
Spread of pathological tau proteins through

communicating neurons in human Alzheimer’s disease

Jacob W. Vogela,∗, Yasser Iturria-Medinaa, Olof T. Strandbergb, Ruben
Smithb, Alan C. Evansa,∗∗, Oskar Hanssonb,c,∗∗, for the Alzheimer’s Disease

Neuroimaging Initiative, and the Swedish BioFinder Study

aMontreal Neurological Institute, McGill University, Montréal, QC, Canada
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Abstract

Tau is one of the two pathological hallmarks of Alzheimer’s disease, and
bears a much closer relationship to local neurodegeneration and cognitive
impairment than the other hallmark, β-amyloid. Cell and rodent models
have shown evidence that tau spreads from cell to cell through anatomical
neuronal connections, and that this process is facilitated by the presence of β-
amyloid. We test this hypothesis in humans by using an epidemic spreading
model (ESM) to simulate the spread of tau over human neuronal connec-
tions, and we compare the simulated pattern of progression to the observed
pattern measured in the brains of 312 individuals on the Alzheimer’s dis-
ease spectrum, using PET. Fitting our model, we found that the majority
of variance in the overall pattern of tau progression could be explained by
diffusion of an agent through the human connectome, measured using either
functional connectivity or diffusion tractography. These models far exceeded
chance, and outperformed models testing the extracellular spread of tau over
Euclidian space. Surprisingly, the ESM predicted the spatial patterns of tau
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irrespective of whether subjects demonstrated evidence for brain β-amyloid.
In addition, in β-amyloid-positive subjects only, regions with greater amyloid
burden showed greater tau than predicted by connectivity patterns, suggest-
ing a role of amyloid in accelerating the spread of tau in certain isocortical
regions. Altogether, our results provide strong evidence that tau spreads
through neuronal communication pathways even in normal aging, and that
this process is accelerated by the presence of brain β-amyloid.
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1. Introduction1

Alzheimer’s disease is characterized by the presence of β-amyloid plaques2

and neurofibrillary tangles of hyper-phospohrylated tau at autopsy. Both of3

these pathological phenomena can now be quantified spatially in the brains4

of living humans using positron emission tomography (PET), allowing for5

the study of disease progression before death and, indeed, before symptoms6

manifest [1]. β-amyloid plaques are detectable in the brain many years or7

even decades before dementia onset [2], but appear to have only subtle effects8

on cognition and brain health in humans [3, 4, 5, 6], if any. In contrast, tau9

neurofibrillary tangles are strongly correlated with local neurodegeneration10

and, in turn, cognitive impairment [7, 8]. However, tau tangle aggregation11

in the medial temporal lobes is a common and fairly innocuous feature of12

normal aging [9, 10, 11]. Frank cognitive impairment often coincides with13

the spreading of tau tangles out of the medial temporal lobes and into the14

surrounding isocortex, a process that animal models have suggested may be15

potentiated or accelerated by the presence of β-amyloid plaques [12, 13].16

Due to its close link with neurodegeneration and cognitive impairment,17

tau has received special attention as a potential therapeutic target for Alzheimer’s18

disease [14]. Perhaps the most compelling features of tau pathophysiology19

are its rather focal distribution of aggregation and its highly stereotyped20

pattern of progression through the brain. Specifically, neurofibrillary tangles21

first appear in the transentorhinal cortex, before spreading to the anterior22

hippocampus, followed by adjacent limbic and temporal cortex, association23

isocortex, and finally to primary sensory cortex [15, 10, 16, 17]. This very24

particular pattern has led many to speculate that pathological tau itself,25

or a pathological process that incurs tau hyper-phosphorylation and toxicity,26

may spread directly from cell to cell through anatomical connections [18, 19].27

Strong evidence in support of this hypothesis has come from animal models,28

which have repeatedly demonstrated that human tau injected into the brains29

of β-amyloid expressing transgenic rodents leads to the aggregation of tau in30

brain regions anatomically connected to the injection site [20, 21, 22, 23, 12].31

