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Abstract

Resting-state functional connectivity MRI (rs-fcMRI) is a common method for mapping
functional brain networks. However, estimation of these networks is affected by the pres-
ence of a common global systemic noise, or global signal (GS). Previous studies have shown
that the common preprocessing steps of removing the GS may create spurious correlations
between brain regions. In this paper, we decompose fMRI signals into 5 spatial and 3 tem-
poral intrinsic mode functions (SIMF and TIMF, respectively) by means of the empirical
mode decomposition (EMD), which is an adaptive data-driven method widely used to ana-
lyze nonlinear and nonstationary phenomena. For each SIMF, brain connectivity matrices
were computed by means of the Pearson correlation between TIMFs of different brain areas.
Thus, instead of a single connectivity matrix, we obtained 5 × 3 = 15 functional connec-
tivity matrices. Given the high value obtained for large-scale topological measures such as
transitivity, in the low spatial maps (SIMF3, SIMF4, and SIMF5), our results suggest that
these maps can be considered as spatial global signal masks. Thus, the spatiotemporal EMD
of fMRI signals automatically regressed out the GS, although, interestingly, the removed
noisy component was voxel-specific. We compared the performance of our method with the
conventional GS regression and to the results when the GS was not removed. While the
correlation pattern identified by the other methods suffers from a low level of precision, our
approach demonstrated a high level of accuracy in extracting the correct correlation between
different brain regions.

Keywords: Resting-state functional connectivity MRI, Global Signal, fMRI, Empirical
Mode Decomposition, spatial Intrinsic Mode Function, Temporal Intrinsic Mode Function.

1. Introduction

Resting-state functional connectivity MRI (rs-fcMRI) has considerable potential for map-
ping functional brain networks [1, 2, 3, 4, 5, 6]. This mapping, which reveals the brain’s
functional architecture and operational principles [1, 2], can be used for early detection of
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brain connectivity pathologies in neuropsychiatric patients [7]. However, the presence of a
common global systemic noise in Blood Oxygen Level Dependent (BOLD) signals fluctua-
tions, known as the global signal (GS), is a significant problem for fcMRI analysis. This
presence is problematic as it is of unknown physiological origin [7, 8, 9]. Because of the
presence of GS in a functional network, regressing out GS becomes an important step in
data preprocessing. Thus, it must be done prior to fcMRI analysis. GS is generally defined
as the average of the BOLD signals over the whole brain [9, 10, 11] and can be computed
from the raw images or after some preprocessing steps [11]. The average-based GS is called
conventional GS (or static GS (SGS)[7]).

Application of SGS regression (SGSR) was at first just limited to task-related fMRI
imaging [10, 12]. More recently, SGSR usage has received more attention in the analysis
of resting-state fMRI than in task-related fMRI studies [11]. Some studies suggest that
application of SGSR improves the functional specificity of resting-state correlation maps
and helps to remove non-neuronal sources of global variance like respiration and movement
[9, 11, 13]. However, other studies found that these improvements are limited to systems that
would exhibit only positive correlations with the specific selected seeds [9, 14]. On the other
hand, many studies have shown that the common preprocessing steps of removing GS via a
general linear model can create correlations between regions that may never have existed [15,
16, 17, 18], which results in spurious fcMRI values. Moreover, it has been shown that SGSR
do not consider the brain’s spatial heterogeneities and biases correlations in different regions
of the brain [18]. Accordingly, the extracted correlation maps are known to present artifacts
and do not reflect underlying neurological properties [15, 16, 17, 18]. Therefore, regressing
out GS is under debate as its removal by applying current approaches may introduce artifacts
into the fMRI data or cause the loss of important neuronal components [15, 16, 17, 18].

These concerns about the GSR methods and the need for accurate brain functional con-
nectivity maps motivate the need to develop new methods for dealing with GS. In particular,
a method is needed that can reveal accurate relationships between brain regions rather than
create spurious correlations and lose physiological information. Here, we define an adaptive
global signal regression (AGSR), which is voxel-specific, by performing a spatiotemporal de-
composition of the fMRI time series. The Spatial and Temporal Intrinsic Mode Functions
(SIMF and TIMF, respectively) of fMRI data are acquired by applying FATEMD [19] and
ICEEMDAN [20] methods, respectively. These methods are based on the empirical mode
decomposition (EMD) method [21, 22], and will be used to decompose the fMRI signals
adaptatively and in a voxel-specific way.

