions; it is only the relative ordering of interaction strength that matters. A
breakdown of each fitness landscape and local gradients can be seen in S2 Fig.

Since changing interaction strengths can occur much quicker than creating new 311

interactions, this plasticity allows adaptions that would otherwise be potentially too 312
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slow to survive. The relationship between conformational changes and their impact on 313

evolution is uncertain, but it has been suggested that this behaviour can impose strong 314

constraints on sequence evolution [19,20]. Moreover, adding and removing interactions, 315

rather than just reprioritizing them, exposes the assemblies to intermediate states and 316

greater risk of negative outcomes [21]. 317

Conclusion 318

Polyomino self-assembly models using integers as binding sites have demonstrated the 319

value of abstract self-assembly models for the study of self-assembly phenomena and 320

genotype-phenotype maps [2–4]. 321

Generalizing the binding interfaces using binary subsites as outlined in this paper 322

retains tractability while expanding applicability to more complex biological research 323

questions. In particular, modeling the evolution of interaction strengths provides 324

qualitative insights beyond the reach of previous polyomino studies. 325

With a few justifiable assumptions, analytic predictions of the interaction strengths 326

in the absence of selection pressures can be found, which show strong agreement with 327

simulations. Significant divergences from this prediction are observed in 328

nondeterministic assemblies where time-ordering is important, and the interaction 329

strengths are therefore under selection. This selection pressure drives these interactions 330

to strengthen or weaken, and thus bind earlier or later in the assemble, to optimize the 331

determinism. Certain interaction strength orderings are more suitable for transitioning 332

to descendant phenotypes, and so can be used to statistically reconstruct evolutionary 333

pathways. 334

Several observations from experimental studies have been recovered by this model, 335

as well as suggesting that nondeterminism in the Polyomino model provides an 336

interesting framework for the study of protein misassembly. Many further avenues are 337

imaginable that build on such investigations of nondeterminism, including gene 338

duplication, phenotype plasticity, and more complex genotype-phenotype mappings. 339
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Methods 340

A full implementation of the self-assembly algorithms, evolutionary dynamics, and 341

phylogenetic analysis written by the authors can be found online [22]. 342

Evolution 343

As outlined earlier, evolution was modeled with asexual reproduction of haploids 344

encoding two subunits (total of 8 binding sites per genotype). Binding site lengths were 345

LI = 64 and the critical strength was taken as Ŝc = .671875. Genotypes were initialized 346

randomly, with the constraint that there were no interactions. Assembly could begin 347

with either subunit as the seed, although monomers were ignored due to their trivial 348

contribution. 349

A population of 250 individuals evolved for 1000 generations, with each genotype 350

being assembled 25 times. Each binary subsite had a fixed probability to flip, such that 351

the entire genotype had mutations that were binomially distributed with mean µ = 1. 352

The temperature was set to T = 25, while the nondeterminism punishment was γ = 5. 353

An individuals fitness was calculated as (F )NI · (1− φ)γ , where F is the fitness jump 354

between higher order assembly graphs, NI is the number of interactions in an assembly 355

graph, and φ is the nondeterminism fraction for that particular set of assemblies. The 356

fitness jump was set to 5 to balance the strong nondeterminism punishment. 357

Similar results were achieved with different binding site lengths, critical strengths, 358

fitness functions, etc. Likewise, mutation rate, population size, and other simulation 359

dynamics all displayed the same qualitative behaviour. The parameters used in these 360

results offered good fidelity and reasonable computation timescales, but were otherwise 361

arbitrary. 362

Phylogenetic tracking 363

With asexual reproduction, new interactions or new phenotypes can be traced directly 364

to unique mutation events. The descendants of these individuals can be tracked for 365

separate evolutionary histories. By recording the assembly graphs, phenotypes, and 366

reproducing individuals at every generation, the ancestral information can be entirely 367

reconstructed. 368
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Dynamic landscapes 369

The bulk of the results were attained with static fitnesses, but Fig 8 had two distinct 370

fitness landscapes alternating periodically. Here, an individuals fitness was taken as the 371

`1 norm of fitnesses in both the 10-mer and 12-mer landscapes at that generation. The 372

rate at which the landscapes varied smoothly was only of qualitative importance, 373

provided that timescale was significantly greater than the mutation timescale. 374

Supporting information 375

S1 Fig. Binding strength evolutions are qualitatively universal. For all 376

values of T > 0 and γ > 1 (in dashed box), where the parameter space enabling stronger 377

bonds to optimize determinism, the same qualitative observations hold. The equilibrium 378

values of interaction strength do depend on the selective pressure and temperature, but 379

vary intuitively. 380

S2 Fig. Interaction strength adaptation follows determinism gradients. 381

After switching the rewarded phenotype in the fitness landscape, average trajectories 382

closely follow the determinism gradient of the relevant phenotype. Some trajectories 383

switching from the 10-mer to the 12-mer (red) follow local gradients, increasing the 384

C/B ratio first, as opposed to the more global optimum of lowering the A/C ratio. 385

However, both paths tend to the same steady-state region of phase space. 386
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387

S1 Appendix. Polyomino comparison. 388

S2 Appendix. Markov evolution. 389
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