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Abstract 
One of the major questions in high-density transcranial electrical stimulation (TES) is: given a 
region of interest (ROI), and given electric current limits for safety, how much current should be 
delivered by each electrode for optimal targeting? Several solutions, apparently unrelated, have 
been independently proposed depending on how “optimality” is defined and on how this 
optimization problem is stated mathematically. Among them, there are closed-formula solutions 
such as ones provided by the least squares (LS) or weighted LS (WLS) methods, that attempt to 
fit a desired stimulation pattern at ROI and non-ROI, or reciprocity-based solutions, that 
maximize the directional dose at ROI under safety constraints. A more complete optimization 
problem can be stated as follows: maximize directional dose at ROI, limit dose at non-ROI, and 
constrain total injected current and current per electrode (safety constraints). To consider all 
these constraints (or some of them) altogether, numerical convex or linear optimization solvers 
are required. We theoretically demonstrate in this work that LS, WLS and reciprocity-based 
closed-form solutions are particular solutions to the complete optimization problem stated 
above, and we validate these findings with simulations on an atlas head model. Moreover, the 
LS and reciprocity solutions are the two opposite cases emerging under variation of one 
parameter of the optimization problem, the dose limit at non-ROI. LS solutions belong to one 
extreme case, when the non-ROI dose limit is strictly imposed, and reciprocity-based solutions 
belong to the opposite side, i.e., when this limit is loose. As we couple together most 
optimization approaches published so far, these findings will allow a better understanding of the 
nature of the TES optimization problem and help in the development of advanced and more 
effective targeting strategies. 
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1 Introduction 
Transcranial electrical stimulation (TES) is an emerging therapy for the treatment of 
neuropsychiatric conditions such as depression (Kalu et al., 2012), Parkinson’s disease (Boggio 
et al., 2006), anxiety and chronic pain (Mori et al., 2010). Research has also demonstrated that 
TES can be a valuable therapeutic tool in epilepsy (Yook et al., 2011), stroke rehabilitation 
(Schlaug et al., 2008), and other neurological and psychiatric conditions (Brunoni et al., 2013). 
It has also been extensively studied in the context of  enhancing cognitive skills such as memory 
and learning (Berryhill and Jones, 2012; Nitsche et al., 2003). This technique may become 
eventually an alternative for psychoactive drugs, as it can be more selective than drugs by 
targeting specific regions of interest in the brain with minimal adverse side effects and it does not 
affect the entire brain indiscriminately. Even without producing direct neuronal firing, TES 
application is capable to modify cortical excitability (Nitsche and Paulus, 2000; Priori et al., 
1998) as well as brain rhythms and networks (Lang et al., 2005; Priori, 2003), and this is why 
the method is also termed Transcranial Electrical Neuromodulation (TEN). Despite recent 
advances, there are ongoing debates on the clinical effectiveness of TES (Antal et al., 2015; 
Horvath et al., 2015, 2014) addressing many issues to be still resolved, in particular, substantial 
inter-subject response variability (Batsikadze et al., 2013; Wiethoff et al., 2014). The general idea 
is that optimal targeting protocols and the use of subject-specific accurate head models might 
enhance rigor and reproducibility in TES (Bikson et al., 2018). Because the goal is to stimulate 
the brain, TES is also termed Transcranial Brain Stimulation (TBS). If direct or alternating 
currents are used, TES is termed transcranial direct current stimulation (tDCS) or transcranial 
alternating current stimulation (tACS) respectively. 

In TES, electric currents are applied to two or more electrodes placed on the scalp. If the number 
of electrodes is larger than 2, it is called multi-electrode TES.  If it is even larger, being for 
instance 32, 64, 128 or 256 like typically arranged in high channel count electroencephalography 
(EEG), it is known as high-density TES. A list of electric current levels applied to the head at 
each electrode is known as a current injection pattern. A current injection pattern generates an 
electric field (or current density) map on the brain, which can be considered as the actual dose 
power in TES. Given low frequencies of the injected currents, the quasi-static approximation of 
the Maxwell equations governs the physics involved in the computation of this map, which is 
known as the TES forward problem (FP). TES FP is typically solved numerically using finite 
element method (FEM) (Datta et al., 2013), boundary element method (BEM) (Goncalves et al., 
2003) or finite difference method (FDM) (Turovets et al., 2014). 

The inverse problem (IP) goal in high-density TES is to determine how much current should be 
delivered by each electrode for optimal targeting a particular region of interest (ROI) within the 
brain, i.e., determining optimal (in some sense) current injection patterns for a given ROI. When 
solving the TES inverse problem, one should address a trade-off between maximizing the electric 
field at the ROI and minimizing it at the non-ROI and, at the same time, limit values of applied 
currents for safety. The two common limits are: total injected current, which can be thought as 
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a fixed budget, and maximum current per electrode. Depending on the optimality criteria, 
several schemes have been proposed leading to different optimal solutions.  

Least Squares (LS) and Weighted-LS (WLS) are the simplest and most typical optimization 
methods. The LS solution derives from minimizing a second-order error between the resulting 
and the desired electric field (or current density) profiles at a particular domain of interest Ω 
(typically, the ROI is included in Ω, and ROI much smaller than Ω). Usually, Ω is the gray matter 
or the entire brain, where a desired electric field is set to some desired profile (including 
directions and intensities)  at the ROI and zero at the non-ROI of Ω (Dmochowski et al., 2011; 
Guler et al., 2016), but also Ω can be the entire head (Fernández-Corazza et al., 2016). WLS is 
equivalent to LS with the addition of a weight matrix that, for instance, can control intensity-
focality trade-off (Dmochowski et al., 2011) or incorporate additional a-priori knowledge (Ruffini 
et al., 2014). If no current injection limits are imposed or they are too loose to be neglected, the 
LS or WLS solutions can be presented by a well-known closed formula (Dmochowski et al., 
2011; Fernández-Corazza et al., 2016; Salman et al., 2016). One option to account for the total 
current budget constraint without the need of numerical solvers is to apply a scaling factor to the 
closed formula (as in (Dmochowski et al., 2017; Fernández-Corazza et al., 2016)) and, as we 
show later, the solution is still optimal. Another option is to consider the total and per electrode 
current limits and solve the problem using a numerical optimization algorithm such as LASSO 
(Dmochowski et al., 2011), MATLAB convex optimization (Dmochowski et al., 2011) or 
genetic algorithms (Otal et al., 2016; Ruffini et al., 2014). The LS based optimization was also 
earlier formulated in the context of multichannel TMS (Ilmoniemi et al., 1999). 

Constrained directional maximization of the electric field (or current density) intensity at the 
target along a predefined and desired orientation is another optimization approach. In this 
approach, the functional to maximize is linear, thus it requires some limiting restrictions or 
constraints (such as total current injection budget) to get finite solutions. It can be numerically 
solved with convex optimization packages such as CVX (Grant and Boyd, 2014). Dmochowski 
et al 2011 (Dmochowski et al., 2011) solved a reduced version of this problem for the electrical  
field considering only the total current limit (Eq. 17 in (Dmochowski et al., 2011)), whereas 
Guler et al 2016 (Guler et al., 2016) and Wagner et al 2016 (Sven Wagner et al., 2016) considered 
a more  complete optimization problem including additional constraints of an upper bound for 
the electric field at the non-ROI cortex and a per-electrode current limit. 

