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Abstract 

Previous lesion behavior studies primarily used univariate lesion behavior mapping techniques to 

map the anatomical basis of spatial neglect after right brain damage. These studies led to 

inconsistent results and lively controversies. Given these inconsistencies, the idea of a wide-

spread network that might underlie spatial orientation and neglect has been pushed forward. In 

such case, univariate lesion behavior mapping methods might have been inherently limited in 

uncover the presumed network in a single study due to limited statistical power. By using 

multivariate lesion-mapping based on support vector regression, we aimed to validate the 

network hypothesis directly in a large sample of 203 newly recruited right brain damaged 

patients. In a single analysis, this method identified a network of parietal, temporal, frontal, and 

subcortical regions, which also included white matter tracts connecting these regions. The results 

were compared to univariate analyses of the same patient sample using different combinations of 

lesion volume correction and statistical thresholding. The comparison revealed clear benefits of 

multivariate lesion behavior mapping in identifying brain networks. 
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1. Introduction 

Spatial attention and orientation is a cognitive function dominantly represented in the human 

right hemisphere (Corbetta et al., 2008, 2005). In correspondence, spatial neglect is one of the 

most common syndromes after brain injury of predominantly this hemisphere (Stone et al., 1993; 

Becker and Karnath, 2007; Ten Brink et al., 2017). Patients spontaneously and sustainably 

deviate towards the ipsilesional side, neglecting contralesionally located information or stimuli 

(Heilman et al., 1983; Karnath and Rorden, 2012). The anatomical basis of this core deficit of 

spatial neglect has been extensively investigated during the last decade by using mass-univariate 

lesion-behavior mapping methods (VLBM), such as VLSM (Bates et al., 2003) or NPM (Rorden 

et al., 2007). Heterogeneous findings were observed, causing lively controversies (for review 

Karnath and Rorden, 2012). In the right hemisphere, spatial neglect has been reported to be 

associated with parietal lesions to the inferior parietal lobule and temporo-parietal junction 

(Chechlacz et al., 2010; Karnath et al., 2011; Rousseaux et al., 2015), the superior and middle 

temporal cortex as well as the insula (Karnath et al., 2004, 2011; Committeri et al., 2007; Sarri et 

al., 2009; Chechlacz et al., 2010; Saj et al., 2012; Rousseaux et al., 2015) and the ventrolateral 

prefrontal cortex (Committeri et al., 2007; Thiebaut De Schotten et al., 2014). These cortical 

areas were also found to be involved in the human left hemisphere when patients show spatial 

neglect after a left hemisphere stroke (Suchan and Karnath, 2011). Furthermore, disrupted 

structural connectivity has been related to spatial neglect, including damage of the superior 

longitudinal fasciculus and arcuate fasciculus, the inferior occipito-frontal fasciculus, extreme 

capsule and the superior occipito-frontal fasciculus, as well as the middle longitudinal fasciculus 

(Thiebaut De Schotten et al., 2005; He et al., 2007; Urbanski et al., 2008, 2011; Karnath et al., 

2009; Shinoura et al., 2009; Ciaraffa et al., 2013; Thiebaut De Schotten et al., 2014; Umarova et 

al., 2014; Vaessen et al., 2016; Carter et al., 2017; de Haan and Karnath, 2017).  

Building on the seminal work by Watson and colleagues (1974) and Mesulam (1981), it 

has been concluded in review articles (Catani, 2006; Bartolomeo et al., 2007; Karnath, 2009; 

Karnath and Rorden, 2012; Lunven and Bartolomeo, 2017) and meta-analyses (Chechlacz et al., 

2012; Molenberghs et al., 2012) that an anatomical network, also termed as ‘perisylvian 

network’ (Karnath, 2009; Karnath and Rorden, 2012), might represent the basis of spatial 

neglect. However, so far none of the previous mass-univariate lesion-behavior studies has 

empirically confirmed this network in a single analysis. In fact, traditional mass-univariate 
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lesion-behavior mapping methods might be ill-suited to provide an empirical confirmation of the 

network hypothesis in spatial neglect. Due to the so-called ‘partial injury problem’ (Rorden et 

al., 2009; Sperber et al., in press), statistical power of VLBM in anatomical networks might be 

reduced, and false negative findings might conceal the full network. This issue has been 

confirmed by several simulation studies (Mah et al., 2014; Zhang et al., 2014; Pustina et al., 

2018). Furthermore, the huge number of independent tests in VLBM as well as in some of the 

multivariate lesion behavior mapping (MLBM) implementations requires statistical control for 

multiple comparisons, which can further reduce statistical power. This might have contributed to 

the heterogeneous pattern of previous VLBM results in spatial neglect, with different studies 

identifying some nodes while missing others. Additional facts which can explain heterogeneous 

anatomical findings might be based on the specific sample characteristics in previous 

investigations (e.g., see Gajardo-Vidal et al., 2018). The authors showed that specific sub-sets of 

patients might drive significant results. However, this might be especially true in smaller studies 

with lower power (Lorca-Puls et al., 2018). Another influential factor are the clinical tests 

administered (for review, see Sperber and Karnath, 2018). 

The label “spatial neglect” has often been used as an umbrella term interchangeably for a 

collection of various symptoms. In line with recent efforts to center on different subcomponents 

observed in spatial neglect, rather than aggregating them in one analysis (Vuilleumier, 2013), we 

here focus on only the egocentric core component of spatial neglect (see Karnath and Rorden, 

2012). This core component is represented by a spontaneous and sustained deviation of eyes and 

head towards the ipsilesional side (Fruhmann-Berger and Karnath, 2005; Fruhmann-Berger et al., 

2006; Becker and Karnath, 2010), combined with neglect of contralesionally located information 

or stimuli. The spatial bias can be reliably measured amongst others by traditional cancellation 

tasks (Rorden and Karnath, 2010) as well as a modified line bisection task (McIntosh et al., 

2017). Further spatial and non-spatial symptoms that have been described in neglect patients 

(e.g. Binder et al., 1992; Husain et al., 1997; Barton and Black, 1998; Ferber and Karnath, 2001; 

Azouvi, 2002; Husain and Rorden, 2003; Verdon et al., 2010; Sperber et al., 2016; McIntosh et 

al., 2017) were not intended to be covered by the present study. 