An important caveat to the aforementioned studies is that they involve in-32

jection of tau aggregates that greatly exceed the amount of tau produced33

naturally in the human brain. In addition, the studies were performed in34

animals that do not get Alzheimer’s disease naturally.35

Unfortunately, there are many obstacles to studying the tau-spreading36

hypothesis in humans. While autopsy studies have provided evidence for tau37
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spreading [24, 25], this evidence comes in the form of limited snapshots in38

deceased individuals. Tau-PET allows for the quantification of tau in vivo,39

but the PET signal is contaminated by off-target binding that limit interpre-40

tations [26, 27, 28, 29]. Despite this limitation, circumstantial evidence has41

emerged supporting the hypothesis that tau spreads through connected neu-42

rons in humans. Studies decomposing the spatial distribution of tau-PET43

signal in the human brain have revealed spatial patterns highly reminis-44

cent of brain functional networks [30, 31]. In addition, brain regions with45

greater functional connections to the rest of the brain tend to have greater46

tau accumulation [32], and correlations have been found between functional47

connectivity patterns and tau covariance patterns [33, 34].48

Despite mounting evidence linking brain connectivity and tau expression,49

the aforementioned studies mostly involve either comparisons between coarse50

whole-brain measures of tau and brain connectivity, or are limited to only51

a fraction of brain connections. The initial seeding of tau in the cortex is52

thought to lead subsequently to secondary seeding events that cascade sys-53

tematically through the cerebral cortex. Therefore, it is paramount that54

studies assessing the spread of tau through the brain can effectively model55

the complex spatio-temporal dynamics of this process. Therefore, we test the56

tau-spreading hypothesis by placing a ”tau seed” in the entorhinal cortex,57

simulating its diffusion through measured functional and anatomical connec-58

tions, and comparing the simulated pattern of global tau spread with actual59

pattern derived from tau-PET scans of 312 individuals. This method allows60

for a cascade of secondary tau seeding events to occur along a network over61

time, more closely simulating proposed models of tau spread in the brain. We62

then examine how the behavior of our model interacts with brain β-amyloid.63

2. Materials and Methods64

2.1. Participants65

Participants of this study represented a selection of individuals from two66

large multi-center studies: the Swedish BioFinder Study (BioF; http://biofinder.se/)67

and the Alzheimer’s Disease Neuroimaging Initiative (ADNI; adni.loni.usc.edu).68

Both studies were designed to accelerate the discovery of biomarkers indi-69

cating progression of Alzheimer’s disease pathology. Participants were se-70

lected based on the following inclusion criteria: participants must i) have an71

AV1451-PET scan, ii) have either a β-amyloid-PET scan (for ADNI: [18F]-72

Florbetapir, for BioF: [18F]-Flutemetamol) or lumbar puncture measuring73
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Table 1: Demographic information.

CN MCI AD Total
n 162 89 61 312
Age (SD) 72.0 (6.4) 70.84 (7.8) 72.0 (7.9) 71.7 (7.1)
% Women 45.1% 64.0% 58.6% 53.1%
Education (SD) 14.8 (3.6) 15.3 (3.7) 12.8 (3.9) 14.6 (3.8)
% ApoE4 41.9% 58.4% 68.5% 51.7%
% Amyloid Positive 42.6% 64.0% 100.0% 66.2%

CN = cognitively normal; MCI = mild cognitive impairment; AD =

Alzheimer’s disease dementia, SD = Standard Deviation

CSF β-amyloid1-42. In addition, participants were required to be cogni-74

tively unimpaired, have a clinical diagnosis of mild cognitive impairment, or75

have a clinical diagnosis of Alzheimer’s dementia with biomarker evidence76

of β-amyloid positivity. For both cohorts separately, PET-based β-amyloid77

positivity was defined using a previously described mixture modeling pro-78

cedure [5]. For BioFINDER, β-amyloid1-42 positivity was defined as an79

(INNOTEST) level below 650ng/L [35]. All participants fitting the inclusion80

criteria with AV1451 scans acquired (BioFINDER) or that were available for81

public download (ADNI) in May 2018 were included in this study. In total82

across both studies, 162 cognitively unimparied individuals, 89 individuals83

with mild cognitive impairment and 61 amyloid-positive individuals with sus-84

pected Alzheimers dementia were included. Demographic information can be85

found in Table 1.86

2.2. PET Acquisition and Pre-processing87

MRI and PET acquisition procedures for ADNI (http://adni.loni.usc.edu/methods/)88

and BioF [36] have both been previously described at length. All AV1451-89

PET scans across studies were processed using the same pipleine, which has90

also been previously described [36, 31]. Briefly, 5-min frames were recon-91

structed from 80-100 minutes post-injection. These frames were re-aligned92

using AFNIs 3dvolreg (https://afni.nimh.nih.gov/) and averaged, and the93

mean image was coregistered to each subject’s native space T1 image. The94

coregistered image was intensity normalized using an inferior cerebellar gray95

reference region, creating standard uptake value ratios (SUVR).96
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2.3. Transformation of PET data to regional tau-positive probabilities97