Reciprocity-based optimization solutions are based on the reciprocity theorem (Malmivuo and 
Plonsey, 1995; Rush and Driscoll, 1969). According to this theorem, the optimal (in terms of 
maximizing directional intensity) solution to target a given ROI along a given direction, can be  
related to the EEG forward projection to the scalp of source dipoles artificially placed at the 
same ROI in the direction of interest (Cancelli et al., 2016; Dutta and Dutta, 2013; Fernández-
Corazza et al., 2016; Rush and Driscoll, 1969; Salman et al., 2016). The “EEG forward 
projection” means the electric potential on the scalp produced by the neuronal sources (typically 
modelled as electrical dipoles), which is known as the EEG forward problem. As the reciprocity-
based solutions are optimal and not iterative, they can be also considered “closed-formula” 
solutions. One reciprocity approach is to concentrate the electric current sources and sinks as 
close as possible to the “poles” of the EEG forward projection (Fernández-Corazza et al., 2016, 
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2015; Guhathakurta and Dutta, 2016). In our previous work, we mathematically demonstrated 
that this strategy maximizes the directional electric field at the ROI given a fixed current injection 
budget (Fernández-Corazza et al., 2016). Another approach is setting the current injection 
pattern proportionally to the EEG forward projection, either directly or after applying a 
Laplacian filter (Cancelli et al., 2016; Dutta and Dutta, 2013), though we found that its 
performance was not better in any of the tested metrics compared to other approaches 
(Fernandez-Corazza et al., 2017).  

In this work, we link these three apparently unrelated optimization approaches and some of their 
variants resulting in a unified approach that couples together almost all optimization approaches 
described so far (see Section 5.7 for a list of included and not included approaches in this unified 
approach). As far as we know, the links we present here have not been fully noticed previously. 
First, we analytically demonstrate that the constrained maximization of directional intensity 
approach can be expressed by a WLS closed formula when considering a strict upper bound for 
the non-ROI intensity. Consequently, we show that the unrestricted closed formula LS or WLS 
solution, scaled in the way that the total budget is exploited, is optimal in some sense and it 
doesn’t require numerical solvers. Second, we analytically demonstrate that the constrained 
maximization solution equals to a reciprocity-based solution (one source and one sink at the 
EEG poles) when the non-ROI intensity bound is too loose. This idea was already demonstrated 
in our previous work, but we now theoretically link it to the numerical solution of the more 
general optimization problem. Moreover, by imposing different current limit per electrode 
bounds, the constrained maximization numerical solutions resemble some variants of the 
reciprocity solutions of our previous work (Fernández-Corazza et al., 2016) that use more than 
one electrode as sources or sinks. This implies that the reciprocity-based solutions concentrating 
the sources and sinks in clusters as close as possible to the EEG poles are by no means ad-hoc, 
but optimal in sense of maximizing directional intensity of stimulation at ROI. Lastly, if the non-
ROI electric field bound is neither too loose nor too strict, the full constrained maximization 
problem can be solved numerically using a convex optimization package such as CVX as in 
(Guler et al., 2016). In this middle range, the solutions show a smooth transition from closed-
form WLS to closed-form reciprocity as the non-ROI electric field upper bound gets looser 
(larger). Within this middle range, we also empirically found that the LS with total current limit 
constraint numerical solution (solved using LASSO by Dmochowski et al in (Dmochowski et 
al., 2011)) is also included within the framework of the constrained maximization approach.  

We show simulation results when the brain is considered as the domain of interest Ω (typical), 
and also when using the full head domain as Ω. The latter, is a novel approach first used in our 
previous work (Fernández-Corazza et al., 2016): as current budget is limited, it makes sense to 
minimize the electric field at the rest of the whole head and not just the rest of the brain (or 
cortex) just not to “waste” the budget. 

Other less common optimization approaches have been also proposed in the literature that are 
not considered in this work. One of them is beamforming or Linearly Constrained Minimum 
Variance (LCMV) (Dmochowski et al., 2011; Fernández-Corazza et al., 2016). This approach 
implies that electric field at the ROI or target is totally collinear with desired targeting 
orientation. Similarly to LS or WLS, it has a closed formula solution when no current limits are 
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considered. Another approach is maximizing module of the electric field at ROI instead of 
directional intensity (Sadleir et al., 2012). This problem, although it has great interest for the 
application, is much more difficult to solve as it is not convex nor linear. The authors attempted 
to solve it using the interior point optimization algorithm, but they concluded that there is no 
guarantee that the solution they found is a global optimum or even unique due to the complex 
nature of this optimization problem (Sadleir et al., 2012). 

2 TES forward problem 
Due to the low frequencies involved, the TES forward problem (FP) is governed by quasi-static 
Maxwell equations, the Poisson equation for the electric potential ψ(��) in the head volume with 
Neumann boundary conditions (Frank, 1952; Jackson, 1975). It is typically solved using the 
Finite Element Method (FEM) (Kwon and Bang, 2000; Silvester and Ferrari, 1994), where the 
whole head is meshed into �� elements, usually tetrahedrons, and � nodes. The details of the 
FEM FP formulation in TES can be found elsewhere (Laakso et al., 2016; Ruffini et al., 2014; 
Vauhkonen et al., 1999; Windhoff et al., 2013). Note that the FEM FP is equivalent to the 
Electrical Impedance Tomography (EIT) FP, and thus, EIT literature also details the same FEM 
formulation (Abascal et al., 2008; Fernández-Corazza et al., 2013; Lionheart et al., 2004; Wang 
et al., 2009). 

The boundary conditions differ in approximation of pointwise or distributed electrodes. In the 
last case, they are modelled using the complete electrode model (CEM) (Hyvönen, 2004). In any 
case, FEM results in a linear problem 	
 = �, where 	 is called stiffness matrix and accounts for 
geometry, conductivity or conductivity map of each tissue, and electrode contact impedances (if 
using CEM); 
 is the unknown electric potential at each mesh node of the head and electrodes 
(if using CEM (Lionheart et al., 2004)), and f is an independent vector accounting for the electric 
sources and sinks (in TES, the applied currents or, equivalently, the current injection pattern). 
Once the system of linear equations above is solved for 
, for instance using preconditioned 
conjugate gradients (Barrett et al., 1994) or biconjugate stabilized gradient (van der Vorst, 1992), 

the electric field 
��(��) can be easily computed at each element by: 
��(��) = −∇���(ψ(��)), where ∇��� is 
the gradient operator. 

3 Unification of optimization approaches 
Table I summarizes all different optimization methods that are covered by the unified approach. 
The solutions to all these problems of Table I can be found as particular solutions of the complete 
constrained maximization approach of Guler et al 2016 (Guler et al., 2016), which we describe 
next in section 3.1. In sections 3.2 and 3.3 we link the solution of this approach to the other 
approaches, specifically to LS/WLS and reciprocity-based solutions. 
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Table I: Summary of all covered approaches in the unified framework. Thus, all approaches listed here 
can be though as particular versions of the complete approach stated in eq. (3). 

Approach Formulation1 Solution References 

LS �̂ = argmin� �(� − ��)�(� − ��)� �̂ = (���)� ��� - Dmochowski et al 2011, 
eq (6) (Dmochowski et al., 
2011) 

- Salman et al 2015, eq (8) 
(Salman et al., 2016) 

Scaled LS �̂ = argmin� �(� − ��)�(� − ��)� �̂ = !(���)� ���, 
where !  is a scaling 
constant such that ‖�̃‖ = 2&'() 

- Fernandez-Corazza et al 
2016, eq (4) and “Least 
Squares” subsection 
(Fernández-Corazza et al., 
2016) 

- Dmochowski et al 2017, 
eq (4) (Dmochowski et al., 
2017) 

WLS �̂ = argmin� �(� − ��)�*(� − ��)� �̂ = (��*�)� ��*�  

Total 

current 

constrained 

LS/WLS 

�̂ = argmin� �(� − ��)�*(� − ��)� 
+. -. ‖�̃‖ < 2&'()  

Numerical, LASSO 
algorithm 

- Dmochowski et al 2011, 
eq (10) (WLS) 
(Dmochowski et al., 2011) 