First, the averaged functional connectivity between the extracted peak signals of all brain
regions included in the AAL 116 atlas [23] for different TIMFs of each SIMFs over all subjects
is computed, obtaining functional connectivity matrices. We then computed the transitivity
and efficiency [24, 25, 26] of these matrices. Given the high value of transitivity and efficiency
in the low spatial maps (SIMF3, SIMF4, and SIMF5), our results suggest that these maps
can be considered as spatial global signal masks. The performance of the proposed method is
compared with the SGSR method, and also with the results when GS is not removed. This is
done by investigating the functional connections within an extracted peak voxel of the known
networks regions and the selected seed region. While the correlation pattern identified by
the other methods suffers from a low level of precision, our method demonstrates a high level
of accuracy due to its data-driven adaptive nature.
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2. Methods

2.1. fMRI data acquisition

The resting-state fMRI preprocessed data-set of 21 subjects from the NIH Human Con-
nectome Project (HCP) (https://https://db.humanconnectome.org) [27] is used in this
research. Each subject was involved in 4 runs of 15 minutes each using a 3 T Siemens, while
their eyes were open and had a relaxed fixation on a projected bright cross-hair on a dark
background. The data were acquired with 2.0 mm isotropic voxels for 72 slices, TR=0.72 s,
TE=33.1 ms, 1200 frames per run, 0.58 ms Echo spacing, and 2290 Hz/Px Bandwidth [28].
Therefore, the fMRI data were acquired with a spatial resolution of 2 × 2 × 2 mm and a
temporal resolution of 0.72 s, using multibands accelerated echo-planar imaging to generate
a high quality and the most robust fMRI data [28]. The fMRI data were temporally prepro-
cessed and denoised with a highpass filter and ICA-FIX approach [29, 30]. Furthermore, the
data were spatially preprocessed to remove spatial artifacts produced by head motion, B0
distortions, and gradient nonlinearities [31]. As comparison of fMRI images across subjects
and studies is possible when the images have been transformed from the subject’s native vol-
ume space to the MNI space [32, 33], fMRI images were wrapped and aligned into the MNI
space with FSL’s FLIRT 12 DOF affine and then a FNIRT nonlinear registration [34, 35, 36].
In this study, the MNI-152-2 mm atlas [37, 38, 39] was utilized for fMRI data registration.

2.2. Estimation of the Temporal IMFs (TIMFs)

EMD is an adaptive data-driven signal processing method, which does not need any
prior functional basis such as the wavelet transform [22]. The basic functions are derived
adaptively from the data by the EMD sifting procedure. The EMD method developed and
established by Huang et al. [21] decomposes nonlinear and non-stationary time series into
their fundamental oscillatory components, called Intrinsic Mode Functions (IMFs). There
are two criteria defining an IMF during the sifting process: 1) the number of extrema and
zero crossings must be either equal or differ at most by one, and, 2) at any instant in time,
the mean value of the envelope defined by the local maximum and the envelope of the local
minimum is zero. The EMD algorithm for estimating the IMFs of the time series x(t) is:

1. r0(t) = x(t), j = 1.

2. For extracting the j-th IMF:
(a) h0(t) = rj(t), k = 1,
(b) Locate local maximum and minimum of hk−1(t),
(c) Identify the averaged envelope using cubic spline interpolation to define upper and
lower envelope of hk−1(t),
(d) Calculate the mean value mk−1(t),
(e) Put hk(t) = hk−1(t)−mk−1(t),
(f) Check the stopping criteria. The stopping criteria determines the number of sifting
steps to decompose an IMF [21]. If stopping criteria is satisfied then hj(t) = hk(t)
otherwise, go to (a) to extract next IMF with k = k + 1.

3. rj(t) = rj−1(t)− hj(t).
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4. If at least two extrema were in the rj(t), the next IMF is extracted otherwise the EMD
algorithm is finished and rj(t) is the residue of x(t). Accordingly, x(t) is defined as:

x(t) =
n∑

j=1

hj(t) + rn(t), (1)

where hj(t) is the j-th IMF, n is the number of IMFs, and rn(t) is the residue of the
signal. Thus, the EMD method adaptively decomposes a time series into a set of IMFs
and a residue where the first IMF (IMF1) corresponds to the fastest oscillatory mode and
the last IMF (IMFn) to the slowest one [21, 40]. However, frequent occurrences of the
mode-mixing phenomenon in analyzing real signals using EMD algorithm is problematic. To
address this problem and improve the spectral separation of modes, the ensemble empirical
mode decomposition (EEMD) method was proposed [41]. This method extracts modes by
performing the decomposition over an ensemble of noisy copies of the original signal combined
with white Gaussian noises, and taking the average of all IMFs in the ensemble [20].