Mean regional tau-PET SUVRs were extracted from each individual’s98

native space PET image using the Desikan-Killiany atlas [37], an 83-region99

atlas based on structural morphometry. All cerebellar regions were removed100

from the atlas, leaving 78 regions in total. Previous AV1451-PET studies101

have noted considerable off-target binding of the AV1451 signal, leading to102

signal in regions without pathological tau burden, and likely to pollution103

of signal in regions accumulating tau [26, 27, 29, 31]. While many previous104

studies have ignored these issues, accounting for off-target binding is essential105

to the current study, as our model cannot distinguish off-target from target106

signal, and we are not interested in the propagation of off-target signal. To107

address this issue, we utilized regional Gaussian mixture modeling under the108

assumption that the target and off-target signal across the population are109

distinct and separable Gaussian distributions (Fig 1A).110

As most individuals do not have tau in most regions, pathological signal111

should show a skewed distribution across the population, whereas off-target112

and non-specific signal should be reasonably normally distributed. Such a113

bimodal distribution has been observed for β-amyloid, and mixture modeling114

has been used in this context to define global β-amyloid positivity [38, 39].115

Our approach differs from these previous studies as we do not assume the dis-116

tribution of target and off-target binding to be homogeneous across cortical117

areas – we apply Gaussian mixture modeling separately to each region-of-118

interest (Fig 1A). Specifically, for each region, we fit a one-component and119

a two-component Gaussian mixture model across the entire population. We120

compare the fit of the two models using Aikake’s information criterion. If a121

two-component model fits the data better, this likely indicates the presence122

of pathological tau in a proportion of the population, and the Gaussians fit123

to the data provide a rough estimate of an SUVR threshold, above which124

AV1451 signal has a high probability of being abnormal. If a one-component125

model fits better, this indicates the AV1451-PET signal within the region is126

roughly normally distributed across the population, which we do not expect127

for tau in a population including many cognitively impaired individuals. Re-128

gions showing a unimodal distribution are therefore discarded from the ESM129

model, as neurofibrillary tau tangles are likely not expressed in that region130

within the sample. Furthermore, since the ESM receives regional (tau) prob-131

abilities as input, we calculate the probability that a given subject’s ROI132

SUVR value falls onto the second (i.e. right-most) Gaussian distribution133

using repeated five-fold cross-validation. Assuming this second distribution134
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represents the subjects with abnormal AV1451 signal, this value estimates the135

proximity of a subject to the pathological distribution. Effectively, this con-136

verts regional SUVRs to regional tau-positive probabilities. This approach137

defines a fairly conservative, data-driven threshold for SUVR values, above138

which, one can assume the presence of abnormal signal (perhaps indicating139

pathological tau accumulation) with a high degree of confidence.140

2.4. Connectivity measurements141

The overall pattern of spread simulated by the Epidemic Spreading Model142

(see next section) is determined by the relationship matrix, which represents143

pairwise relationships between each region-of-interest. Indeed, this is the sys-144

tem through which the simulated signal will diffuse. Varying the relationship145

matrix can, for example, allow for the tests of different hypotheses of spread.146

We use a functional connectivity matrix generated from a group of young147

healthy controls to test the hypothesis that tau spreads through communi-148

cating neurons. We validate this procedure using anatomical connectivity149

measurements generated from healthy and impaired older adults. Finally,150

we test the hypothesis of tau spreading through extra-cellular space by using151

a Euclidian distance matrix as input.152

Functional connectivity measurements were generated from a subsample153

of young healthy controls from the COBRE dataset [40], a publicly available154

sample which we accessed through the Nilearn python library. All subjects155

listed as healthy controls under the age of 40 were selected, totaling 74 in-156

dividuals. The images were already preprocessed using the NIAK resting-157

state pipeline (http://niak.simexp-lab.org/pipepreprocessing.html), and ad-158

ditional details can be found elsewhere [40]. Correlation matrices were gen-159

erated by finding the correlation between timeseries’ of each pair of regions-160

of-interest from the Desikan-Killiany atlas, and all available confounds were161

regressed from the correlation matrices. We took the mean of all 74 cor-162

relation matrices to create an average healthy connectome template. This163

connectome was then thresholded so as to only retain the top 10% of con-164

nections, and transformed so all values fell between 0 and 1.165

To validate our findings, we created a template structural connectiv-166

ity matrix using DTI tractography data from a non-overlapping sample of167

healthy and cognitively impaired individuals from ADNI. In total, 204 indi-168

viduals had one or more DTI scans available, for a total of 540 scans. All169

scans were preprocessed with a previously described diffusion tractography170

pipeline [41], and acquisition and processing information has been described171
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in detail [42]. Briefly, orientation distribution functions (ODF) were calcu-172