- Dmochowski et al 2017, 
eq (8) (LS) (Dmochowski 
et al., 2017) 

Fully 

constrained 

WLS 

�̂ = argmin� �(� − ��)�*(� − ��)� 
+. -. ‖�̃‖ < 2&'()  /01	�̃3�4 ≼ �̃ ≼ �̃367 

Numerical, 
MATLAB convex 
iterative algorithm 
Numerical, genetic 
algorithm 

- Dmochowski et al 2011, 
eq (11) (Dmochowski et 
al., 2011) 

- Ruffini et al 2014, eq (1) 
(Ruffini et al., 2014) 

Note: They use different 

weighting matrices 8 
Simple 

maximizing 

intensity 

�̂ = argmax� (����),	 
+. -. ‖�̃‖ < 2&'()  

Numerical, linear 
programming 

- Dmochowski et al 2011, 
eq (17)  (Dmochowski et 
al., 2011) 

- Cancelli et al 2016, 
“Model based intensity, 2 
electrodes” (Cancelli et al., 
2016) 

Complete 

maximizing 

intensity 

�̂ = argmax� (��*��),	 
+. -.			����*4:4�;:��� ≤ α 

 /01			|�̃| < 2&'() 	/01				�̃3�4 ≼ �̃ ≼ �̃367 

Numerical, CVX 
Matlab convex 
optimization 
package 

- Guler 2016, eqs (5) and (6) 
(Guler et al., 2016) 

- Wagner et al 2016, 
problem (P) (without current 
limit per electrode constraint) 
(Sven Wagner et al., 2016) 

One-to-one 

reciprocity 

Simulate a dipole at the target, 
compute the resulting electric 
potential on the scalp. 

Closed-form, pick as 
source and sink the 
electrodes with 
maximum potential 
difference (i.e., the 
EEG forward 
projection “poles”). 

- Fernandez Corazza et al 
2016, Figure 3. 
(Fernández-Corazza et al., 
2016) 

- Cancelli et al 2016, “Ad-
hoc, voltage, sink to sink, 
1x1” (Cancelli et al., 2016) 

                                                      
1 We use our own notation (the meaning of each symbol/letter can be found in section 3.1) that differs 
from the authors’ original notation. 
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- Salman et al 2016, section 
3.2 (Salman et al., 2016) 

Constrained 

reciprocity 

Simulate a dipole at the target, 
compute the resulting electric 
potential on the scalp. 

Closed-form, pick as 
sources and sinks 
the electrodes with 
maximum potential 
differences (closest 
to the EEG forward 
projection “poles”) 
according to the 
maximum current 
limit per electrode 
restriction. 

- Fernandez-Corazza 2016 
“One source - all sinks” 
and “Opposite” 
approaches. (Fernández-
Corazza et al., 2016) 

- Cancelli et al 2016, “Ad-
hoc, voltage, sink to sink, 
2x2 and 4x4” (Cancelli et 
al., 2016) 
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3.1 Complete constrained maximization of directional intensity approach 

The complete constrained maximization approach considers the maximization of the integral of 

local electric field 
��(��) (or current density) projection onto a desired orientation 1�(��) over the 
ROI subject to the following constraints: (i) an upper limit ? for the electric field energy at the 
non-ROI in the head (or brain) domain Ω, (ii) total current limit, and (iii) current limits per 
electrode. The mathematical formulation can be stated as follows (Guler et al., 2016): 

�̂ = argmax� @A 
��(��) ⋅ 1�(��)CDE 	1��F ,					+. -.																							(1) 
(i)									A H
��(��)HIIJ�CDE 1�� ≤ α	
(ii)								‖�̃‖ < 2&'()	(iii)								�̃3�4 ≼ �̃ ≼ �̃367 

Where �  is the unknown (K − 1) × 1  current injection pattern; &'()  is the maximum total 
current intensity scalar; �̃  is the expanded current injection pattern vector of size K × 1  that 
considers all electrodes; �̃3�4  and 	�̃367  are the K × 1  minimum and maximum limits per 
electrode respectively; symbol ≼ means elementwise; ‖⋅‖  is the ℓ1-norm (sum of absolute values 
of all vector components) and K is the number of electrodes. For K electrodes, there are (K − 1) 
independent current injection electrodes (pattern �), as the remaining electrode (the last element 
of expanded pattern �̃) is the sum of all other currents such that total injected current is zero, i.e. 
(Guler et al 2016 (Guler et al., 2016), page 3, right column, last paragraph; Dmochowski et al 
2011 (Dmochowski et al., 2011) restriction in Eq (10)): 

NÕ = −P &QO
QR 																	(2) 

Let’s consider K  electrodes, ��  total head mesh elements, and �S  brain (or cortex) mesh 
elements. Assume that �T is the TES 3�� × (K − 1) transfer matrix where each column “V” is the 
TES FP solution, i.e. electric field (or current density), at each element of the full-head FE mesh 
produced by a current injection pattern that consists of injecting the electric current at electrode V with last electrode K being the sink (or reference). Note that for K electrodes, there are K − 1 
independent current injection patterns. All other patterns can be generated from this basis by 
superposition. Other bases can be used such as injecting the electric current at electrode V and 
assuming all other K − 1 electrodes as sinks (as used in (Fernández-Corazza et al., 2016)). 

Similarly, we can define a trimmed-to-brain or reduced transfer matrix �W, where only the rows 
corresponding to the brain elements of the FE mesh are taken from �T. In what follows, either ��	and �T or �S	and �W can be considered as � and � when considering full-head (subscript H) 
or trimmed-to-brain (subscript B) domains respectively. 

The restricted maximum intensity optimization problem (1) can be stated as follows in terms of 
the finite element mesh (Guler et al., 2016): 
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�̂ = argmax� X��*��Y ,					+. -.																							(3) 
(i)									����*4:4�;:��� ≤ α	(ii)								|�̃| < 2&'()	(iii)								�̃3�4 ≼ �̃ ≼ �̃367 

where �  is the 3� × 1  desired electrical field shape, typically with non-zero values at the 
corresponding ROI elements (unitary oriented vectors) and zeroes at the non-ROI elements. 

Volume matrix *  is a diagonal 3� × 3�  matrix where each element of the diagonal is the 
volume of the mesh element 0, and *4:4�;:� is * but with the diagonal elements corresponding 
to the ROI set to zero. Matrices * and *4:4�;:� derive from the integration operations in Eq. (1)2. 
In the non-ROI electric field energy constraint (1.i), the integral is over the non-ROI, that’s why 
the elements of * corresponding to the ROI should be set to zero generating *4:4�;:� in (3.i). 
However, the ROI is typically much smaller than the non-ROI, thus *4:4�;:� ≈ * in sense of the 
norm of matrix difference. This approximation can also be interpreted as integrating constraint 
(1.i) in the whole domain of interest Ω (either the head or the brain), and not just at the non-ROI 
of Ω. The resulting difference when doing so is in order of the average intensity at the ROI times 
the ROI volume, over average intensity at non-ROI times non-ROI volume. 

T in Eq. (3) is the electric field transfer matrix as explained before. Alternatively, one can consider 
the matrix product [� as the current density transfer matrix �′, where conductivity matrix [ is a 3� × 3�  symmetric block diagonal matrix where each 3x3 block of the diagonal is the 
conductivity tensor of the mesh element 0 . If piecewise isotropic media is assumed, [ is a 
diagonal matrix, and moreover, if the trimmed-to-brain (or cortex) approach is used, and brain 
(or cortex) is assumed to have homogeneous and isotropic conductivity ]S, matrix [ can be 
replaced by this scalar.  