The EEMD method solves the mode mixing problem, but certain issues remain. First,
the number of IMFs extracted from each of the noisy signal copies is different, and this
creates a problem when averaging the IMFs. The second problem is a reconstruction error
in the EEMD method[20, 41]. To fix this error the complementary EEMD (CEEMD) was
proposed [42]. In the CEEMD algorithm, pairs of positive and negative white noise processes
are added to the original signal to make two sets of ensemble IMFs. Accordingly, the CEEMD
effectively eliminates residual noise in the IMFs which alleviate the reconstruction problem.
Nonetheless, the problem of the different number of modes when averaging still persists.
To overcome this problem, the CEEMD with adaptive noise (CEEMDAN) was developed
[20, 43]. In this approach, the first mode is computed exactly as in EEMD. Then, for the
next modes, IMFs are computed by estimating the local means of the residual signal plus
different modes extracted from the white noise realizations. CEEMDAN decomposition can
create some spurious modes with high-frequency and low-amplitude due to overlapping in the
scales. Additionally, some residual noise is still present in the modes. As a consequence, the
new optimization algorithm, Improved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (ICEEMDAN), was proposed [20].

During the sifting process using ICEEMDAN method the local mean of realizations is
estimated, instead of using the average of modes from the first step. This change in the
algorithm reduces the amount of noise present in the final computed modes. To deal with
the issue of creation of spurious modes in the final results, ICEEMDAN method proceeds
differently than the EEMD and CEEMDAN methods. In ICEEMDAN, white noise is not
added directly; instead EMD modes of white noise are added to the original signal and to the
IMFs during the sifting process [20, 41]. Furthermore, in this method as in CEEMDAN, a
constant coefficient is added to the noise that makes the desired signal to noise ratio between
the added noise and the residue to which the noise is added. This coefficient is computed
based on the standard deviation of the residue at each step of the sifting process. Therefore,
the IMFs computed with ICEEMDAN have less noise and more physical content than IMFs
obtained with other methods [20] (More detailed description of ICEEMDAN method can be
found at [20]). The high accuracy rate, reduction in the amount of noise contained in the
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modes, and the alleviation of mode mixing phenomenon qualify this method to effectively
decompose biological signals. In this paper the ICEEMDAN method with 300 ensembles
and a level of noise of 0.2 is used to extract the Temporal Intrinsic Mode Functions (TIMFs)
from the fMRI data.

2.3. Estimation of the Spatial IMFs (SIMFs)

A fast, time efficient, and effective method is essential for processing real images that
have a large size. Previous EMD-based methods were limited to small size images as the
extrema detection, interpolation at each iteration, and the large number of iterations make
their processing time consuming and complicated [19, 44, 45, 46]. Therefore, those methods
were just applicable to reduced size images, which resulted in losing some information during
their process. Fast and Adaptive Tridimensional (3D) EMD, abbreviated as FATEMD, is a
recent extension of the EMD method to three dimensions [19]. The FATEMD method is able
to estimate volume components called tridimensional Intrinsic Mode Functions (3D-IMFs)
quickly and accurately by limiting the number of iterations per 3D-IMF to one, and changing
the process of computing upper and lower envelopes, which reduce the computation time for
each iteration [19, 44, 46]. In the FATEMD method, the steps of extracting 3D-IMFs are
almost the same as the previous EMD based methods, except for the number of iterations
and the estimations of the maximum and minimum envelopes. The steps for decomposing a
volume V (m,n, p) with dimensions m,n, and p using the FATEMD approach are as follows
[19, 44]:

1. Set i = 1,Ri(m,n, p) = V (m,n, p).

2. Determine the local maximum and minimum values by browsing Ri(m,n, p) using a
3D window (cube) with a size of 3× 3× 3 which results in an optimum extrema maps
(Mapmax(m,n, p) and Mapmin(m,n, p)). These local maximum (or minimum) values
are strictly higher (or lower) than all of their neighborhoods contained in the cube.

3. Calculate the size of the Max and the Min filters which will be used in making extrema
envelopes and their smoothness. The maximum and minimum filters are made by
computing the nearest Euclidean distances between the maximum (dadj.max) (minimum
(dadj.min)) points. The cubic window width (wen) then is determined by using one of
the following four formulae for both maximum and minimum filters. Here, we used
the 4-th formula as outlined below, although using the other formulas will result in
approximately the same decomposition result:

wen = min {min{dadj.max},min{dadj.min}} ,
wen = min{max{dadj.max},max{dadj.min}},
wen = max{min{dadj.max},min{dadj.min}},
wen = max{max{dadj.max},max{dadj.min}}. (2)

4. Create the envelopes of maxima and minima (Envmax(m,n, p) and Envmin(m,n, p)) of
size (wen).

5. Use the mean filter to compute the smoothed envelopes:
Envmax−s(m,n, p) and Envmin−s(m,n, p).
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6. Calculate the mean filter by averaging the smoothed upper and lower envelopes(EnvA

(m,n, p)).

7. Calculate the ith 3D-IMF : IMFi(m,n, p) = Ri(m,n, p)− EnvA(m,n, p).

8. Calculate Ri+1(m,n, p) = Ri(m,n, p)− IMFi(m,n, p).

9. If Ri+1(m,n, p) contains more than two extrema then
Go to the step 2 and set i = i + 1,

Else
The FATEMD decomposition is completed.