lated and in turn used to generate deterministic connections between pairs173

of brain regions from the Desikan atlas. Specifically, an ACD measure was174

used, representing the total proportion of regional surface area (across both175

regions) that contain connecting fibers between the two regions. All images176

were assessed for quality. Connectomes were averaged across all subjects177

resulting in a template structural connectome in aging.178

To create a Euclidian distance matrix, we calculate the coordinate repre-179

senting the center of mass for each region of interest, and found the Euclidian180

distance between it and the center of mass of every other ROI. By using this181

distance matrix in the epidemic spreading model, we test the hypothesis that182

tau diffuses radially across adjacent cortex, rather than through connected183

regions.184

2.5. The Epidemic Spreading Model185

The spread of tau through connected brain regions was simulated us-186

ing the Epidemic Spreading Model (ESM), a previously described diffusion187

model that has been applied to explain the spread of β-amyloid through the188

brain [43]. The ESM simulates the diffusion of a signal from an epicenter189

through a set of connected regions over time (Fig 1B,C). The dynamics of190

the spreading pattern are controlled by the weighted connectivity between191

regions, and by a set of parameters fit within-subject, the latter of which are192

solved through simulation. Specifically, the parameters represent subject-193

specific i) global tau production rate, ii) global tau clearance rate and iii)194

age of onset, which interact with regional-connectivity patterns to determine195

the velocity of spread. The ESM is simulated over time for each subject196

across several parameter sets, and the set that produces the closest approx-197

imation to observed tau burden for a given subject is selected. Note that198

these parameters themselves do not control regional patterning, which is the199

metric by which the accuracy of the model is evaluated (see below). Instead,200

the free parameters moderate the overall tau burden (i.e. the stopping point),201

which allows the ESM to be fit to individuals across the Alzheimer’s disease202

spectrum. For example, an individual with little-to-no tau burden would203

likely be fit with a balance of production and clearance rates that would pre-204

clude the overproduction and spread of tau signal (Fig 1C). A detailed and205

formalized description of the ESM can be found elsewhere [43].206

In previous applications of the ESM, the model is fit over every possible207

epicenter as well as combinations of epicenters, and the epicenter providing208

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/555821doi: bioRxiv preprint 

https://doi.org/10.1101/555821
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simulated Observed

Simulated

O
bs

er
ve

d

Time at ScanTime at Onset

β/δ Ratio = Low

β/δ Ratio = High

wijRegioni

Regionj

A B

Subjects 1... n

Subject 1

C

1 2 3 4
AV1451 SUVR

1 2 3
AV1451 SUVR

4

Left Inferior Temporal

1 2 3
AV1451 SUVR

4

80
60

40

20

0

80
60

40

20

0

80
60

40

20

0

Tau-Negative
Tau-Postive

150

100

50

0
0.0 0.2 0.4 0.6 0.8 1.0
Tau-Positive Probability

Figure 1: Methodological approaches. A) The distribution of all SUVR values in the left inferior temporal
ROI are shown. Two Gaussian mixture models are fit to the data. When a one-component model fits
the data better, the ROI is discarded. When a two-component model fits better, the probability that
each values falls upon the second distribution is calculated. B) An artificial system based on a pairwise
relationship (e.g. functional connectivity) matrix is created, where the relationship between regions i and
j is represented by weight ij. For each subject, a seed is placed at the model epicenter, and the diffusion of
this signal over time is simulated through the system, where the inter-regional relationships determine the
pattern of spread, and subject-level free parameters determine the velocity of diffusion, until an optimal
fit is reached. The simulated tau signal is then compared to the observed tau-PET signal to evaluate the
model. C) Advantages of the ESM over traditional approaches includes the initiation of secondary seeding
events as the diffusion process reaches new regions (top), and the fitting of subject-level production (β)
and clearance (δ) parameters. A balance in these parameters will lead to little to no spreading over time,
while increasing imbalance leads to accelerated spread.