The earlier approach by Dmochowski et al 2011,  Eq. (17) in (Dmochowski et al., 2011), is 
different from Eqs. (3) above in several aspects. First, non-ROI energy constraint (3.i) was not 
considered. Second, the pointwise sum instead of the integral was used and thus, * equals to the 
identity matrix in their formulation. Lastly, electric field instead of current density (as in Guler 
et al 2016 (Guler et al., 2016)) transfer matrix was used. We show in section 3.3 that when 
omitting constraint (3.i), the numerical solution of (3) is equivalent to a closed-form reciprocity-
based solution, which was not noticed in both (Dmochowski et al., 2011) and (Guler et al., 
2016). 

3.2 Link between constrained directional intensity maximization and least 

squares approaches. 

In Appendix A we show that the two mathematical optimization problems below are equivalent 
up to a scaling constant !(?): 
                                                      
2 To be more precise, in (3), * should be replaced by *;:� with non-zero elements only for the elements in 
the ROI because integral (1) is over the ROI. But, as the elements of � corresponding to the non-ROI are 
set to zero, it is equivalent to use * or *;:� for typical �. 
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 �̂ = argmax� (��*��),  s.t. ����*�� ≤ α  (4a) 

 �̂ = argmin� �(� − ��)�*(� − ��)�    (4b) 

Constrained maximizing intensity problem (4a) is a bounded linear maximization problem and 
it is known that the solution, if not infinity or minus infinity, will lie at the boundary, i.e. at  ����*�� = α (note “=” instead of “≤” sign) (Boyd and Vandenberghe, 2004). Problem (4b) is 
typical WLS with known analytical solution 

�̂ = X��*�Y� ��*�												(5) 
As they are equivalent up to a constant !, the solution to constrained linear problem (4a) has the 
scaled closed-form WLS solution (see Appendix A): 

�̂ = X��*�Y� ��*�!,							_&-ℎ					! = a? ��*�(��*�)� ��*�b 											(6) 
It is easily observed that when non-ROI power bound ? = ��*�X��*�Y� ��*�, ! = 1 and 
problems (4a) and (4b) are fully-equivalent. 

Problem (4a) above is the constrained maximizing intensity approach (3), but considering that 
non-ROI electric field energy constraint (3.i) dominates (i.e., ? is low, and thus total injected 
current constraint (ii) can be neglected), electric current per electrode bounds (iii) are �̃367 = &def 
and �̃3�4 = −&def, i.e. it is allowed that one electrode can inject the total current (constraint (iii) 
very loose), and *4:4�;:� ≈ * holds. Thus, we demonstrated that under particular conditions, 
solution to problem (3) has the closed WLS form of Eq. (6). 

If the *4:4�;:� ≈ *  approximation is not considered, solution to problem (4a) becomes N̂ =
X��*4:4�;:��Y� ��*�!, with ! = a? ��*�(��*4:4�;:��)� ��*�b . This is not exactly a WLS 

solution because *4:4�;:� ≠ *, but extremely similar if ROI ≪ non-ROI, and still a closed-form 
solution. 

If * is the identity matrix, i.e. there is no integration in Eq. (1) and it describes a pointwise 
problem, the equivalency between problems (4a) and (4b) still holds, and solution has the 

“unweighted” LS form: �̂ = X���Y� ���!, with ! = a? ���(���)� ���b . 

Overall, if in problem (3), non-ROI energy constraint (3.i) dominates over total injected current 
bound (3.ii) (meaning that non-ROI energy restriction ? is low enough such that the solution to 
problem (3) requires injection of less current than total maximum allowed), the shape of the 
current injection pattern remains constant (LS or WLS closed formula) regardless the value of α, and α only plays the role of a scaling factor. One can say the LS or WLS is one “stationary” 
extreme solution of the constrained directional maximization problem (3) for low i. This fact 
is clearly observed in the simulation results (Figs. 1A and 2A). 
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In addition, if total current limit constraint (3.ii) is added to both problems (4.a) and (4.b) the 
equivalence still holds but for a different value of ?, which we could not determine analytically. 
Moreover, if also current limit per electrode (3.iii) is added as well, the equivalence of these 
problems still holds for a different ? value. We empirically found these alpha values (see last 
paragraph of Section 4) and depict corresponding targeting cases in supplementary Figs. S4 and 
S5. This means that the unified framework of Eq. (3) also covers the “total current constrained” 
and “fully constrained” LS/WLS solutions (rows 4 and 5 of Table I). 

3.3 Link between constrained maximizing intensity and reciprocity 

The reciprocity theorem coupling TES and EEG states that given a dipole at position  �� with 
dipolar moment j, the electric potential (Φ) difference between any points / and l on the scalp 
can be computed as the dot product: 

 Φ(/) − Φ(l) = j ⋅ ∇���ψem(��)n(o , (7) 

where ψem(��) is the resulting potential at location �� when an electric current n(o is injected at 
the arbitrary points / and l (Malmivuo and Plonsey, 1995; Rush and Driscoll, 1969). In our 
previous work we demonstrated that if the poles of the EEG forward projection are used for 
stimulation, the dot product of the electric field and the desired orientation is maximized 
(Fernández-Corazza et al., 2016). Mathematically,  

p, q = argmax(,o �Φ(/) − Φ(l)� = argmax(,o r∇���ψ(o(��)n(o ⋅ js ⇔ ∇���ψuS(��) ⋅ j	is	maximal.	 (8) 

 

In this work, we go a step further and explicitly link the same reciprocity-based approaches of 
our previous work with the complete optimization problem (3). For this link to be valid, we 
assume that ? is large enough such that total current limit constraint (3.ii) dominates over non-
ROI energy limit (3.i) (meaning that non-ROI energy restriction ? is larger than the maximum 
possible non-ROI energy, which is achieved in the reciprocity one source-one sink 
configuration). Note that this assumption results in a similar problem to the simpler maximizing 
intensity approach of Dmochowski et al 2011 (Eq. (17) in (Dmochowski et al., 2011)) formulated 
for a pointwise ROI where constraint (3.i) is not considered. Also note that this case is opposite 
to the extreme case considered in the previous section 3.2, where non-ROI energy limit (3.i) 
dominates over total current limit constraint (3.ii). 

We already mentioned that because � has zeroes in the corresponding non-ROI elements, and 

assuming the ROI belongs to the brain, the following expression holds: ��*�T = �W�*W�W, where 
the sub-index B means the trimmed-to-brain version of the corresponding matrix or vector (recall 
that * and *W are the finite element volume diagonal matrices). Setting dipole components to 
unitless and unit norm magnitude in Eq. (7), by the reciprocity theorem, one can see that the 

ratio of gradient 
∇���xyzE{|  [~/(p.�)]  does not depend on injection current being totally defined by 

geometry an conductivity (as ∇���ψem is proportional to n(o). One can more generally  obtain  from 
Eq. (7) that elements of TES transfer matrix �W  and EEG Lead Field matrix are related by 
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transposition:    �W = ��� (both in [~/(p.�)]), where �� is the EEG lead field matrix built as 
follows: each column of the LF matrix corresponds to the electric potential at K − 1 electrodes 
(assuming electrode K as the reference) due to a unit dipole at a canonical orientation located at 
each cortical (or brain) element. Thus, LF matrix has size K − 1 × 3�. The fact that �W = ��� 
derives from the reciprocity principle in Eq. (7) is well known and demonstrated in the literature 
(Hallez et al., 2005; Malony et al., 2011; S. Wagner et al., 2016; Weinstein et al., 2000; Wolters 
et al., 2004), see also more recent discussions in (Dmochowski et al., 2017; Salman et al., 2016). 
Then, 

 �̂ = argmax� (��*��) = argmax� (�W�*W����) (9) 

 

By typical definition of the LF matrix, Φ = ���W , where Φ is the synthetic potential at the 
electrodes generated by oriented dipoles �W located at the ROI3. Note that the same target vector �W is considered as EEG sources. We can define a more general potential as Φ = ��	*��W, where 
the effect of *W is just weighting the strength of each dipole that model a volumetric source at the 
ROI according to the volume of the containing element. Then, expression (9) becomes 