Therefore, FATEMD is an adaptive approach as all of the processes for computing filters
and making the maximum, minimum, and the mean envelops are data driven. FATEMD
decomposes a volume into a set of 3D-IMFs [19]. In general, a volume V can be reconstructed
from the K 3D-IMFs and the residue as follows:

V (m,n, p) =
K∑
i=1

IMFi(m,n, p) + RK+1(m,n, p). (3)

K is the number of IMFs, and R(m,n, p) is the residue of the signal.
In this paper, we apply the FATEMD method at each time instant to decompose the

resting-state fMRI data into tridimensional IMFs called Spatial Intrinsic Mode Functions
(SIMF). Fig. (1) shows the spatial decomposition results of a sample resting-state fMRI
image. The ICEEMDAN method is then utilized to decompose each SIMF into its corre-
sponding TIMFs.

Figure 1: Spatial decomposition of a sample fMRI image using FATEMD method. The original fMRI image
at one TR time is decomposed into 5 SIMFs (SIMF1 to SIMF5) and a residue.
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2.4. Spatiotemporal pattern analysis of the fMRI data

To define an adaptive and voxel-specific GS, we investigate the spectral information
of fMRI data by constructing the functional connectivity matrices using extracted TIMFs
and SIMFs data. To fulfill this aim, first, the SIMFs of the fMRI data at each TR time
are computed by applying the FATEMD method, then, all spatial components are merged
together in time to construct the time series of each SIMF. Second, the peak voxel in each
region, that is, the voxel of maximal activation, is selected since it provides the best effect of
any voxel in the ROI [47]. Additionally, the peak voxel activity correlates better with evoked
scalp electrical potentials than approaches that average activity across the ROI. This means
that the peak voxel represents the ROIs activity better than other choices [48]. The peak
voxel in each region is determined using previously published Talairach coordinates (after
conversion to MNI coordinates and using AAL 116 atlas) [49]. After determining the peak
voxels of each region, the ICEEMDAN method is applied to its time series to compute the
TIMFs. Thus, the TIMFs of all regions for each SIMF are computed.

We then compare the predefined distinct frequency bands presented in fMRI studies
(slow5 [0.01-0.027 Hz], slow4 [0.027-0.073 Hz], slow3 [0.073-0.198 Hz], slow2 [0.198-0.25 Hz],
and slow1 [0.5-0.75 Hz]) [50, 51], to the frequency content of the extracted TIMFs. As seen
in the Fig. (2), the frequency range comprised in TIMF1 to TIMF3 is approximately the
same as the frequency range of the combination of slow1 to slow3. The frequency range
of TIMF4 is the same as slow4, and the frequency range of the combination of TIMF5 to
TIMF9 has the same frequency range as the slow5 frequency band. Accordingly, we label
the combination of TIMF1 to TIMF3 as TIMF1, TIMF4 as TIMF2, and the combination of
TIMF5 to TIMF9 as TIMF3. Fig. (3) represents the pipeline used in computing SIMF and
TIMF for each resting-state fMRI data. Accordingly, the functional connectivity matrices
are constructed by computing the average of correlation coefficients between all possible pairs
of TIMFs correspond to different Spatial domains for all brain regions comprised in the AAL
116 atlas over all 21 subjects. Consequently, instead of the classical functional connectivity
matrix, the decomposition presented here produces 5 × 3 = 15 connectivity matrices (each
with size 116 × 116), 3 temporal domains and 5 spatial domains, encompassing the rich
spatiotemporal dynamics of brain activity.

2.5. Integration and segregation of functional connectivity matrices

In studying brain networks, the efficiency of the information exchange in the network is
examined at two scales, global and local. Generally, integration is based on the concept of
a path between regions that estimates the simplicity of the brain regions’ communication
[24, 25]. The efficiency between two nodes is defined by computing the shortest path length.
The shortest path length is computed by counting the smallest number of edges needed to
get from node i to node j. The shortest path length is inversely related to node weight,
as strong association has a large weight which shows a shorter length and close proximity.
Functional connectivity matrices provide the information needed to estimate the weight and
the shortest path length between all pairs of brain regions [24, 26].