the best overall fit to the data is selected. In our case, autopsy work provides209

strong evidence for a consistent ”epicenter” of tau neurofibrillary tangles in210

humans. Tangles first emerge in the trans-entorhinal cortex, before emerging211

in other parts of the entorhinal cortex as well as the anterior hippocampus212

[15, 10]. We therefore ran models with the left and right entorhinal cortex213

selected as the model epicenters. However, for the purposes of validation, a214

best-fitting model-derived epicenter was also computed, by fitting the ESM215

across all possible regions and finding the best average within-subject fit.216

Once this epicenter was found, we ran the model once more using both left217

and right regions as the model epicenters.218

The ESM takes as input a Region x Subject matrix of values ranging219

from 0 to 1, representing the probability of a pathological burden (in this220
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(
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(
Figure 2: Tau-PET data before and after conversion to tau-positive probabilities. Each row is a subject
sorted top-bottom by least to most overall tau. Each column is an ROI, sorted left to right by most to least
overall tau. Warmer colors represent higher SUVR values (top) or tau-positive probabilities (bottom).
Conversion to tau-positive probabilities creates a sparse distribution of values demonstrating a progression.
The order of ROIs resembles those described in the autopsy literature.

case, of tau) in a given region for a given subject. The model is fit within-221

subject and, for each subject, produces an estimate of tau probability for222

every region-of-interest.223

2.6. Experimental Design and Statistical Analysis224

The ESM was fit using different relationship matrices (see above). Each225

model was evaluated by mean within-individual fit, as well as global pop-226

ulation fit. Individual model fit is calculated as the r2 between predicted227

regional tau probabilities and actual regional tau probabilities measured228

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/555821doi: bioRxiv preprint 

https://doi.org/10.1101/555821
http://creativecommons.org/licenses/by-nc-nd/4.0/


with AV1451-PET, for each individual. The mean r2 across all individu-229

als was used to represent overall model fit. To evaluate the accuracy of230

the global pattern, the regional predicted and observed tau probabilities,231

respectively, were averaged across all subjects, and the r2 between these232

group-averaged patterns were calculated. Together, these two accuracy mea-233

sures represent the degree to which regional connectivity predicts the spa-234

tial pattern of tau-PET measured within and across subjects, respectively.235

To ensure the magnitude of our results were greater than chance given a236

matrix of similar properties, we fit the ESM using 100 null matrices with237

preserved degree and strength distributions using the Brain Connectivity238

toolbox (https://sites.google.com/site/bctnet/). We use the null distribu-239

tion to calculate the mean and 95% confidence intervals of the relationship240

occurring by chance. Since we run only 100 null models per test, the lowest241

possible p-value is 0.01, which would suggest the observed test value was242

higher than all values observed by chance.243

To examine the global accuracy of the ESM stratified by amyloid status,244

we first divided all subjects into one of two diagnostic groups: amyloid-245

negative and amyloid-positive. We then calculated the mean of predicted and246

observed values across all subjects within each amyloid group, respectively.247

Studies in rodents have suggested a role of amyloid in facilitating the rapid248

fibrillarization of tau oligomers [12]. This would suggest that amyloid may249

play a role in explaining tau patterns that is at least partially independent250

of connectivity patterns. To explore this, we tested the relationship between251

regional modeling error and regional amyloid depositon. Amyloid-PET scans252

were available for 307/312 individuals, and were processed identically to tau-253

PET scans. We converted regional amyloid SUVR values to amyloid-positive254

probabilities using the same regional mixture-modeling approach as described255

above. Next, we used the sign of the residual to divide regions into those256

that were overestimated by the ESM, and those that were underestimated257

by the ESM. An underestimated region, for example, would show more tau258

than the model predicted given that region’s connectivity to the model epi-259

center. We explored the relationship between model estimation and amyloid260

by comparing the degree of (group-mean) amyloid between overestimated261

and underestimated regions using t-tests. We also observed this relationship262

within amyloid-negative and amyloid-positive subjects separately. In this263

case, the same (whole sample mean) amyloid measurements were used for264

both comparisons, but the regional under/overestimation varied by amyloid265

group.266
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3. Results267

AV1451-PET scans measuring tau neurofibrillary tangles in vivo were268

available for 312 individuals spanning the Alzheimer’s disease spectrum. De-269

mographic information for this sample can be found in Table 1.270

3.1. Conversion to tau-positive probabilities enhances fidelity of tau-PET271

data272

We executed a procedure to mitigate off-target binding of AV1451-PET273

data using mixture modeling. Regional Gaussian mixture modeling of AV1451274

SUVR data across all 312 subjects suggested a two-component (bimodal)275

model as a superior fit for all 62 cortical regions-of-interest, as well as the276

left and right hippocampi and amygdalae. For all other subcortical regions-277

of-interest, a one-component model fit the data better, and these regions were278