�̂ = argmax� (��*��) = argmax� (�W�*W����) = argmax� (Φ��)										(10) 
Now, problem (3) is reduced to the constrained linear optimization problem 

�̂ = argmax� XΦ��Y 	+. -.															(11) 
|�̃| < 2&'() 

Note that Φ�� = ∑ �Q&QO� QR , where �Q is the EEG potential at the V�� electrode. Again, since the 
functional to maximize is linear, the solution to (11) will lie at the boundary, i.e., when |�̃| =2&'(). As this problem has a ℓ1-norm constraint, typical approach until now was using numerical 
solvers. However, we next show that solution to problem (11) can be found straightforward 
without the need of numerical solvers: 

- Suppose the EEG electric potential Φ generated by artificially placing oriented dipoles 
at the target has positive and negative values with respect to reference electrode K. Then, 
the sum Φ��  is maximized by the vector �̂  that has all zeros except for &'()  at the 
position where Φ is maximum (�'()) and −&'() at the position where Φ is minimum 
(�'��), then Φ� �̂ = �'()&'() + (−&'())�'��, where �'�� is negative. This means that 
optimal solution is injecting the electric current at the electrodes with maximum and 
minimum potential (the current at electrode K is zero due to Eq. (2)), i.e. injection at the 
EEG “poles” in a one source - one sink pattern. 

- Suppose Φ has all positive values with respect to reference K, then Φ�� is maximized by 
the vector �̂ that has all zeros except for &'()  at the position where Φ is maximum. 

                                                      
3 In order to be consistent with units, �W has dipole moment units [p.�]. 
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Because of Eq. (2), i.e. the total sum of injected current is zero, the sink is the K electrode 
and its strength is −&'(). 

- Suppose Φ has all negative values, then Φ�� is maximized by the vector �̂ that has all 
zeros except for −&'() at the position where Φ is minimum (most negative). Because of 
Eq. (2), the source is the K electrode and its strength is &'(). 

In all three cases the optimal solution is picking as source and sink the two electrodes with 
maximum potential difference, i.e., the EEG poles, as described in the one-one approach of 
Fernandez-Corazza et al 2016 (Fernández-Corazza et al., 2016). Thus, the closed form 
reciprocity-based one source - one sink solution to problem (11) is: 

�̃� = &'()�Q�{� − &'()�Q��� 													(12) 
Where �Q is a zero K × 1 vector with a “1” at element “V” 4, V'() is the electrode with maximum Φ and V'�� is the electrode with minimum Φ.  

3.3.1 Considering maximum current per electrode limit 

If we include maximum current per electrode limit constraint (3.iii), closed-form solutions like 
(12) can be derived using the same reasoning as described above. For instance, suppose that we 
set �̃367 = &'()/2 and �̃3�4 = −&'()/20. This means that the solution will have at least two 
sources and twenty sinks. To maximize Φ��, the two electrodes with maximum Φ with respect 
to reference electrode K should be selected as sources and the 20 electrodes with minimum Φ 
with respect to K should be selected as sinks. Similarly, it is possible to obtain the “opposite”, 
“one source-all sinks”, and “10 sources-30 sinks” of Fernandez-Corazza et al 2016 (Fernández-
Corazza et al., 2016) by solving problem (3) with corresponding maximum current per electrode 
constraints imposed by (3.iii)5. Thus, these patterns belong to the optimal solution family of the 
general optimization problem (3) and they are not ad-hoc solutions. In the supplementary figure 
S3, we depict this equivalence with two examples comparing the numerical solutions to (3) 
considering constraint (3.iii) with the corresponding closed-form reciprocity-based solutions. 

4 Simulations 
In this section we illustrate our analytical  findings with simulations on a simple head model 
based on the ICBM-152 symmetric atlas (Mazziotta et al., 2001). 

4.1 Simulation framework 

We used a head model with four tissues: brain, CSF, skull and scalp based on the ICBM-152 
atlas, which is an average of 152 individual heads (Mazziotta et al., 2001). Base-line triangular 
surfaces were obtained from SPM8 MATLAB package (Friston, 2007) and further refinement, 
smoothing and tetrahedral meshing was performed using Iso2mesh MATLAB package (Fang 

                                                      
4 These vectors correspond to the natural basis and are typically notated as �Q, for instance in 3D space � = �f = [1,0,0]�, but as	� is already used for the desired electric field, we used a different notation �Q . 
5 To exactly reproduce solutions from Fernandez-Corazza et al 2016 (Fernández-Corazza et al., 2016), Γ 
in (10) should be set as the identity matrix as in our previous work we didn’t consider integration in the 
objective function. 
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and Boas, 2009). The final tetrahedral mesh has ∼1 million elements and ∼150k nodes. We 
assumed homogeneous and isotropic conductivities for each tissue assigning literature values: 
0.3, 0.006, 1.79, and 0.33 S/m for the scalp, skull, CSF, and brain respectively (Baumann et al., 
1997; Fernandez-Corazza et al., 2018; Gabriel et al., 1996). The model is completed with 64 
pointwise electrodes placed following a subset of standard 10-10 EEG electrode coordinates. 
Note that we use this simple model to illustrate the theoretical links between different algorithms, 
and not to evaluate the performance of them. All algorithms can be applied to more complex 
models with different conductivity values and number of electrodes, as theoretical findings 
described in previous sections are model-independent. 

We selected a part of the M1 cortical region of ∼1.4 cm3 as the ROI or target. For each 
tetrahedral element of the ROI, its centroid was projected to the closest triangular element of the 
external brain surface and the normal to the cortex vectors of these surface triangles were 
computed. Desired orientation vector was defined as a weighted by element volume average of 
these ROI normal vectors. Then, this unique orientation was replicated in each ROI element to 
form target vector e. Note that any other orientation, even arbitrary, can be used instead. Full 
head transfer matrix �T was obtained as described in Section 2, and �W was built by trimming 
non-brain rows from �T. 

4.2 Simulations 

First, we solved the electric field maximization problem (3) numerically using the CVX package 
(Grant and Boyd, 2014) for a wide range of ?, considering total current limit constraint (3.ii) as &'() = 1�p, and current limit per electrode constraint (3.iii) as ıd̃ef = &'() and ıd̃�� = −&'() 
(meaning that each electrode can span between −&'() and &'()). For each optimal solution of 
the spanned ? range, we computed the integral of the electric field over the distributed ROI (i.e., 
the maximized functional ��*�� of problem (3)) and the used budget, i.e., the |�̃| . In Figs. 1 and 
2, we plot these two values, each of them normalized to the absolute maximum they can get, as a 
function of ?, for both the trimmed-to-brain (Fig 1) and full-head (Fig 2) transfer matrices 6. 