The global efficiency, a measure of network’s integration, is computed by taking the
average inverse of the efficiency of all the node pairs of the network that is normalized by
the maximal number of network’s links. Therefore, the weighted global efficiency measures
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Figure 2: Temporal IMFs and their corresponding frequency spectrum. a) 9 decomposed TIMFs of a sample
SIMF by applying the ICEEMDAN method with 300 ensembles and a level of noise of 0.2. b) Represents the
frequency spectrum of the 9 TIMFs. c) The 9 decomposed TIMFs are divided into three different frequency
bands. According to slow1 to slow3 and slow5 frequency bands defined in the literature, TIMFs1 to 3
and 5 to 9 are combined, respectively. d) The frequency spectrum of TIMFs in part (c) that correspond to
frequency bands used in the literature for slow1 to slow5 [50, 51]. TIMF : Temporal Intrinsic Mode Function,
ICEEMDAN: Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise.
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Figure 3: Pipeline for computing spatial and temporal IMFs (SIMF and TIMF) of the fMRI data. a) A
sample of fMRI data. b) Splitting each fMRI data in time at each TR time. c) SIMFs at each TR time
which are computed by applying FATEMD approach. d) Shows the AAL 116 atlas used after merging
SIMFs in time to select the peak voxel of each region. e) Time series of all brain ROIs for each SIMF.
f) The TIMFs’ time series of a sample SIMF for one ROI computed by using ICEEMDAN approach. g)
Combination of time series of the TIMFs in (f) based on frequency bands of slow1 to slow5 defined in the
literature. The combination of the TIMF1 to TIMF3 , TIMF4, and the combination of TIMFs5 to TIMF9
are labeled as TIMF1, TIMF2, and TIMF3 in the rest of the paper, respectively. rfMRI: resting-state fMRI,
TIMF: Temporal Intrinsic Mode Function, SIMF: Spatial Intrinsic Mode Function, ICEEMDAN: Improved
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, FATEMD: Fast and Adaptive
Empirical Mode Decomposition, ROI: Region of Interest.
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how efficient the brain is able to combine information from different brain regions and is
computed via the following equation:

Ew =
1

N(N− 1)

N∑
j=1

N∑
i=1,i6=j

(dij
w)
−1
, (4)

where N is the number of nodes in the network and dij is the minimum path length between
nodes i and j. When two nodes are disconnected the length of that path would be infinite and
correspondingly, the efficiency would be zero [24, 25]. On the other hand, the local efficiency
measures the averaged efficiency of information transfer in the neighboring nodes of the node
i in network excluding node i itself. It is associated with functional segregation of the network
and characterization the pattern of local anatomical circuitry [25, 26]. In other words, local
efficiency shows the presence of clusters and modules (interconnected groups) within the
network. Clustering coefficient of the network is defined as the fraction of triangles around
each node. The mean clustering coefficient for the network shows the clustered connectivity
around each node of the network. The normalized and classical variant of the clustering
coefficient known as transitivity is an important source of high clustering coefficient in real-
world networks which is defined for individual node and describe the presence of densely
interconnected groups of regions [52]. The weighted transitivity is computed as:

Trw =

∑N
i=1 2twi∑N

i=1 ki(ki − 1)
, (5)

where the ti is the number of triangles around node i and ki is the degree of the node i
[24, 26]. We compute the integration and segregation of functional connectivity matrices to
assess the power of communication and the density of interconnected groups of brain regions
under different conditions.

3. Results

3.1. Defining Adaptive Global Signal (AGS)

We computed the functional connectivity matrices between all pairs of brain regions
for different spatiotemporal domains extracted from fMRI data for each subject. Fig. (4)
shows the average connectivity matrix over the 21 subjects. As seen in the figure, SIMF1
and SIMF2 in all TIMFs showed low connectivity whereas SIMF3 to SIMF5 in all TIMFs
showed high connectivity. Besides, it indicates that the magnitude of the correlation does not
significantly depend on the TIMFs. Thus, based on the connectivity strength for different
spatiotemporal domains, the combination of the SIMF1 to SIMF2 and the SIMF3 to SIMF5
including all TIMFs, were considered as two separate signals. We also averaged the six
connectivity matrices resulting from the combination of TIMF1 to TIMF3 with SMF1 and
SMF2 (Fig. (4)) and labelled it as AGSR (Fig. (5a)), and the nine connectivity matrices
resulting when combining TIMF1 to TIMF3 with SIMF3 to SIMF5, which we labelled as
AGS (Fig. (5b)). Finally, we computed the average connectivity matrix over resting-state
fMRI data of all subjects when no GSR was performed (Fig. (5c)) and labelled it as NR (No
Regression).
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Figure 4: Functional connectivity matrices of the whole brain regions using AAL 116 atlas for different
spatial and temporal IMFs. Pearson’s correlation coefficient (r) with P ≤ 0.01 is computed between all the
brain regions’ spatiotemporal domains extracted from fMRI data. Spatial domains are extracted by applying
FATEMD method on fMRI signal. The three temporal domains including TIMF1, TIMF2, and TIMF3 are
computed by applying ICEEMDAN on each SIMF. SIMF: Spatial Intrinsic Mode Function, TIMF: Temporal
Intrinsic Mode Function, ICEEMDAN: Improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise, FATEMD: Fast and Adaptive Empirical Mode Decomposition.