Multivariate lesion behavior mapping (MLBM) appears to be particularly suitable to 

identify neural correlates of behavior organized in networks (Smith et al., 2013; Mah et al., 2014; 

Zhang et al., 2014; Yourganov et al., 2015; Zavaglia and Hilgetag, 2016; Pustina et al., 2018; for 
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review Karnath et al., 2018). Two recent studies investigated the neural correlates of spatial 

neglect with MLBM, one using support vector machines in a sample of 140 right hemisphere 

stroke patients (Smith et al., 2013), the other a game theoretical approach in a small sample of 

only 25 (and even less for subtests) right hemisphere patients (Toba et al., 2017). Both studies 

had limitations. The two approaches were constrained to the investigation of only a few brain 

regions in a single analysis at once, in other words, these approaches did not provide a voxel-by-

voxel analysis of the lesion pattern throughout the brain. Moreover, regions in such region-based 

approaches can differ both from the relevant functional parcellation of the brain and the typical 

anatomy of stroke lesions and thus might have failed to capture relevant brain regions. In 

contrast, Support Vector Regression based Multivariate Lesion-Symptom Mapping (SVR-LSM) 

utilizes the full voxel-wise whole brain information independently of an a priori region of 

interest selection (Zhang et al., 2014). Different groups have recently validated and tested this 

approach (Zhang et al., 2014, DeMarco and Turkeltaub, 2018, Sperber et al., in press). We use 

this approach here to explore spatial neglect in a large sample of 203 newly recruited, right 

hemisphere damaged patients. Our main objective was to use this method to delineate the 

anatomical network assumed to underlie spatial neglect and to compare its outcome to traditional 

mass-univariate analyses by performing VLBM analyses on the same patient sample.  

 

 

2. Materials and Methods 

2.1. Subjects 

Neurological patients consecutively admitted to the Center of Neurology at Tuebingen 

University were screened for a first ever right-hemisphere stroke. Patients with a left-sided 

stroke, patients with diffuse or bilateral brain lesions, patients with tumors, as well as patients in 

whom MRI or CT scans revealed no obvious lesions were not included. In total 203 patients 

were recruited. None of these patients were included in any of our previous studies addressing 

the anatomy of spatial neglect (Karnath et al., 2001, 2004, 2011; Smith et al., 2013). Therefore, 

they represent an independent, new sample. Table 1 gives the demographic and clinical data. All 

subjects provided written informed consent and the study was conducted in accordance with the 

ethical guidelines from the revised Declaration of Helsinki and in accordance with relevant 

guidelines and regulations. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 21, 2019. ; https://doi.org/10.1101/556753doi: bioRxiv preprint 

https://doi.org/10.1101/556753


6 
 

 

Table 1: Demographic and clinical data of the 203 patients included. 

For this table we determined whether a CoC (= Center of Cancellation) score was in the 

pathological range; cut-offs were set at >.081 for the Bells Cancellation Task and >.083 for the 

Letter Cancellation test (cf. Rorden and Karnath, 2010). In order to assign the diagnosis of 

spatial neglect, patients had to present a pathological test score in at least one of the two 

cancellation tests. Using this criterion, 81 (40%) were classified as exhibiting spatial neglect 

while 122 (60%) did not exhibit neglect. Data are represented as mean (SD). 

 Neglect No neglect 

Age (years) 64.7 (12.4) 60.2 (13.7) 

Sex (M/F) 48/33 71/51 

Etiology (Ischemia/Hemorrhage) 69/12 104/18 

Lesion size (cm³) 70.0 (64.4) 29.3 (35.0) 

Time since lesion (days) 4.2 (4.3) 3.2 (4.5) 

Letter Cancellation (CoC) 0.36 (0.32) 0.01 (0.02) 

Bells Cancellation (CoC) 0.39 (0.29) 0.01 (0.03) 

Visual Field Defects (% present) 27 14 

Imaging (CT/MRI) 44/37 53/69 

 

 

2.2. Behavioral examination 

The interval between stroke-onset and neuropsychological examination was maximally 25 days 

(mean = 4.37 days, SD = 4.04). The following neuropsychological tests were performed: Letter 

Cancellation Task (Weintraub and Mesulam, 1985) and Bells Test (Gauthier, Louise Dehaut, 

Francois Joanette, 1989). These two tests were presented on a horizontally oriented 21 x 29.7 cm 

sheet of paper which was fixed at the center of the patient´s sagittal midline. In the Letter 

Cancellation task, 60 target letters ‘A’ are distributed among other distractor letters. The Bells 

test requires identifying 35 bell icons distributed all over the sheet between other symbols. In 

these two cancellation tasks, patients were asked to cancel all of the targets, ‘A’ letters or bells 

respectively. The maximum duration of each test was not fixed in advance but depended on the 

patient being satisfied with his performance and confirming this twice. For the Letter and Bells 
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Cancellation tasks, we calculated the Center of Cancellation (CoC) using the procedure by 

Rorden and Karnath (2010). The CoC is a sensitive measure capturing both the number of 

omissions, as well their location. For the lesion-behavior mapping, we calculated the mean CoC 

from the two cancellation tasks for each patient and used this score for our analyses. Visual field 

defects were examined by the common neurological confrontation technique. 

 

2.3. Imaging 

Structural imaging was acquired either by MRI (n = 106) or CT (n = 97), performed on average 

3.5 days (SD = 4.6) after stroke-onset. If both imaging modalities were available, MR scans were 

preferred. In participants where MR scans were available, we used diffusion-weighted imaging 

(DWI) if the images were acquired within 48 h after stroke onset or T2-weighted fluid attenuated 

inversion recovery (FLAIR) images for later scans. Lesion boundaries were manually marked on 

the transversal slices of the individual MR or CT scans using the free MRIcron software 

(www.mccauslandcenter.sc.edu/mricro/mricron). 

Normalization of CT or MR scans to MNI space with 1x1x1 mm resolution was 

performed by using the Clinical Toolbox (Rorden et al., 2012) under SPM8 

(www.fil.ion.ucl.ac.uk/spm), and by registering lesions to its age-specific templates oriented in 

MNI space for both CT and MR scans (Rorden et al., 2012). If available, the MR scans were co-

registered with a high resolution T1-weighted structural scan in the normalization process. 

Delineation of lesion borders and quality of normalization were verified by consensus of always 

two experienced investigators (one of them H.-O.K.). An overlap of all normalized lesions is 

shown in Fig. 1. The average lesion size in the sample was 45.52 cm³ (SD = 52.67 cm³). In the 

supplemental material we show overlap plots of normalized lesions separated for each imaging 

modality (Fig. S2) as well as a histogram of the lesion size distribution (Fig. S3 B). 
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Figure 1: Topography of brain lesions 

A: Simple lesion overlap topography of all 203 patients. B: Lesion overlap topography showing 

only voxels within the voxel mask for statistical testing with at least 10 patients having a lesion. 

The colorbar indicates the number of overlapping lesions (the peak of N = 75 represents 37% of 

the total sample). Numbers above the slices indicate z-coordinates in MNI space. 