                                                      
6 Note that we know in advance that reciprocity one source - one sink produces the maximum possible 
current intensity at the ROI. Thus, we precomputed this value and used it to normalize Figs. 1, 2, S1 
and S2. 
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Figure 1: Solutions to the general problem (3) using the trimmed-to-brain electric field transfer matrix. (A) Numerical solutions using 
the CVX package: percentage of the electric field at the target with respect to the maximum possible (pale blue) and percentage of 
the total injected current with respect to its maximum budget (red), as a function of the non-ROI power upper bound (?). Each curve 
has 1000 points equally spaced in logarithmic scale. (B) WLS closed-form solution from Eq. (5) scaled such that the total current 
injection budget is used. (C) Reciprocity one source - one sink closed-form solution from Eq. (12). (D) Some examples of the 
numerical solutions. From left to right, starting from low values of ?, all solutions resemble a WLS closed-form solution (B), except 
for a scaling constant factor (left side, pale pink zone). When reaching point “a” in plot (A) used budget reaches its upper bound, 
and the corresponding numerical solution - second column of (D) - is equal to the scaled WLS closed-form solution (B). Between 
points “a” and “b”, where total allowed budget is exploited, there is a smooth transition between WLS closed-form solution to 
reciprocity closed-form solution. After point “b” in plot (A), the corresponding numerical solutions depicted in (D) - last two columns 
- do not change any more and remain equivalent to the closed-form reciprocity one source - one sink solution (C). In subplots (B-
D), first row shows the injected current per electrode plot, i.e., the optimal current injection pattern �̂; second row depicts the electric 
potential at the scalp as seen from above to spatially visualize the current injection pattern; and third row depicts module of the 
current density at the brain (i.e., the dose) where the target or ROI is circled in black. In subplot (D), fourth row depicts the absolute 
value of the normal component of the electric field. Color scale limits are different, increasing from left to right. As this is the trimmed 
case, similar solutions are obtained if using the current density instead of electric field transfer matrix (see supplementary Fig. S1). 
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Figure 2: Idem to Fig 1 but using the full-head electric field transfer matrix instead of the trimmed-to-brain transfer matrix. Note that 
the gap between critical points “a” and “b” is narrower than in Fig. 1, at least in the logarithmic x-axis scaling plot. In this full-head 
case, different solutions are obtained if using the current density instead of electric field transfer matrix (see supplementary Fig. S2). 

In both figures, three different zones can be distinguished, which are separated by colors: the left 
one (pale pink), where the used budget is less than 100% of the allowed budget, non-ROI energy 
constraint (3.i) dominates, and total current limit constraint (3.ii) has no influence on the 
solution; the right zone (pale blue), where the optimal solution remains the same regardless the 
value of ?, both the used budget and the maximum current density at ROI saturate, total current 
limit constraint (3.ii) dominates, and non-ROI energy constraint (3.i) has no influence; and the 
middle zone (white background), where the current budget saturates but more intense electric 
field is delivered to the ROI at the expenses of the larger electric field energy allowed at the non-
ROI (by increasing ?). In Figs. 1 and 2, subplots B and C depict the closed form WLS and 
reciprocity solutions respectively, while subplot D depicts the numerical solution examples for 
arbitrary selected representative values of ?.  
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It is clearly seen that the extremes of the numerical solutions (subplot D) correspond either to a 
scaled version of the WLS closed-form solution (subplot B) on the left side (as expected due to 
equivalence between problems (4.a) and (4.b)), or to the reciprocity one source-one sink pattern 
(subfigure C) on the right side (as expected because Eq. (12) is the solution to problem (9)). In 
the middle zone, the numerical solution represents a smooth transition from the WLS to 
reciprocity solution. In the case of using the trimmed-to-brain transfer matrix (Fig. 1), it can be 
observed that for a particular ? value, the solution is equivalent to the solution to WLS with ℓ1 
constraint (row 4 of Table I) solved using LASSO in Dmochowski et al 2011 (Dmochowski et 
al., 2011). That the solution is exactly the same is further confirmed in supplementary figure S4. 
Moreover, many solutions of this middle zone resemble the “ring” patterns of Dmochowski et 
al 2011 (Dmochowski et al., 2011) and Fernandez-Corazza et al 2016 (Fernández-Corazza et 
al., 2016). Thus, we empirically found that a series of transitional “ring” solutions (with 
sequentially increased radius) between LS and the reciprocity one source -one sink patterns are 
“quasi-optimal” and can be also included as partial solutions of the general optimization 
problem (3), belonging  to the range of the bounding parameter “alpha” in between the WLS 
and reciprocity-based solutions. A movie showing this transition in great detail can be found as 
supplementary material. 

Comparing critical point “a” in Fig.1A and Fig. 2A, it is observed that when using the trimmed-
to-brain transfer matrix, the WLS solution at point “a” has 10% of the maximum possible 
intensity at the ROI, the rest of injected currents is shortcut in non-brain tissues,  whereas when 
using the full-head transfer matrix, this intensity (the ROI dose) increases up to 70% of the 
maximum possible current intensity at the ROI. Also, when using the full-brain transfer matrix 
(Fig. 2), the middle zone is narrower (at least in the plotted logarithmic scale). Comparing the 
shapes of the WLS solutions in Figs. 1B and 2B one can see that using the full-head matrix 
produces a more concentrated solution, as we explicitly include into the optimization problem 
a demand to avoid “wasting” electric field energy in the rest of the head.  

Solving the optimization problem for the current density instead of the electric field, when using 
the trimmed-to-brain transfer matrix, gives the same results except for a multiplying constant 
(compare Fig. 1 with supplementary Fig. S1). This is because we are assuming the conductivity 
values in the domain of the integrals of Eq. (1) are the same: the isotropic and homogeneous 
conductivity assigned to the brain. When using the full-head transfer matrix, solving the 
optimization problem for the current density instead of the electric field gives different results 
because the conductivities differ from tissue to tissue (see supplementary Fig. S2 and related 
discussion in section 5.5). 

As examples, we obtained the numerical solutions of the complete problem (3) in the right pale 
blue zone (the large ? values for non-ROI energy bound (3.i)), but setting different current limits 
per electrode (constraint (3.iii)): as ıd̃ef = &'()  and ıd̃�� = −&'()/(K − 1) , and as ıd̃ef =&'()/2 and ıd̃�� = −&'()/20. In supplementary Fig. S3 we show that numerical solutions for 
these two cases are equivalent to the “1 source - (K − 1) sinks” and “2 sources - 20 sinks” closed-
form reciprocity-based solutions. Also note that in Figs. 1C, 1D, 2C and 2D, the numerical 
solutions are equivalent to closed-form one source - one sink reciprocity solution (when ıd̃ef =&'() and ıd̃�� = −&'()). Thus, we verify that the reciprocity-based patterns involving more than 
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one source or sink, suggested intuitively in (Fernández-Corazza et al., 2016), are optimal 
solutions to the general problem (3) and not ad-hoc. 

We also compared the numerical solutions to linear problem (4a) and WLS problem (4b), but 
explicitly adding the total current limit constraint (3.ii), i.e.: 

�̂ = argmax� (��*��), s.t. ����*�� = ?′ and |�̃| < 2&'()    (13a) 

�̂ = argmin� �(� − ��)�*(� − ��)� subject to |�̃| < 2&'()    (13b) 

Problem (13b) is a WLS problem with an ℓ1-norm constraint as in Dmochowski et al 2011 
(Dmochowski et al., 2011) solved by them using the LASSO solver (Tibshirani, 2011), but here 
we used CVX for both problems (13a) and (13b). We found that solutions to problems (13a) and 
(13b) are equivalent for a particular ?′ that we empirically found. Note that in the equivalence 
of problems 4a and 4b, a formula for ? was found analytically. This comparison is depicted in 
figure S4.  Moreover, we have further complicated problems (13a) and (13b) by adding a 
constraint for current per electrode resulting in the following two problems, and also compared 
the numerical solutions of them: 

�̂ = argmax� (��*��), s.t. ����*�� = ?′′ and |�̃| < 2&'() and �̃3�4 ≼ �̃ ≼ �̃367 (14a) 

�̂ = argmin� �(� − ��)�*(� − ��)� subject to |�̃| < 2&'() and �̃3�4 ≼ �̃ ≼ �̃367 (14b) 

for an example setting ıd̃ef = &'()/2 and ıd̃�� = −&'()/20. We again found that both solutions 
are equivalent for a particular ?�� found empirically. This comparison is shown in supplementary 
figure S5. 

4.3 Data and code availability statement 

No data was used for the research described in the article. The code supporting the findings of 
this study are available from the corresponding author upon request. 