Figure 5: Averaged functional connectivity matrices of the whole brain regions using AAL 116 atlas over all
subjects. a) Averaged connectivity matrix of fMRI data when NR is done, b) Averaged connectivity matrix
of fMRI data applying AGSR which means the connectivity matrix of combination of SIMF1 and SIMF2
with all TIMFs of the fMRI data, and c) connectivity matrix of the AGS which is the combination of SIMF3
to SIMF5 with all TIMFs. NR: No Regression, AGSR: Adaptive Global Signal regression, AGS: Adaptive
Global Signal, SIMF: Spatial Intrinsic Mode Function, TIMF: Temporal Intrinsic Mode Function.
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We also computed the transitivity and efficiency for different spatial and temporal IMFs
using Eq. (4) and Eq. (5) and also based on functional connectivity results (Figs. (6a), (6b)).
Figs. (6a), (6b) show that there are high level of transitivity, and efficiency in the low
frequencies of spatial domains, SIMF3, SIMF4, and SIMF5, which indicate active shared
connections between all the nodes in the brain, suggesting the existence of GS in the low-
frequency spatial domain, called Adaptive Global Signal(AGS).

As seen in Figs. (6c), (6d), and Table (1) the magnitude of averaged transitivity and
efficiency of the combination of SIMF1 and SIMF2 with TIMF1 to TIMF3 are almost the
same as when no GS is removed from the fMRI time series.

Figure 6: Map of transitivity and efficiency. a) Transitivity and b)Efficiency of the whole brain network
for different spatial and temporal IMFs defined in functional connectivity. Comparing the magnitude of c)
averaged transitivity and d) averaged efficiency of the brain network over all subjects when the GS from
the resting-state fMRI data is not removed, when the AGS is removed (combination of SIMF3 to SIMF5
in all TIMFs is removed from the fMRI signal), and the averaged transitivity and efficiency of the AGS
(combination of SIMF3 to SIMF5 in all TIMFs). High values for transitivity and efficiency in the SIMF3 to
SIMF5 which represent the AGS in the fMRI data are seen in the figures. NR: No Regression, GS: Global
Signal, AGS: Adaptive GS.

Table 1: Integration and segregation of functional connectivity matrices under different conditions (NR,
AGSR, and AGS). The averaged transitivity and efficiency of the brain network over all subjects, when
the NR and the AGSR are performed, and the averaged transitivity and efficiency of the AGS. NR: No
Regression, AGS: Adaptive Global Signal, AGSR: AGS Regression.

Network Measure Label Interpretation Value

Transitivity NR The brain network’s averaged transitivity when NR is performed 0.1903± 0.0513

Transitivity AGSR The brain network’s averaged transitivity when AGSR is performed 0.1902± 0.0510

Transitivity AGS The brain network’s averaged transitivity of the AGS 0.8766± 0.0461

Efficiency NR The brain network’s averaged efficiency when NR is performed 0.2252± 0.0496

Efficiency AGSR The brain network’s averaged efficiency when AGSR is performed 0.2325± 0.0480

Efficiency AGS The brain network’s averaged efficiency of the AGS 0.8850± 0.0417

This implies that the low frequency spatial domains do not play a significant role in the
magnitude of integration and segregation of the brain’s networks and just cause spurious
connectivity results between brain regions. Furthermore, a high level of integration and
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segregation in these domains (Figs. (6c), (6d), and Fig. (5b)) confirm that they can be
considered as a GS which has to be removed from the fMRI data to have accurate results.

3.2. Regressing out the AGS and SGS from fMRI data

According to the definition of AGS, for each brain voxel signal, there is a corresponding
AGS while the SGS is common for the whole brain voxels. The AGS for each voxel is
computed by summing up the SIMF3, SIMF4, and SIMF5 with all TIMFs while the SGS is
computed by taking the average of all brain voxels’ time series. It should be noted that in
computing AGS, the residues of spatiotemporal decomposition of the fMRI data are added
to last TIMF and SIMF. The three time courses in Figs. (7a), (7b), and (7c) correspond
to the AGS, the fMRI sample time course (the peak voxel’s time course in Lateral Parietal
cortex (LP) ROI), and the conventional or Static GS (SGS), respectively. Figs. (7d) and (7e)
show resting-state fluctuations of the sample fMRI time series from LP ROI after regressing
out the AGS and the SGS.

3.3. Connectivity map of task-positive and task-negative networks

The default mode network is a state of brain activation whereby the individual is not
attending to any external cues in the environment but certain brain regions are still activated
and they are less active during task performance rather than during the resting-state. It has
been shown that [49] the default network responses are significantly activated in three of
the seeded regions: the Posterior Cingulate Cortex (PCC), Medial Prefrontal cortex (MPF),
and Lateral Parietal cortex (LP). The efficacy of our approach is examined by computing
the connectivity map. We computed the averaged connectivity between the time course of
the PCC region as a seed region and the main regions of the Task Positive Network (TPN)
which are the Middle Temporal (MT), right Frontal Eye Field (FEF), left Intraparietal Sulcus
(IPS), Visual regions, and the left Auditory region and the Task Negative Network (TNN)
ROIs which are MPF, PCC, and left LP which includes the Angular Gyrus, Hippocampus,
and Cerebellar tonsils ROIs [7, 9].