 

2.4. Multivariate lesion-behavior mapping 

2.4.1. Support Vector Regression 

For our analysis, we implemented a multivariate lesion-symptom mapping method based on 

support vector regression (SVR) (Drucker et al., 1996; Vapnik, 1995). Lesion mapping based on 

support vector regression employs supervised machine learning algorithms to develop a model 

based on training input data which best describes the continuous relationship between behavioral 

scores and lesion location. Hence, it can be seen as an extension of Support Vector Machines 

(SVM) (Cortes and Vapnik, 1995) used for classifying data sets into different categories. Support 

vector regression based lesion-symptom mapping (SVR-LSM) has already been implemented 

and validated in a synthetic dataset, in a real dataset composed of aphasic patients (Zhang et al., 

2014), as well as two recent publications (DeMarco and Turkeltaub, 2018; Sperber et al., in 

press; Chen et al., 2018). Moreover, SVR-LSM can be employed on a whole-brain (voxel-wise) 

level, using the full range of lesion information while respecting the relationships between 

multiple voxels simultaneously and is thus able to provide high resolution lesion-symptom 

mapping topographies. 
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2.4.2. Data Analysis 

 The analysis was performed with MATLAB 2016a and libSVM Vers. 3.21 (Chang and 

Lin, 2013). We used a publicly available collection of scripts (https://github.com/yongsheng-

zhang/SVR-LSM) employed in the study by Zhang et al. (2014) and adopted algorithms for 

control for lesion size and for the derivation of a topography from SVR β-parameters. For the 

detailed methodological procedure and theoretical background of SVR-LSM in general, see 

Zhang et al. (2014). Only voxels where at least 10 patients had a lesion were included in the 

analysis and constituted the voxel mask for statistical testing. Exclusion of voxels with 

infrequent lesion affection was performed to restrict the analysis to voxels with reasonable 

statistical power and thus to prevent that results are biased by brain regions that are only rarely 

affected (Karnath et al., 2018). The employed analysis is therefore no strict whole-brain analysis, 

but – contrary to region-of-interest analyses – it allows an unbiased investigation of all brain 

areas that contain a certain degree of information.  First, the lesion status of each participant was 

regrouped into a column vector. To control for lesion size, each vector was then normalized to 

have a unit norm, a procedure also known as direct total lesion volume control (dTLVC) (Zhang 

et al., 2014). Lesion volume control is an important preprocessing step as the severity of a 

symptom is generally related to the lesion size, as shown for our data (r = 0.54; p < 0.001) in Fig. 

S3 A in the supplemental material. To estimate the SVR hyperplane and project our initial data 

into a higher dimensional space, we implemented an epsilon-SVR model and used a non-linear 

radial basis function (RBF) Kernel. In order to improve the performance of the learning 

algorithms and to choose a model best describing our data, a preselection of the model 

hyperparameters cost (C) and gamma (γ) needs to be done. Following general recommendations 

in the libSVM toolbox manual (Chang and Lin, 2013), we added an optimization procedure 

using grid search. The range of investigated parameters was chosen as in the study by Zhang et 

al., 2014: C = 1, 10, 20, 30, 40, 50, 60, 70, 80, and γ = 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 

30. Using a five-fold cross-validation scheme, we evaluated both prediction accuracy and 

reproducibility of each parameter combination (see Zhang et al., 2014). During this procedure, 

the whole dataset is separated into 4/5 training data, which is used to generate the multivariate 

model. Then this model is tested on the unknown leftover 1/5 of the data to prevent overfitting 

and to get a good estimate of the performance of the model to unknown data. To save 

computational power, we reduced the number of iterations from 40 to 5 compared to the initial 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 21, 2019. ; https://doi.org/10.1101/556753doi: bioRxiv preprint 

https://doi.org/10.1101/556753


10 
 

analysis in Zhang et al., 2014 and evaluated mean prediction accuracy and reproducibility scores, 

based on these 5 iterations for each parameter set. We define mean prediction accuracy, as in 

Zhang et al. (2014), to be the mean correlation coefficient between predicted scores and out of 

sample testing scores of 5 times 5-fold cross-validations. Note that for each of the 5 iterations, 

new random subsets of training and testing scores were drawn from the whole dataset. After 

SVR model construction, β-parameters are remapped onto a three-dimensional brain topography 

allowing us to derive the reproducibility score by calculation of the mean correlation coefficient 

between any two SVR-LSM β-parameter maps from the drawn subsets. Finally, using the best 

combination of C and γ for model construction, the remapped β-parameters are tested by using a 

permutation approach, comparing the SVR β-parameters voxel-wise with new β-parameters 

drawn for each permutation through randomization of behavioral scores.  Results are reported 

with correction for multiple comparisons that survived a False Discovery Rate (Benjamini and 

Yekutieli, 2001) (FDR) correction at q = 0.05, determined by 10000 permutations. As statistical 

testing is performed on a voxel-by-voxel basis, a form of multiple comparison correction is 

required to prevent an increase of false alarms (Sperber et al., in press). 

 

2.5. Univariate voxel-based lesion behavior mapping 

To compare the SVR-LSM technique with traditional analyses, we also performed mass-

univariate VLBM analyses on the same data set. As for MLBM, only voxels where at least 10 

patients had a lesion were included in the analysis and constituted the voxel mask for statistical 

testing. The variants of lesion volume correction and correction for multiple comparisons differ 

between univariate studies. Nevertheless, the exact choice might have an impact on the 

topographical outcome of the univariate results as shown recently by Pustina and colleagues 

(2018). Therefore, we decided to show results using different parameter configurations, 

providing a small cross section of what is currently employed in the field. Hence, for the 

univariate analyses, there were, in total, 4 configurations: A) without correction for lesion size 

including family-wise error correction (FWE) for multiple comparisons based on 10000 

permutations at p < 0.05; B) with correction for lesion size – by regressing lesion size out of 

behavior –  including FWE correction for multiple comparisons based on 10000 permutations at 

p < 0.05; C) without correction for lesion size including False Discovery Rate (FDR) correction 

for multiple comparisons at q = 0.05; D) with correction for lesion size – by regressing lesion 
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size out of behavior – including FDR correction for multiple comparisons at q = 0.05. All 

univariate analyses were carried out using the NiiStat tool 

(https://github.com/neurolabusc/NiiStat) and were based on the general linear model (identical to 

a Student's pooled-variance t-test). 