5 Discussion 

5.1 Links between existing optimization algorithms 

We theoretically demonstrated that apparently unrelated LS, WLS, and reciprocity-based 
solutions all belong to the same family of the general constrained maximizing intensity problem 
solutions of Eq. (3), constituting a unified approach. This fact was not fully noticed before, and 
it is the major emphasis of this work. We also found that constrained LS and WLS are also 
covered by the unified approach and even expanding “ring” configurations are also part of the 
same family, although these findings were empirical. The transition between WLS or LS to 
reciprocity-based solutions occurs when increasing (relaxing) the non-ROI energy limit 
(parameter ?). LS solutions are recovered at one extreme case (low ?) and they are more focal 
and less intense, whereas reciprocity-based solutions belong to the opposite extreme case (large 
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?) being less focal and more intense. Ring-shaped patterns occur naturally in the transition zone. 
Overall, a sliding bar for selecting non-ROI energy upper bound ? can be included in medical 
equipment to span the whole range of optimal solutions. 

An important demonstration of this work is that the LS or WLS closed-form solution, scaled 
such that the total current budget is exploited (“scaled LS” in Table I), is also an optimal solution 
to the general optimization problem (3). This solution equals the numerical solution at critical 
inflection point marked as “a” in Figs. 1.A, 2.A, S1.A, and S2.A. For lower non-ROI current 
bounds (?), all numerical solutions are identically shaped as the LS or WLS solution but without 
exploiting the full current injection budget. For larger ?, the total current limit bound starts 
shaping the solution producing a smooth transition towards reciprocity solutions. 

According to the patterns seen in Figs 3 and 4 of Guler et al 2016 (Guler et al., 2016), numerical 
solutions resemble the reciprocity “opposite” solutions involving 6-7 electrodes as sources and 
same number as sinks. Effectively, they adopted a non-ROI energy bound of 10��, which lies in 
the larger range according to their Fig. 6. The top part of this figure (large ?) is equivalent to our 
right “pale blue” area of Figs 1.A, 2.A, S1.A, S2.A, where numerical solutions are equal to 
reciprocity-based solutions, and bottom part (low ? ) is equivalent to our “left” area where 
numerical solutions are proportional to closed-form WLS solutions. In Fig. 7 of (Guler et al., 
2016), a different (lower) non-ROI energy bound value is used to get similar solutions to the 
constrained LS solutions by Dmochowski et al 2011 (Dmochowski et al., 2011) and Ruffini et 
al 2014 (Ruffini et al., 2014). 

Quantitative analysis of these algorithms in terms of focality, intensity and other performance 
metrics for clinical applications is out of the scope of this work, as this was done at length 
elsewhere (Cancelli et al., 2016; Datta et al., 2013, 2009, Dmochowski et al., 2013, 2011, 
Fernández-Corazza et al., 2016, 2015; Ruffini et al., 2014; Sven Wagner et al., 2016). The aim 
of this work is to show the links between many existing methods proposed independently. 

Although the analysis done in this work is based in the TES context, the same results can be 
applied to other techniques. For instance, multi-electrode intracranial electrical stimulation or 
deep brain stimulation can also benefit from this work (Fernández-Corazza et al., 2017; Guler 
et al., 2017). The reciprocity principle also holds for the magnetic field and a similar to this 
TES/EEG duality can be found for TMS/MEG, although a dual TMS/MEG equipment is 
technically much more complex to build. 

5.2 WLS vs LS 

In Section 3.2, we showed that the integrals in problem (1) derive in a version of WLS where the 
weights are the volume of each element. However, in most TES optimization approaches using 
FEM meshes this weighting by element volume was not considered (e.g. (Cancelli et al., 2016; 
Dmochowski et al., 2011; Fernández-Corazza et al., 2016; Ruffini et al., 2014)) - including our 
previous work - deriving in unweighted LS. In FEM, the element volumes might vary 
significantly from each other, thus we believe that the WLS version with the weighting matrix 
containing the element volumes is more appropriate than the unweighted LS. Of course, 
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additional weighting matrices can also be considered in addition to the volume weighting matrix Γ.  

5.3 Reciprocity-based algorithms 

We found that for a large non-ROI energy bound ? (loose constraint), and when not considering 
a current limit per electrode (restriction (3.iii)), solution to problem (3) is equivalent to the 
reciprocity “one source-one sink” solution. In this solution, the source and sink electrodes are 
selected directly as the nearest electrodes to the positive and negative forward projection EEG 
“poles” respectively. Moreover, we found that by setting different current limits per electrode in 
restriction (3.iii), numerical solutions to problem (3) agreed exactly to other rather intuitive 
variations of the “opposite” reciprocity solutions described in our previous work (Fernández-
Corazza et al., 2016), as shown in supplementary Fig. S3. In such cases, multiple current sources 
and sinks are selected as close as possible to the EEG forward projection “poles”, with the aim 
of spreading out the typically undesired electric field concentration due to the sinks.7  

5.4 Full-head or trimmed-to-brain optimization 

Typically, trimmed-to-brain (or cortex) transfer matrix was used in the literature (Dmochowski 
et al., 2011; Guler et al., 2016; Hallez et al., 2005; Malony et al., 2011). In this context, the 

reciprocal equivalence �W� = ��  was exploited to compute both LF matrix for EEG source 
localization and the electric field transfer matrix for TES. This equivalence is obviously also 
valid for the full-head domain (regardless the conductivity of each tissue), when artificial dipoles 
are seeded everywhere and not only in the brain to form full LF matrix. We showed that a use 
of the full-head transfer matrix in TES optimization is beneficial in terms of reducing the ratio 
of the electric field at the target to the power in the rest of the whole head volume (Fig. 2). When 
using this approach, the resulting WLS solution is sparser and very similar to the one source - 
all sinks reciprocity-based solution (see Fig. 2B and Figs 6 and 7 of (Fernández-Corazza et al., 
2016)). The use of the trimmed-to-brain transfer matrix can be interpreted as assigning relaxed 
constraints at the tissues other than the brain. This fact leads to less sparse solutions allowing 
multiple pairs of nearby sources and sinks shunting each other and located for example on the 
face and the neck areas far away from the brain, as it is seen in supplementary Fig. S6 when 
using more electrodes in a more detailed head model (as the one used in our previous work 
(Fernández-Corazza et al., 2016)). Most of these remote source-sink pairs are likely not 
contributing into stimulation of the target (see supplementary Fig. S6 and Fig 7 in Guler et al 
2016) and, in practice, might lead to the waist of the injection current budget.  

                                                      
7 For reproducibility, we detail here a minor difference in the target orientation selection between this 
work and our previous work (Fernández-Corazza et al., 2016). In our previous work, the target orientation 
was selected as an average of the normal to cortex orientation of each element of the ROI. A better 
approach to define this orientation is using a weighted average with volume matrix Γ as we did in this 
work, instead of a simple average as we used in our previous work. In general, the desired orientation 
selection can be arbitrarily defined, including normal or tangential to brain surface. 
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5.5 Electric field vs current density 

The general problem (3) can be solved either using electric field or current in transfer matrices 
density for dose optimization. What exact physical mechanism causes the wanted and unwanted 
physiological effects in TES is still in debate to our knowledge.  

In most cases there are no significant differences between optimizing electric field or current 
density, as these physical variables typically (considering isotropy) differ by a scaling constant 
conductivity factor of approximately a fraction of Siemens per meter (NB: the brain conductivity 
is in the order of 0.2- 0.3 S/m). However, we empirically found that the resulting WLS patterns 
when using full-head current density transfer matrix are counter-intuitive (see supplementary 
Fig. S2 left “pale pink” zone examples). This is due to the very low skull conductivity with 
respect to the other conductivity values of the head. This low value is equivalent to trimming the 
skull rows from the whole-head transfer matrix (in a simulation experiment not showed here, 
we empirically forced this situation and results were equivalent to Fig S2 WLS solutions) and 
thus, it implies a relaxed constraint at the middle skull region. Thus, our recommendation is to 
optimize electric field when using full head transfer matrix. 