discarded from all further analyses. The remaining 66 regions were converted279

to tau-positive probabilities (Fig 1A) using the Gaussian mixture models.280

This threshold-free, data-driven transformation yielded a sparse data matrix281

with a clear pattern suggesting a gradual progression of tau across regions282

of the brain (Fig 2). When sorted from least to most tau (e.g. [16]), the283

regional ordering greatly resembled the previously described progression of284

tau pathology [15].285

3.2. Epidemic spreading of tau over human neuronal connections explains286

spatial pattern of tau in the brain287

An epidemic spreading model was fit to the data, simulating the spread of288

tau signal from a single epicenter through functional brain connections over289

time (Fig 3,4). When using the left and right entorhinal cortex as the model290

epicenter, the model explained 59.6% (null model mean r2 [95% CI] = 0.060291

[0.006, 0.126], p<0.01) of the overall spatial pattern of tau (Fig 4A), and on292

average, explained 33.6% (SD=20.0%; null model mean r2 [95% CI] = 0.068293

[0.033, 0.147], p<0.01) of the spatial pattern within individual subjects.294

Next, the ESM was fit allowing the model to select the ”best-fitting” re-295

gional epicenter (Fig 4A). The hippocampus was selected, slightly improving296

the overall global accuracy of the model to 61.6%, but dramatically increasing297

the average local (within-subject) explained variance to 47.4% (SD=27.6%).298

The epidemic spreading model was particularly effective in predicting the299

early progression of tau, but diverged more from the observed tau pattern300

over time (Fig 3,4).301
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Observed Pattern ESM Predicted Pattern
(EC Epicenter)Expected Pattern ESM Predicted Pattern

(Hipp Epicenter)

L R L R L R L R

Figure 3: Hypothesized, observed and predicted pattern of tau spreading. (left) Hypothet-
ical spread patterns represented by Braak stages I, II, VI, V and VI as described in [44].
(right) Spreading patterns of (from left to right) the observed tau-PET data, the ESM
simulated data with entorhinal epicenter, and with hippocampus epicenter. Warmer col-
ors represent higher proportion of regional tau-positivity predicted or observed across the
population. Each ”stage” was achieved by arbitrarily thresholding the population-mean
tau-positive probability image at the following thresholds: 0.4, 0.3, 0.2, 0.1, 0

As a validation, the ESM was fit using a structural connectome created302

using diffusion tensor imaging tractography from a separate sample of healthy303

and cognitively impaired older adults (Fig 4A). The model fit was highly304

consistent with models fit over functional connectomes of younger adults.305

Using a bilateral entorhinal cortex epicenter, the model explained 54.9% (null306

model mean r2 [95% CI] = 0.062 [0.020, 0.133], p<0.01) of the overall spatial307

pattern of tau progression, and on average, explained 38.0% (SD=22.1%, null308

model mean r2 [95% CI] = 0.132 [0.108, 0.186], p<0.01) of the within-subject309

variance in tau spatial pattern. Once again, we fit the ESM allowing for a310

data-driven epicenter to be selected, and this time, the entorhinal cortex was311

selected as the best-fitting epicenter.312

Alternative hypotheses have been proposed suggesting tau may simply313
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Figure 4: Performance of ESM in predicting spatial progression of tau. A) For each plot, each dot repre-
sents a region. The x-axis represents the mean simulated tau-positive probabilities across the population,
while the y-axis represents the mean observed tau-positive probability. A value of (say) 0.3 for a given
ROI would suggest that an average of 30% of all subjects included were predicted (X) or observed (Y)
to have positive abnormal tau signal in that region. The results are shown for ESM fit over (from left
to right) healthy functional connectome with entorhinal epicenter; healthy functional connectome with a
hippocampus epicenter (selected as best-fitting); aging structural connectome with an entorhinal epicenter
(also selected as best-fitting); and a Eucidian distance matrix with entorhinal epicenter. B) Breakdown
of ESM performance by amyloid status. The average performance of the four different models are shown
separately for amyloid-postive and amyloid-negative individuals.

spread extracellularly across neighboring regions, rather than through anatom-314

ical connections. To test this hypothesis, a model was fit over a Euclidean315

distance matrix instead of a functional or structural connectome (Fig 4A).316

This model explained considerably less variance, both at the global (r2=0.29)317

and individual (mean r2=0.23) level.318

3.3. Low-level tau spreading is evident and predictable in amyloid-negative319

individuals320

We divided our study sample into groups based on amyloid status and321

examined model accuracy separately within these groups. Model accuracy322
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Figure 5: Excellent model performance in CN- individuals. (Left) The distribution of r2 values rep-
resenting the range in individual-level model fit across all CN- subjects. Two exemplary subjects are
plotted: (middle) a subject with very low tau burden; (right) a subject with low tau burden. Even at
very low (subthreshold) levels, the distribution of tau is predicted by functional connectivity patterns.