 

2.6. Supplementary analysis 

While the need of lesion volume correction is widely accepted, the exact technique to be used is 

still under discussion. Zhang and colleagues (2014) validated the dTLVC method for real and 

synthetic lesion data and argued that a regression based correction might be excessively 

conservative. On the other hand, DeMarco and Turkeltaub (2018) put forward that the dTLVC 

method might be too liberal and advocated for using regression based correction. To address 

both positions and concerns, we implemented a supplemental analysis using the same parameters 

as for our main SVR-LSM analysis, except for now regressing lesion size out of both behavioral 

and lesion scores instead of the dTLVC procedure. Scripts for this supplemental analysis have 

been adopted from a recently published toolbox and are available online 

(github.com/atdemarco/svrlsmgui; DeMarco and Turkeltaub, 2018). 

2.7. Atlas Overlap 

Labeling of all the resulting voxel-wise statistical maps with respect to grey matter brain regions 

was done by overlaying the maps on the Automatic Anatomical Labelling atlas (AAL; Tzourio-

Mazoyer et al., 2002) distributed with MRIcron. The localization of white matter fiber tracts 

damaged by the lesion was based on two different fiber tract atlases: the Juelich probabilistic 

cytoarchitectonic atlas (Bürgel et al., 2006) as well as the tractography-based probabilistic fiber 

atlas (Thiebaut De Schotten et al., 2011). We decided to interpret the data according to these two 

WM atlases simultaneously due to the marked variance between DTI- and histology-based white 

matter atlases (de Haan and Karnath, 2017). The WM probabilistic maps were thresholded at 

p>= 0.3 before being overlaid on the statistical topography. 

 

3. Results  

3.1. Parameter optimization 

Testing different sets of C and γ combinations, we got a similar pattern of that what has already 

been reported in previous investigations (Rasmussen et al., 2012; Zhang et al., 2014). Thus, the 
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C and γ variables provide a trade-off between prediction accuracy and reproducibility (Fig. 2 A 

and B). Without having any reference about a certain standard in choosing the right parameter 

combination, we decided to perform the final analysis with a C of 30 and γ of 4, as these values 

provided, compared to the other combinations, a decent prediction accuracy (0.43) while keeping 

the reproducibility index (0.91) as high as possible. With this combination, the model achieves 

an R² of 0.19. 

 

 

Figure 2: Estimation of best hyper-parameters C and γ 

SVR-LSM parameter estimation results. Prediction Accuracy (A) and Reproducibility Index (B) 

(see Rasmussen et al., 2012; Zhang et al., 2014) are plotted for the different sets of C and γ 

parameters to find the optimal combination. 

 

3.2. Multivariate lesion-behavior relationships 

Resulting topographies of the SVR-LSM analysis using continuous CoC scores revealed a 

perisylvian network including parietal, frontal and temporal grey matter regions as well as 

interconnecting WM fibers (Fig. 3). An exact overview of the grey and white matter structures 

significantly involved and showing at least 100 mm³ overlapping voxels with the respective atlas 

structures is given in Table 2. Large clusters incorporated middle and superior temporal gyri as 

well as the inferior parietal lobule, including angular and supramarginal gyri. Smaller clusters 

affected inferior and middle frontal gyri, as well as the pre- and postcentral gyri. Moreover, 

significant lesion patterns included the insula and subcortical structures such as the pallidum, 

putamen and caudate nucleus. The overlap with both WM atlases consistently showed significant 

clusters affecting the uncinate fasciculus and the inferior occipito-frontal fasciculus. In addition, 

only the WM atlas by Thiebaut De Schotten et al. (2011) implicated the inferior longitudinal, as 
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well as the superior longitudinal/arcuate fasciculus and the internal capsule, while only the 

Juelich WM atlas identified the superior occipito-frontal fasciculus. In addition, Fig. 3D shows 

the thresholded β–map of the SVR-LSM analysis. Please note, that individual β-values should be 

interpreted with caution as they don´t provide a one to one inference to anatomical localization 

and cannot be considered as classical test statistics (see also Sperber et al., in press), as for 

example t- or z- values. In general, β-values are correlating with probability measures (e.g. high 

β results in low p-value). However, this is not true for all tested voxels and it is thus possible that 

a low β becomes significant or vice-versa, a relatively high β might not reach statistical 

significance. An illustration of this can be found in Fig. S4. 

 

 

 

Figure 3: Results of the multivariate lesion-behavior mapping 

Support vector regression based multivariate lesion-symptom mapping results using data of 203 

patients. Lesion volume correction was performed by applying dTLVC. A: Permutation-
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thresholded statistical map of SVR-LSM on CoC scores (FDR-corrected at q = 0.05, 

corresponding to a threshold of p < 0.0063), illustrating the anatomical regions significantly 

associated with the core deficit of spatial neglect. Significant clusters were interpreted according 

to the AAL atlas (Tzourio-Mazoyer et al., 2002) for grey matter regions and to the Juelich 

probabilistic cytoarchitectonic fiber tract atlas (Bürgel et al., 2006) as well as the tractography-

based probabilistic fiber atlas by Thiebaut De Schotten et al. (2011) for white matter structures. 

B and C: three-dimensional renderings of the same map using the 3D-interpolation algorithm 

provided by MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html; 8mm search depth) 

with sagittal view for B and inside view for C. Results of A, B and C are shown as 1-p. D: 

Thresholded β-parameter map showing only significant areas according to A. Abbreviations: 

SLF – superior longitudinal fasciculus; AF – arcuate fasciculus; ILF – inferior longitudinal 

fasciculus; IOF – inferior occipitofrontal fasciculus; SOF – superior occipitofrontal fasciculus; 

UF – Uncinate fasciculus. 

 

 

Table 2: Detailed overview of all significant grey and white matter clusters – MLBM 

Overlap of MLBM analysis with grey and white matter atlases (FDR-corrected at q = 0.05, 

corresponding to a threshold of p < 0.0063). For grey matter structures, reports are generated 

using the Automatic Anatomical Labeling atlas (AAL; Tzourio-Mazoyer et al., 2002). For white 

matter structures, reports are generated using the Juelich probabilistic cytoarchitectonic atlas 

(Bürgel et al., 2006) and the tractography-based probabilistic fiber atlas by Thiebaut De Schotten 

et al. (2011) defined at a probability of p >= 0.3. Only structures with at least 100 mm³ of 

overlapping voxels were reported in the table.  