5.6 Open debates in TES 

As we already pointed out, quantitative analysis of each algorithm performance is out of the 
scope of this work. Each algorithm is optimal in a different sense, for instance, the LS 
optimization belongs to one end of the optimal solution family, being more focal and less intense 
and reciprocity-based solutions lie at the other end, being more intense and less focal. We believe 
that the question of whether focality, total or directional intensity at the ROI should be 
prioritized for each application is still open. However, considering that the major critique of TES 
is the low intensity reaching the brain to produce meaningful effects (Horvath et al., 2015), we 
believe that maximizing the intensity at the target is priority at current stage of TES development. 
Maximum possible intensity is achieved with reciprocity-based solutions. Note that electric field 
at point “a” (WLS solution) in Fig. 1 is 10% of the possible maximum intensity at the ROI. To 
reduce side effects when optimizing for maximum intensity, i.e. undesired intensity at the non-
ROI, a possible strategy is to spread the sinks in more electrodes than the sources by setting a 
lower |�̃3�4| than |�̃367| limit on (3), as in the examples of supplementary Fig. S3 and S5. Once 
the effects of TES are clearly observed and repeatable, we believe that increasing focality should 
be the next step in TES optimization evolution. 

A question of what orientation is better to target in TES, i.e. which one is more physiologically 
influential, is still in debate and would depend on the specific application. If pyramidal neurons 
are the target, perpendicular to cortex stimulation should be preferred, whereas if interneurons 
synapses are aimed, tangential to cortex stimulation should be more appropriate. The desired 
orientation can be arbitrarily defined, and all algorithms covered by our unified approach will 
optimize according to that predefined orientation. In this work, we used normal to cortex 
orientation to illustrate our results because it is the most commonly used orientation. 

Note that while most algorithms optimize directional intensity, in all previous works, the module 
of the electric field or the current density is depicted. We find this somehow contradictory. That’s 
why, besides depicting the module, we also depict the normal to cortex component in Figs. 1, 2, 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2019. ; https://doi.org/10.1101/557090doi: bioRxiv preprint 

https://doi.org/10.1101/557090
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

S1, S2, S3, S4, and S5. Note that directional optimization methods studied in this work result in 
much better focality when only considering normal to cortex component instead of module, as 
some undesired non-ROI “hot-spots” seen when depicting the module are being targeted 
tangentially to the orientation assumed as physiologically influential. 

6 Appendix A 
Proof that the problem 

�̂ = argmax� (��*��) 			+. -			(p. 1) 
����*4:4�;:��� ≤ α, 

has the solution: 

�̂ = (��*4:4�;:��)� ��*�	!(?), !(?) = a? ��*�(��*4:4�;:��)� ��*�b 	.				(p. 2) 
The Lagrangian of the problem is: 

ℒ = ��*�� + λXα − ����*4:4�;:���Y					(p. 3) 
Taking the vector derivative of ℒ by � and equaling to zero: 

�ℒ�� = ��*� − 2λ����*4:4�;:�� = 0	,			(A. 4) 
we get: 

�� = ��*�X��*4:4�;:��Y� 2λ 									(p. 5) 
Then, replacing the expression (A.5) into ����*4:4�;:��� = α, we get (4; = 4:4 − ;:�): 

��*�X��*4;�Y� 2λ 	��*4;�	 X��*4;�Y� �*�2λ = ��*�X��*4;�Y� �*�4λI = ?.				(p. 6) 
Lastly, one can express: 

  = 12¡�
�*�(��*4;�)� �*�? 						(p. 7) 

Replacing   in (A.5) with (A.7), one can get the solution (A.2). 

Same procedure holds if *4:4�;:� = * as in problems (4.a) and (4.b), resulting in the WLS closed-
form solution, which proves equivalence between problems (4.a) and (4.b). As we mention in 
last paragraphs of Section 4 of this work, this equivalence still holds if we incorporate maximum 
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current limit restriction (3ii) and even more, if we also incorporate current limit per electrode 
restriction (3.ii) (see examples of Figs. S4 and S5). The difference is that the ?′ and ?′′ exact 
values that make the two problems identical are more difficult to find. 
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10 Supplementary material 
 

 

Figure S1: Same as Fig 1 but optimizing the current density instead of the electric field. Note that as here trimmed-to-brain transfer 
matrix is used, this figure is equivalent to Fig. 1 except for scaling factors. 
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Figure S2: Same as Fig 2 but optimizing the current density instead of the electric field. Note that as here full-head transfer matrix is 
used, there are different solutions in the WLS pale pink zone compared to Fig 2. 
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Figure S3:Equivalence between numerical with large ? (first and third column) and reciprocity-based closed-form (second and fourth 
column) solutions when considering limit current per electrode constraint (3.iii) as ı̃def = &'()  and ı̃d�� = −&'()/(K − 1) (first and 
second columns); and ı̃def = &'()/2 and ı̃d�� = −&'()/20 (third and fourth columns). First row shows the injected current per 
electrode [A], i.e., the optimal current injection pattern ı̂; second row depicts the electric potential [V] at the scalp as seeing form 
above to spatially visualize the current injection pattern; third row depicts the electric field [V/m] at the brain (i.e., the dose) where 
the target or ROI is circled in black; and fourth row depicts the absolute value of the normal component of the electric field [V/m]. 

 

 

Figure S4: Problems (13.a) and (13.b) are equivalent for a particular ?′ value. In this example, ?′ ≅ 2.69 × 10�¥ results in the two 
problems to be equivalent. The first row depicts ℓ1-constrained maximizing intensity solution to problem (13a) using CVX. Second 
row depicts ℓ1-constrained WLS numerical optimization solution to problem (13b) also using CVX. First column shows the injected 
current per electrode [A], i.e., the optimal current injection pattern ı̂; second column depicts the electric potential [V] at the scalp as 
seeing form above to spatially visualize the current injection pattern; third column depicts the electric field [V/m] at the brain (i.e., 
the dose) where the target or ROI is circled in black; and fourth column depicts the absolute value of the normal component of the 
electric field [V/m]. 
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Figure S5: Problems (14.a) and (14.b) are equivalent for a particular ?′′ value. In this example we set ı̃def = &'()/2 and ı̃d�� =−&'()/20, i.e. at least two sources and at least 20 sinks, and the resulting	?′′ value that makes the two problems equivalent was 
found to be ?′′ ≅ 1.82 × 10�¥ . The first row depicts total current (ℓ1 restriction) and current per electrode constrained maximizing 
intensity solution to problem (14a) using CVX. Second row depicts total current (ℓ1 restriction) and current per electrode constrained 
WLS numerical optimization solution to problem (14b) also using CVX. First column shows the injected current per electrode [A], 
i.e., the optimal current injection pattern ı̂; second column depicts the electric potential [V] at the scalp as seeing form above to 
spatially visualize the current injection pattern; third column depicts the electric field [V/m] at the brain (i.e., the dose) where the 
target or ROI is circled in black; and fourth column depicts the absolute value of the normal component of the electric field [V/m]. 

 

 

Figure S6: Example of redundant current injection pairs. Same LS closed-form solution for the full-head (left) and trimmed-to-gray 
matter (right) transfer matrices in a detailed head model (Fernández-Corazza et al., 2016). Example “spurious” current injection 
pairs appearing in the “trimmed” LS solution are circled in black. As in other figures, the depicted intensity is electric field [V/m] 
module on the scalp. 
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Supplementary material: Movie in file named “TES_Unification.avi”. 
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