remained high even among amyloid-negative individuals despite a low overall323

tau burden (Fig 4B). This was validated by examining model fit against the324

tau pattern of individual amyloid-negative subjects (Fig 5). Model perfor-325

mance was high across most CN- subjects (Fig 5A), including those with low326

(Fig 5C) or even very low (Fig 5B) regional tau burden. In many cases, tau327

levels that would otherwise be considered sub-threshold nonetheless demon-328

strated a systematic pattern predicted by brain connectivity, particularly329

when using a hippocampal epicenter.330

3.4. Regional β-Amyloid is associated with region model performance331

For each model, regions-of-interest were classified as either overestimated332

or underestimated by the model based on the sign of the residual (Fig 6A,B).333

Underestimated regions are those demonstrating greater tau burden than334

would be expected given connectivity to the model epicenter (i.e. observed335

> predicted), while overestimated regions demonstrate less tau than would be336

expected given their connectivity profile (i.e. predicted > observed). Com-337

pared to overestimated regions, underestimated regions had greater global338

β-amyloid burden (t = 3.72, p = 0.0004; Fig 6C,D), suggesting the regional339

presence of amyloid may accelerate the spread or expression of tau tangles.340

This effect was only present in amyloid+ individuals (Fig 6E).341

4. Discussion342

Observations in post-mortem human brains [25, 24] and experiments in343

animal models [20, 21, 22, 23, 12] have together provided evidence that tau344

can be transmitted from cell to cell through neuronal projections. However,345

post-mortem studies cannot provide direct evidence of cell-to-cell spread,346
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and while animal models have proven tau can spread through neuronal con-347

nections under certain unnatural conditions, they cannot prove that this348

phenomenon occurs naturally in humans. Studies searching for evidence of349

cell-to-cell transmission of tau in living humans have been limited by small350

datasets, simplistic models and issues relating to the quantitative measure-351

ment of tau. Here, we used a mixture-modeling approach on a large sample352

of humans on the Alzheimer’s disease spectrum to enhance the quantification353

of tau signal, and we applied to this data a diffusion model based on theoret-354

ical principles of an agent propagating through a network. These simulations355

explained a majority of the variance in the global spatial distribution of tau-356

PET signal in the brain, and performed nearly equally well in predicting357

the distribution of tau-PET signal in individual subjects. A similar model358

testing the hypothesis that tau spreads across neighboring brain regions was359

less successful at explaining the overall pattern. The models performed best360

in amyloid-negative individuals, and also systematically underestimated the361

magnitude of tau in regions classically shown to harbor β-amyloid. Together,362

these results suggest that tau spreads slowly through the limbic network in363

normal aging, and that the presence of β-amyloid leads to acceleration of tau364

tangle expression into isocortical regions.365

Brain networks may be key to the evolution of neurodegenerative dis-366

ease [45]. The atrophy patterns of many neurodegenerative dementias have367

been shown to resemble resting-state functional brain networks [46, 47], and368

network ”hubs” are especially vulnerable to neurodegeneration across brain369

disorders [48]. Studies modeling the diffusion of gray matter degeneration370

across brain networks have recreated such patterns with impressive accuracy371

[47, 49, 50]. However, in many neurodegenerative disorders, brain atrophy is372

preceded and perhaps caused by the aggregation of pathological agents. In373

Alzheimer’s disease, the presence of tau is closely linked to [7, 8], and likely374

precedes [8, 11], gray matter atrophy. However, because gray matter degen-375

eration observed in Alzheimer’s dementia may be caused by many sources376

other than Alzheimer’s pathology, gray matter degeneration itself cannot be377

used as proxy for tau (e.g. [51]). PET studies therefore provide a unique378

advantage by measuring pathological proteins more directly, and applying379

network diffusion models to PET data has, for example, led to the successful380

description of the spatial progression of β-amyloid in Alzheimer’s disease [43].381

Our model uses a similar framework to simulate the spread of tau through382

the brain and reaches a similar level of success, both within-subject as well383

as globally across all subjects. The application of network models to other384
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Figure 6: Amyloid explains regional model underestimation. A) Regions were classified as overestimated
or underestimated based on the sign of the residual in a comparison of predicted vs. observed values. B) A
surface render showing the spatial distribution of over- and underestimated regions. C) A surface render
showing the spatial distribution of regional amyloid-positive probabilities averaged over all subjects. D)
Underestimated regions tended to have significantly greater amyloid burden, suggesting these regions
had more tau than would be predicted given their connectivity to the model epicenter. E) The same
relationship stratified by amyloid status. A+ = Amyloid Positive; A- = Amyloid Negative