GM structure (AAL) Number of voxels (mm³) β (Mean/SD) Peak β 

Middle temporal gyrus 8441 3.13/0.60 5.66 

Inf. temporal gyrus 3078 2.59/0.57 4.40 

Middle occipital gyrus 1677 3.37/0.61 5.73 

Angular gyrus 1398 3.14/0.58 4.45 

Sup. temporal gyrus   968 3.01/0.54 5.10 

Pallidum   848 4.35/1.09 7.03 
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Middle frontal gyrus   739 2.62/0.53 4.73 

Caudatum   719 3.24/0.63 5.72 

Inf. frontal gyrus/triangular   706 2.23/0.23 3.99 

Postcentral gyrus   570 2.92/0.35 4.17 

Putamen   481 3.71/0.74 6.54 

Rolandic operculum   422 3.74/0.53 5.22 

Precentral gyrus   346 3.07/0.66 5.38 

Inf. frontal gyrus/orbital   314 3.80/0.58 4.41 

Amygdala   279 2.96/0.49 5.25 

Supramarginal gyrus   228 2.88/0.35 3.73 

Inf. occipital gyrus   214 3.45/0.95 5.23 

Inf. parietal gyrus   166 2.81/0.24 3.68 

Insula   119 3.00/0.93 5.99 

Hippocampus   115 3.07/0.64 4.87 

Sup. temporal pole   113 2.54/0.54 3.98 

    

WM structure (Juelich) Number of voxels (mm³) β (Mean/SD) Peak β 

Callosal body 2703 4.10/1.09 7.31 

Optic radiation 1393 3.07/0.67 5.48 

Corticospinal tract   832 3.52/0.98 6.14 

Sup. occipito-frontal fasciculus   262 4.26/0.91 6.84 

Inf. occipito-frontal fasciculus   168 4.56/0.56 6.30 

Uncinate fasciculus   134 4.36/0.68 6.30 

    

WM structure  
(Thiebaut de Schotten) 

Number of voxels (mm³) β (Mean/SD) Peak β 

Corpus callosum 3245 4.05/1.01 7.39 

Internal capsule 2846 4.28/1.05 7.23 

Inf. longitudinal fasciculus 2545 3.10/0.67 5.48 

Arcuate fasciculus 2315 3.15/0.61 5.42 
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Posterior segment (Arcuate) 2036 3.07/0.58 4.88 

Corticospinal tract 1845 4.19/1.07 7.23 

Uncinate fasciculus 1249 3.26/0.82 6.30 

Cingulum 1200 3.39/0.61 5.37 

Anterior commissure 1177 3.21/0.85 5.88 

Inf. occipito-frontal fasciculus   798 3.49/0.81 5.98 

Optic radiations   306 3.37/0.66 5.42 

Anterior segment (Arcuate)   282 3.71/0.57 5.42 

Sup. longitudinal fasciculus   144 3.04/0.33 4.87 

 

 

3.3. Univariate voxel-based lesion-behavior relationships 

The VLBM analysis including family-wise error correction (FWE) for multiple comparisons 

without correction for lesion size (Fig. 4A) revealed mainly involvement of inferior and middle 

frontal as well as middle and superior temporal cortical grey matter areas. Moreover, affection of 

subcortically the putamen, caudate and pallidum can be delineated; parietal cortex was not 

involved. A detailed overview of grey and white matter structures significantly involved and 

with at least 100 mm³ overlap with the respective atlases is given in Table 3A. The comparison 

with white matter atlases reveals involvement of the superior occipito-frontal fasciculus for the 

Juelich WM atlas as well as the arcuate and uncinate fasciculi for the WM atlas by Thiebaut De 

Schotten et al. (2011). Moreover, the latter delineated affection of the inferior occipito-frontal 

and longitudinal fasciculi, as well as the internal capsule.   

The VLBM analysis including family-wise error correction (FWE) and a correction for 

lesion size (Fig. 4B) revealed only a small cluster within frontal white matter. The univariate 

analysis using FDR-thresholding without correction for lesion size is showing a wide spreading 

map with 56% of the tested voxels becoming significant, spanning over frontal, temporal, 

parietal and occipital as well as subcortical areas and interconnecting white matter fibres (Fig. 

4C). A detailed overview of grey and white matter structures significantly involved and with at 

least 100 mm³ overlap with the respective atlases is given in Table 3B. On the other side, 

employing lesion volume correction, the analysis with FDR-thresholding showed a rather 
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conservative pattern – similar to FWE-thresholding with correction for lesion size – of two small 

clusters in the frontal white matter with no corresponding atlas label (Fig. 4D). 

 

Figure 4: Results of the univariate lesion-behavior mapping 

Mass-univariate lesion-symptom mapping results using data of 203 patients. Z-score maps are 

plotted for FWE permutation-thresholded as well as FDR-thresholded VLBM analyses with and 

without lesion volume correction on CoC scores. A: FWE permutation thresholded VLBM 

analysis without correction for lesion size at p < 0.05, corresponding to a threshold of z > 

5.3475; B: FWE permutation thresholded VLBM analysis with correction for lesion size – by 

regressing lesion size out of behavior – at p < 0.05, corresponding to a threshold of z > 5.2251; 

C: FDR thresholded VLBM analysis without correction for lesion size at q = 0.05, 
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corresponding to a threshold of z > 2.8607; D: FDR thresholded VLBM analysis with correction 

for lesion size – by regressing lesion size out of behavior – at q = 0.05, corresponding to a 

threshold of z > 4.4772. 

 

Table 3: Detailed overview of all significant grey and white matter clusters – VLBM 

Overlap of VLBM analysis without control for lesion size with grey and white matter atlases. A: 

permutation-based FWE correction at p < 0.05, corresponding to a threshold of z > 5.3475; B: 

FDR correction at q = 0.05, corresponding to a threshold of z > 2.8607. For grey matter 

structures, reports are generated using the Automatic Anatomical Labeling atlas (AAL; Tzourio-

Mazoyer et al., 2002). For white matter structures, reports are generated using the Juelich 

probabilistic cytoarchitectonic atlas (Bürgel et al., 2006) and the tractography-based probabilistic 

fiber atlas by Thiebaut De Schotten et al. (2011) defined at a probability of p >= 0.3. Only 

structures with at least 100 mm³ of overlapping voxels were reported in the table. For the VLBM 

analyses with correction for lesion size, no overlap table is generated, as no clear labeling was 

possible. 