Considering the AGS definition, the summation of the SIMF1 and SIMF2 was used to
compute the functional connectivity between PCC and TNN and TPN including visual ROIs
by using the Pearson’s correlation coefficient (r), P ≤ 0.01. Fig. (8) is functional connectivity
brain map for different brain layers along the Z axis which show the mean connectivity over
all subjects between brain regions and the PCC ROI as a seed region when the AGSR, NR,
and the SGSR are performed.

Functional connectivity between different ROIs in Fig. (9), show correct averaged con-
nectivity between the PCC ROI and different regions of the TPN and the TNN applying the
new approach of GS in resting-state fMRI data.

While the NR and SGSR (conventional GSR which is based on averaging) are unable
to identify the accurate connectivity in some regions for TPN and TNN ROIs, the AGSR
approach obtains correct functional connectivity for all regions in TNN and TPN which
confirms the effectiveness of the proposed method for GSR (Fig. (9)). As AGSR is an
adaptive and voxel-specific method, we have a unique local signal for each voxel which by
being removed from fMRI data augments the precision of the rsfc-MRI results.
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Figure 7: AGSR and SGSR of a sample fMRI data. a) The voxel-specific AGS and b) the original fMRI time
series of the peak voxel in lateral parietal(LP) cortex region. c) The SGS which is common for all region’s
voxels. d, e) show the time series with the SGSR and AGSR in a time window of 400 s, respectively. These
time series are computed by subtracting the AGS and SGS from the original time series. The first 400 time
points are shown in the figure for illustration purposes. LP: Lateral Parietal cortex, AGS: Adaptive Global
Signal, SGS: Static(conventional) Global Signal, AGSR: AGS Regression, SGSR: SGS Regression.
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Figure 8: Comparing the averaged functional connectivity between the PCC ROI as a seed region and the
brain ROIs using the AAL 116 atlas for fMRI data of all subjects. The averaged functional connectivity
applying a) AGSR, b) NR, and c) SGSR. Slices shown in the maps are at Z = 09, 15, 25, 35, 45, 55, 65, 75,
respectively. AGSR: Adaptive Global Signal Regression, NR: No Regression, SGSR: Static (conventional)
Global signal regression.

Figure 9: The averaged connectivity map between the PCC as a seed region and a) the TPN and b) TNN
ROIs for fMRI data of all subjects. Connectivity results of applying AGSR and SGSR are shown in green
and red, respectively, and the blue ones are the results of computing connectivity without applying any GSR
(NR). Connectivity map is made by computing Pearson’s correlation coefficient (r) with P ≤ 0.01 between
the PCC region as a seed region and the main regions of the TPN and TNN. PCC: Posterior Cingulate
Cortex, MPF: Medial Prefrontal cortex, LP: Lateral Parietal cortex, MT: Middle Temporal, FEF: Frontal
Eye Field, IPS: Intraparietal Sulcus, ROI: Region Of Interest, NR: No Regression, AGS: Adaptive Global
Signal Regression, SGS: Static (conventional) Global Signal Regression.
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4. Discussion

In contrast to previous works [9, 10, 11], the present study provides a new method for
GSR, called AGSR, that works voxel-specifically and adaptively. It is believed that fMRI
data are a superposition of the GS and network-specific fluctuations. However, the main
reason for the controversy over the use of GS in fMRI studies is that the average-based GS is
a mixture of signals from multiple brain regions without considering the possibility of spatial
heterogeneity in the GS [9, 14, 16, 17, 18]. It has been shown that regressing out average-
based GS results in negative correlations that do not have a biological basis and are artifacts
in the voxels’ time series which lead to spurious findings [9, 16, 17]. In this paper, we showed
that the AGSR method works voxel specifically and computes the neuronal correlations of
the brain’s networks more accurately. This is because using the EMD method in computing
AGS maximizes the spatial contributions to the GS. In other words, decomposing fMRI data
in space using the FATEMD approach, which is done by considering features of each voxel’s
neighbours, makes the computed AGS sensitive to brain regions’ heterogeneity.