 

A) FWE- thresholding without correction for lesion size 

GM structure (AAL) Number of voxels (mm³) z-score (Mean/SD) Peak z-score 

Middle temporal gyrus 1304 5.66/0.28 6.86 

Pallidum   523 5.93/0.48 7.26 

Middle frontal gyrus   438 5.85/0.35 6.96 

Inf. frontal gyrus/triangular   391 5.63/0.19 6.05 

Putamen   228 5.66/0.33 6.94 

Sup. temporal gyrus   167 5.58/0.20 6.23 

Caudatum   129 5.57/0.19 6.20 

Inf. frontal gyrus/orbital   113 5.60/0.20 6.06 

Middle occipital gyrus   113 5.73/0.28 6.55 

    

WM structure (Juelich) Number of voxels (mm³) z-score (Mean/SD) Peak z-score 

Callosal body 1832 6.07/0.53 7.66 
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Corticospinal tract   544 5.80/0.36 6.75 

Sup. occipito-frontal fasciculus   128 5.78/0.37 6.90 

    

WM structure  
(Thiebaut De Schotten) 

Number of voxels (mm³) z-score (Mean/SD) Peak z-score 

Corpus callosum 2508 6.01/0.52 7.66 

Internal capsule 2187 5.97/0.49 7.66 

Corticospinal tract 1771 5.89/0.41 7.41 

Cingulate   530 5.78/0.34 7.24 

Anterior commissure   304 5.97/0.48 7.26 

Arcuate fasciculus   269 5.63/ 0.28 6.58 

Posterior segment (Arcuate)   267 5.63/ 0.28 6.58 

Cortico ponto cerebellum   169 5.76/ 0.34 6.69 

Uncinate   126 5.60/ 0.22 6.36 

Inf. longitudinal fasciculus   122 5.63/ 0.29 6.68 

Inf. occipito-frontal fasciculus   100 5.58/ 0.22 6.36 

    

B) FDR- thresholding without correction for lesion size 

GM structure (AAL) Number of voxels (mm³) z-score (Mean/SD) Peak z-score 

Middle temporal gyrus 25761 4.03/0.73 6.86 

Sup. temporal gyrus 14260 3.68/0.61 6.23 

Angular gyrus   8455 3.65/0.52 5.86 

Putamen   7628 4.02/0.65 6.94 

Insula   7501 3.45/0.40 5.36 

Middle occipital gyrus   6529 3.69/0.58 6.55 

Inf. temporal gyrus   6374 4.00/0.72 6.72 

Inf. frontal gyrus/triangular   5894 3.89/0.77 6.05 

Caudatum   5335 4.18/0.59 6.20 

Precentral gyrus   5335 3.72/0.64 6.85 

Inf. frontal gyrus/opercular   5158 3.47/0.46 5.87 
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Middle frontal gyrus   5078 4.08/0.81 6.96 

Rolandic operculum   4609 3.60/0.54 5.90 

Inf. frontal gyrus/orbital   4433 4.02/0.58 6.06 

Supramarginal gyrus   4196 3.36/0.40 5.68 

Inf. parietal gyrus   2814 3.35/0.38 4.89 

Postcentral gyrus    2776 3.31/0.35 5.19 

Pallidum    2158 4.87/0.80 7.26 

Sup. temporal pole    2123 3.42/0.47 5.61 

Amygdala   1351 3.96/0.59 6.12 

Hippocampus   1060 3.57/0.58 5.60 

Sup. parietal gyrus   704 3.25/0.30 4.72 

Thalamus   664 3.42/0.47 5.14 

Middle temporal pole   601 3.54/0.53 5.47 

Inf. occipital gyrus   392 4.12/0.83 6.50 

Olfactory cortex   276 3.62/0.38 4.77 

Sup. occipital gyrus   195 3.18/0.26 4.21 

Fusiform gyrus   154 3.40/0.45 4.81 

Transverse temporal gyrus   139 3.03/0.13 3.48 

Sup. frontal gyrus/orbital   103 3.94/0.43 4.86 

    

WM structure (Juelich) Number of voxels (mm³) z-score (Mean/SD) Peak z-score 

Corticospinal tract 10278 3.90/0.76 6.75 

Corpus callosum   8367 4.40/1.10 7.66 

Optic radiation   7702 3.79/0.59 6.64 

Sup. longitudinal fasciculus   1925 3.64/0.53 6.11 

Inf. occipito-frontal fasciculus   1742 3.72/0.49 5.14 

Sup. occipito-frontal fasciculus   1377 4.35/0.75 6.90 

Acoustic radiation   794 3.32/0.36 4.68 

Uncinate fasciculus   738 3.98/0.46 5.80 
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 WM structure  
(Thiebaut De Schotten) 

Number of voxels (mm³) z-score (Mean/SD) Peak z-score 

Internal capsule 16030 4.24/0.95 7.66 

Arcuate fasciculus 15722 3.91/0.63 6.58 

Corticospinal tract 11583 4.23/0.97 7.41 

Inf. longitudinal fasciculus 10365 3.80/0.60 6.68 

Posterior segment (Arcuate)   9743 4.07/0.65 6.58 

Corpus callosum   9737 4.59/1.06 7.66 

Inf. occipito-frontal fasciculus   9049 3.84/0.58 6.36 

Uncinate fasciculus   6650 3.97/0.61 6.36 

Anterior segment (Arcuate)   6335 3.63/0.48 5.47 

Anterior commissure   3889 4.17/0.79 7.26 

Optic radiations   2965 3.84/0.58 5.79 

Cingulum   2914 4.38/0.92 7.24 

Cortico ponto cerebellar   2607 3.78/0.80 6.69 

Fornix   1208 3.47/0.44 5.18 

Sup. longitudinal fasciculus   1205 3.78/0.52 5.35 

Long segment (Arcuate)      691 3.58/0.44 5.02 

 

3.4. Supplementary analysis   

The optimization procedure delineated a C of 1 and γ of 0.1 as optimal parameters. Results for 

the supplemental analysis revealed a much more conservative pattern as compared to the SVR-

LSM analysis with dTLVC correction. If we regress lesion size out of both behavioral and lesion 

scores, the resulting topographies centered on several smaller nodes (see Supplementary 

Material; Fig. S1). One cluster of lesion symptom associations was found within the right basal 

ganglia (putamen, pallidum, head of caudate nucleus). Moreover, an anterior cluster was 

revealed within the white matter adjacent to inferior and middle frontal gyri. A further small 

node was found at the right middle/inferior temporal cortex. 
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4. Discussion 

The present study examined the lesion-behavior relationship of spatial neglect in a newly 

recruited sample of right brain damaged patients. By employing an MLBM approach, we were 

able to delineate the postulated anatomy of the putative perisylvian network in one single 

analysis. In particular, it included the superior and middle temporal gyri, inferior parietal lobule, 

insula, and the inferior and middle frontal gyri. Subcortically, we observed affection of the 

pallidum, putamen and caudate nucleus as well as white matter fiber tracts, such as the superior 

and inferior longitudinal fasciculi, the superior and inferior occipito-frontal fasciculi, and the 

uncinate fasciculus.  

To compare the results of the multivariate SVR-LSM technique with the traditional mass-

univariate analysis technique, we conducted VLBM using different variants of lesion size 

correction and multiple comparisons correction, corresponding to the majority of the current 

univariate lesion-mapping studies. Despite the large sample size, the two univariate analyses 

with lesion volume control only detected one (FWE), respectively two (FDR) cluster(s) in frontal 

white matter. Only when keeping the residual signal of lesion size in the model, the univariate 

VLBM had enough power to generate a statistical map which was qualitatively comparable to 

the multivariate SVR-LSM map. In the VLBM analysis including FWE correction, the univariate 

processing detected most of the regions that were also detected by the SVR-LSM analysis, with 

the exception of the inferior parietal lobule. The major difference was that VLBM detected 

massively less signal, resulting in only few actually interpretable clusters. In contrast, the VLBM 

analysis including FDR thresholding showed a more liberal pattern. It was able to detect the 

regions discussed in the literature with the caveat that they were hidden within a considerable 

amount of probably false positive detections, limiting interpretation. It should be noted that the 

results of the latter two analyses were coupled to the omission of lesion volume control. 

However, since the severity of a behavioral symptom is often strongly correlated with total 

lesion volume and larger lesions are more likely to affect critical anatomical areas (Karnath et 

al., 2004), a form of correction is desired to detect the neural correlate specific to the behavioral 

symptom of interest. A further positive effect of lesion volume correction in VLBM analyses is 

that it reduces the systematic misplacement of the outcome (cf. Sperber and Karnath, 2017).  
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The simulations by Zhang and colleagues (2014) showed that SVR-LSM is characterized by 

a good receiver operator characteristic (ROC) performance, especially if lesion-volume 

correction is included. In contrast, ROC characteristics of VLBM were generally worse and 

thresholds with both good sensitivity and specificity were not available. This limits VLBM to a 

choice in favor of either sensitivity with accepting a larger number of false negatives (i.e. 

selecting a higher cutoff) or specificity with accepting a larger number of false positives (i.e. 

selecting a lower cutoff). Hence, our data might drive speculations about VLBM not being 

sensitive enough after permutation based FWE thresholding, or not specific enough after FDR 

based thresholding. However, simulation studies are required here. Taking all of our univariate 

findings together, one might conclude that in the framework of multi-area based syndromes, 

VLBM might not in general fail to detect such networks, but it suffers from different limitations. 

These might have contributed to the heterogeneous results of previous lesion-symptom mapping 

investigations in spatial neglect using mass-univariate VLBM (Karnath et al., 2004, 2011; 

Committeri et al., 2007; Sarri et al., 2009; Chechlacz et al., 2010; Saj et al., 2012; Thiebaut De 

Schotten et al., 2014; Rousseaux et al., 2015) and DTI/white matter fiber analyses (Thiebaut De 

Schotten et al., 2005; Urbanski et al., 2008, 2011; Karnath et al., 2009; Shinoura et al., 2009; 

Ciaraffa et al., 2013; Thiebaut De Schotten et al., 2014; Umarova et al., 2014; Lunven et al., 

2015; Vaessen et al., 2016; Carter et al., 2017). While using meta-analytic approaches combining 

various VLBM results, one might be able to find all critical parts of the presumed network. The 

present study shows that MLBM analyses have the potential to achieve this by a single 

investigation while respecting recommendations on correction factors. 

The two previous multivariate examinations on spatial neglect (Smith et al., 2013; Toba et 

al., 2017) were able to uncover only parts of this network. Very likely this is due to the small 

sample size in one of them (Toba et al., 2017) and – most importantly – the very limited number 

of a priori defined brain regions per multivariate model in both studies. In contrast, the present 

multivariate SVR-LSM analysis utilized the full voxel-wise information and uncovered a larger 

set of cortical and subcortical areas, able to account for inconsistencies on the anatomical 

representation of spatial neglect. The finding highly corresponds to the proposed ‘perisylvian 

network’ (Karnath, 2009), consisting of superior/middle temporal, inferior parietal, and 

ventrolateral frontal cortices, and representing the anatomical basis for processes involved in 

spatial orienting and neglect.  
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The right temporal lobe has been delineated in previous lesion mapping studies in spatial 

neglect (Karnath et al., 2001, 2004, 2011; Committeri et al., 2007; Saj et al., 2012; Rousseaux et 

al., 2015). Smith et al. (2013) found the superior temporal gyrus (STG) as being the only 

structure which contained unique information for predicting spatial neglect. Accordingly, the 

STG seems to play an important role in multisensory integration, conveying information from 

both, the dorsal route of visual information processing, as well as polysensory inputs from the 

ventral perceptual stream (for review, see Karnath, 2001). Further evidence for the importance of 

superior/middle temporal areas for spatial neglect comes from recent animal models (Bogadhi et 

al., 2019). The authors detected a causal relationship between spatial neglect like symptoms and 

the superior temporal sulcus by direct and indirect ‘inactivation’ of that area in the monkey brain, 

underlining it´s crucial role in covert attentional processing. In the human brain, the posterior 

part of the STG at the intersection to the inferior parietal cortex, an area which is called 

‘temporo-parietal junction’ (TPJ) (Chang et al., 2013; Kincade et al., 2005; Macaluso and 

Doricchi, 2013) together with the ventral frontal cortex (VFC) (Corbetta and Shulman, 2002; 

Snyder and Chatterjee, 2006) have been reported as target areas for attentional reorienting, target 

detection and vigilance (Corbetta and Shulman, 2011). Lesions in these cortical areas, together 

with white matter disconnection hindering the information transmission between them (see 

below), seem to form the basis for the core deficit (see introduction section above) observed in 

spatial neglect patients.  

The superior longitudinal fasciculus connects the ventral frontal cortex to parietal structures 

via different sub-branches, the SLF I, SLF II and SLF III, identified in both humans, and 

monkeys (Schmahmann and Pandya, 2006, Thiebaut De Schotten et al., 2011). The SLF has 

repeatedly been discussed as being a crucial fronto-parietal pathway for processes of attentional 

orienting (Corbetta and Shulman, 2002; Bartolomeo et al., 2007). The ventral branch of the SLF 

(SLF III) specifically connects brain regions within the ventral attention network (VAN) 

(Rushworth et al. 2006; Bartolomeo et al., 2012; Thiebaut De Schotten et al., 2011) engaged in 

the propagation of information of stimulus identity and during the automatic capture of spatial 

attention by visual targets (Corbetta and Shulman, 2002). A further intrahemispheric tract partly 

overlapping with the SLF and confirmed in the present investigation is the arcuate fasciculus 

(AF). The AF is sometimes considered as an additional subcomponent of the SLF (Makris et al., 

2005; Vernooij et al., 2007) and has been discussed in the transmission of information related to 
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visuospatial performance (Chechlacz et al., 2014; Ciaraffa et al., 2013; Thiebaut De Schotten et 

al., 2014). This fiber bundle is composed of long and short anterior as well as short posterior 

fibers connecting specifically perisylvian frontal, parietal and temporal areas (Catani and 