When assessing transitivity and efficiency for different spatiotemporal domains of the
fMRI data, no large differences in different temporal IMFs at the same spatial IMF were
obtained. Thus, we concluded that the variability of transitivity and efficiency were just
related to the spatial frequency domains. The high values of the transitivity and efficiency
in the low spatial frequencies demonstrated the existence of the GS. On the other hand,
high spatial frequencies, SIMF1 and SIMF2, represented the most network-specific data.
Accordingly, the low spatial frequencies, SIMF3 to SIMF5 including all TIMFs, were con-
sidered as the AGS. Moreover, the observed averaged transitivity and efficiency values in
the high spatial frequency domains were almost the same as the transitivity and efficiency
values when GS is not removed from the fMRI time series. Considering these result, the
summation of the low spatial frequency domains considered as the GS in the fMRI data just
causes incorrect correlation between regions in the brain’s network and prevents reflecting
the intrinsic property of the spatiotemporal nature of the fMRI data.

We examined the efficacy of our method by computing the seed-based functional con-
nectivity for the TPN and TNN regions. Our results in agreement with previous studies
[9, 53, 54], show that the negative correlations are intrinsic to the brain and do not appear
just as a result of the GSR. We found that the AGSR method identifies the connectivity be-
tween the TPN and TNN regions according with the expected results of prior studies [9, 49].
We compared the connectivity results of the AGSR with the SGSR and when there is NR
in the fMRI data. Despite the connectivity results of the SGSR method and when there is
NR, applying our proposed method resulted in an enhancement to the detection of network-
specific fluctuations of the brain. Furthermore, although the strength of the correlations is
related to cognitive function, it has been shown [55] that the activity of the visual regions
with the eyes-open rest condition is larger than with the eyes-closed rest condition. Our
results showed high activation in visual regions in respect to the results of the SGSR and
NR which were close to zero activity. In contrast, in auditory regions, lower activity seen
in the result of applying AGSR appears to be related to the better removal of the acoustic
noise heard by subjects during fMRI. This shows that the acoustic noise of the fMRI device
which is almost constant in all TR times and interferes with auditory system activity can
be removed through AGSR [56, 57]. Thus, AGSR method is able to correctly remove phys-
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iological and remained systemic noises after preprocessing without introducing artifactual
correlations as confirmed by correlations between PCC and the reference regions.

In conclusion, AGS is a unique local signal for each voxel’s BOLD signal. In the AGSR
method, the first and second spatial IMFs of each fMRI data, decomposed by FATEMD
method, are simply summed up to have an fMRI data without GS. AGSR is a reliable method
that works voxel-specifically for all subjects which leads to extract correct connectivity maps
and provide accurate information about brain function.

There are some limitations to this Study, and alternative recommended strategies for fu-
ture work that should be noted. In AGSR, the FATEMD and the ICEEMDAN approaches
are applied to decompose the fMRI time series into their components to define the AGS.
The FATEMD and the ICEEMDAN approaches are trivariate and univariate algorithms,
respectively, while there is a multivariate EMD which is the extent of the EMD, applied for
multivariate signal processing and can be utilized to decompose and process fMRI signals
multivariately. Thus, instead of applying the FATEMD to compute SIMFS and then the
ICEEMDAN method to compute TIMFs, it is possible to apply the MEMD to each fMRI
image and compute spatiotemporal IMFs (STIMF). Although the multivariate analysis does
not have volume nature and decompose the volume into one-dimensional signals [19], the sen-
sitivity is increased by combining all data. MEMD by revealing possible inter-dependencies
between signals provides useful information about the structure of their underlying system
and helps to understand the complex organization of the brain.

Furthermore, in computing functional connectivity, we computed the Pearson’s correla-
tion due to its simplicity and popularity. It also allows our findings to be comparable with
other papers to test the efficacy of the proposed method. The Pearson’s correlation is used
to compute the correlation coefficient between different regions to investigate how different
brain regions are correlated with each other. It should be mentioned that the Pearson’s
correlation assesses the strength of the linear relationship between two variables and is not
able to indicate possible nonlinear relationships. In future work, we can use other correla-
tion approaches that are sensitive to nonlinear relationships and are able to provide more
detailed information. Besides, correlation computation does not imply causation. Causal
relation computations can be used to investigate if a region or regions that are activated are
caused by activation of other regions, because it is possible that some regions of the brain
are activated together and correlate with each other, but does not mean one caused the
others’ activation. Therefore, causality measurements by providing more information about
how different brain regions are related to each other increase our knowledge about how the
brain works and information flows in the brain networks. Thus, future work is needed to
clarify the influence of other approaches.

Lastly, although the FATEMD and ICEEMDAN are optimized approaches for finding
the best IMF sets, they still need more improvement in the sifting procedure to reduce the
time of the calculation and to yield better decomposition performance. For instance, finding
the optimum values of added white noise and the ensemble number to overcome the mode
mixing problem and speed up the calculation in ICEEMDAN approach are two drawbacks
of this approach. Therefore, the proposed method provides the opportunity to characterize
the whole brain function. Future studies can be devoted to the application of our proposed
method to the other image processing areas.
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