Thiebaut De Schotten, 2008). Additionally, our results indicate the crucial involvement of the 

occipitofrontal fasciculus (IOF) – also termed as ‘inferior frontooccipital fasciculus’ (IFOF) –, 

which runs through the temporal lobe medial to the lower insula and connects areas of the frontal 

cortex with posterior temporal, inferior parietal, and occipital cortices (Nieuwenhuys et al. 1988; 

Catani et al. 2002; Bürgel et al. 2006; Forkel et al., 2014; Lawes et al., 2008). It has been 

suggested, that damage of this tract may hamper the transmission and/or the serial encoding of 

visual information in memory (Humphreys et al., 2015). This might explain deficits in 

target/distractor discriminative cancellation tasks, whereas no specific link between the IOF on 

line cancellation without distractor items has been reported (Urbanski et al., 2008). Our analysis 

depicted also the inferior longitudinal fasciculus (ILF), a further association tract connecting 

temporal to occipital areas (Catani et al., 2008), which has been linked previously to spatial 

neglect (Bird et al., 2006; Toba et al., 2018). 

In addition to the cortical network, significant clusters were also observed subcortically for 

the right basal ganglia, including putamen, pallidum, and caudate nucleus. Based on previous 

work using perfusion imaging to monitor the remote effects of subcortical lesions (e.g. Hillis et 

al., 2002; Karnath et al., 2005), it is very likely that lesions of the basal ganglia lead to 

behavioral dysfunction by impairing the cortical network indirectly by malperfusion. However, 

there might also be a direct involvement of the basal ganglia. A recent simulation study by Parr 

and Friston (2018) aimed to formulate spatial neglect as a computational deficit. By setting up a 

model structure corresponding to the anatomy of dorsal and ventral attention networks, as well as 

their subcortical contributions, they demonstrated that basal ganglia lesions can directly produce 

neglect behavior in a saccadic cancellation task.   

Summarizing our anatomical results, multivariate lesion behavior mapping was able to 

depict the network by only one single analysis and by using only the CoC score as behavioral 

proxy for spatial neglect and attention, whereas previous studies needed to employ either a meta-

analytical (Checlacz et al., 2012; Molenberghs et al., 2012 ), multi-imaging/multi-method 

(Corbetta et al., 2015; Ramsey et al., 2016), or ROI approaches (Smith et al., 2013) to increase 
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power or to disentangle the behavioral sub-functions and map them separately (Verdon et al., 

2010; Vaessen et al., 2016; Toba et al., 2018) to come to comparable conclusions. This indicates 

that the behavioral proxy we measured here is indeed a core symptom of spatial neglect as it 

might evolve regardless where within this network a lesion produces focal dysfunction or remote 

deficits through disconnection. 

Nevertheless, we want to emphasize that future studies might apply the same multivariate 

lesion analysis procedure used here for the core symptom of spatial neglect to uncover the exact 

neural underpinnings of the dissociating spatial and non-spatial behaviors. To disentangle the 

different components, these behavioral tasks in such studies should be as fine graded as possible 

to detect a specific cognitive function in isolation (for discussion, see Sperber and Karnath, 2018; 

Vuilleumier, 2013; Saj et al., 2012). 

As expected, the regression technique suggested by DeMarco and Turkeltaub (2018) to 

control for lesion size turned out to be much more conservative than the dTLVC procedure 

(Zhang et al., 2014). A comparison of the resulting statistical map (Supplementary Material; Fig. 

S1) to the patient overlap plot (Fig. 1) revealed that especially those areas with the highest lesion 

frequency across our entire sample were spared out. The regression technique suggested by 

DeMarco and Turkeltaub (2018) limited the ‘searchlight’ rather to the border areas of the space 

of interest. Hence, the regression based control for lesion size appears to reduce the amount of 

false positives significantly, but at the cost of a higher rate of false rejections. Indeed, DeMarco 

and Turkeltaub (2018) noted in their discussion, that the cost of using this technique is a more 

conservative voxel-wise thresholding. The authors applied SVR-LSM in combination with their 

lesion volume regression approach on twenty real behavioral scores, but found significant results 

only in seven of these analyses. This further underline that lesion volume control, by regressing 

out lesion size from both behavioral and lesion scores, might be excessively conservative in 

many situations (including the present data). Results using this type of lesion size control thus 

should be interpreted with caution.  

Albeit all the benefits of the SVR-LSM approach exposed here, it is also important to point 

to limitations. While we have recently provided a detailed discussion of such issues (Karnath et 

al., 2018), we would like to highlight that multivariate lesion-mapping techniques − as traditional 

univariate methods – do not identify brain areas that are structurally intact, but dysfunctional due 
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to (temporary) hypoperfusion or diaschisis. Both approaches are based on structural imaging 

only and might thus be meaningfully complemented by other imaging techniques, such as 

perfusion CT or MR perfusion-weighted imaging. Multimodal imaging of brain damage where 

structural and functional information is combined might provide a more accurate picture of the 

full extent of the network underlying a disturbed cognitive function. Secondly, a recent 

investigation has revealed that multivariate lesion behavior mapping is susceptible to 

misplacement of statistical topographies along the brain’s vasculature to about the same extent as 

mass-univariate VLBM analyses (Sperber et al., in press). Thus, despite the high potential of 

multivariate lesion behavior mapping methods, it is possible that the final topography is 

influenced by the dependence of damage status between voxels. Together with the above-

mentioned perfusion and/or direct neural dysfunction effects, this might explain findings in 

subcortical areas, including e.g. putamen and pallidum.  

 

5. Conclusion 

The comparison between univariate and multivariate lesion analysis techniques revealed that the 

detected signal was either very conservative or very liberal for VLBM, demonstrating clear 

benefits of a multivariate approach if behavior is organized in large networks. While control for 

lesion size led to only reduced signal with VLBM, the SVR-LSM approach uncovered a complex 

network pattern in one single analysis. The implementation of multivariate analysis techniques 

thus has potential to explain inconsistencies and controversies emerging in the literature on the 

anatomical underpinnings of neurological syndromes. Hence, our findings underline the 

importance of a right perisylvian network in spatial attention and specifically in the emergence of 

the core symptoms of spatial neglect.  Therefore, the present work is a step forward to improve 

our understanding of both multivariate lesion-behavior mapping in general as well as of complex 

brain networks involved in spatial attention and orientation behavior in particular. A remaining 

task for future studies is to investigate if the SVR-LSM approach employed here is indeed the 

most suitable multivariate analysis technique for studying the type of research question 

addressed in the present study. A comparison of different multivariate algorithms in multivariate 

lesion-behavior mapping is needed.  
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