forms of dementia will be needed to conclude whether the spread of patho-385

logical proteins through connected neurons is a common thread linking many386

diseases.387

While our model recapitulated the early stages of tau spreading accu-388

rately, later stages were modeled less accurately, with a systematic under-389

estimation of tau in regions prone to early and high-volume β-amyloid ag-390

gregation. While tau, not β-amyloid, is closely associated with atrophy in391

Alzheimer’s disease, the commonly-observed concurrence of extra-limbic tau392
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and cortical amyloid burden has led to speculation that β-amyloid may ac-393

celerate or otherwise facilitate the spread of tau outside the medial temporal394

lobe. Recent studies in mice have shown that β-amyloid creates an environ-395

ment facilitating the rapid fibrilization of tau [12, 13]. Our data support this396

notion, as brain regions harboring more β-amyloid, such as the precuneus and397

temporoparietal regions, had a higher incidence of abnormal tau than would398

be predicted simply by their regional connectivity to the medial temporal399

lobe. Further supporting this conclusion was the observation that this effect400

was only seen in amyloid-positive individuals. A conclusive model of tau401

spreading may not be complete without incorporating dynamic interaction402

with β-amyloid.403

Tau tangles are a pathological hallmark of AD, but they are neither spe-404

cific to AD, nor to neurodegenerative disease in general. The process of aging405

appears to lead inevitably to the accumulation of tau tangles in the medial406

temporal lobe and occasionally beyond, a phenomenon known as primary407

age-related tauopathy (PART) [9], and in vivo evidence for the longitudinal408

accumulation of tangles in healthy elderly has been observed [11]. While409

PART may result in subtle insults to cognition and brain health [52], there410

is still debate as to whether PART and AD are distinct processes [53]. We411

show that even in individuals without significant amyloid burden and low412

(subthreshold) tau-PET signal, the spatial pattern of tau can be predicted413

by functional connectivity to medial temporal lobe structures. These findings414

suggest that, even in PART, tau likely spreads from cell to cell through com-415

municating neurons. The results also suggest closer scrutiny of subthresh-416

old tau-PET signal in cognitively unimpaired, amyloid-negative individuals.417

Elevated SUVR values occurring in a consistent pattern in specific limbic418

regions may be indicative of very low tau pathology, rather than non-specific419

or off-target ligand binding.420

While our findings lend strong support to the hypothesis of tau spreading421

through communicating neurons, connectivity patterns and regional amyloid422

burden together could not fully explain the observed pattern of tau-PET423

across the brain. While a portion of this discrepancy may be explained by424

measurement error, there are likely other factors at play. Recent work has425

outlined a consistent genomic profile across regions that express tau [54], im-426

plicating regional variation in intrinsic molecular environment may mediate427

the presence and rate of tau tangle formation. This may explain why, for ex-428

ample, many subcortical regions do not show substantial tau burden despite429

connections to regions expressing neurofibrillary tau tangles. In addition, it430
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is also possible that only certain neuron types can facilitate the transmission431

of tau, which may be challenging to model using macroscopic measures of432

functional connectivity. Finally, some studies have suggested the directional433

flow of neuronal activity may influence the spread of brain pathology [55].434

Future studies incorporating this information, along with dynamics related435

to regional amyloid burden and regional vulnerability, may achieve a more436

complete model of tau spreading. However, at present, we show that the437

spread of tau is predicted by connectivity patterns to a degree that greatly438

exceeds both chance and other hypotheses of tau spread, and does so in a439

parsimonious fashion, greatly supporting the notion that connectivity is in440

some way involved in the spread of tau through the human brain.441

Tau-PET signal has been notoriously hard to analyze due to extensive442

off-target binding reducing signal-to-noise ratio (for review, see [27]). We443

partially circumvented this well-known issue by applying Gaussian mixture-444

models separately to each region-of-interest. This approach effectively estab-445

lished a region-specific baseline representing the normal distribution of off-446

target signal, allowing the identification of outliers expressing SUVR values447

exceeding the normal expected range. A similar approach has been applied448

to the spatial staging of brain amyloid, leading to results that were highly449

consistent across samples [38]. However, this approach used a single thresh-450

old for all regions, whereas our approach was executed separately across each451

region, thereby accounting for regional ligand dynamics. The conversion of452

tau-PET SUVR values to tau-postive probabilites resulted in a clean dis-453

tribution of values across the brain that greatly resembled the progressive454

pattern described in the pathology literature, and validated the expectation455

of no substantial burden in the striatum. By both treating each ROI sepa-456

rately but also expressing values along a standardized 0-1 probability scale,457

we were able to achieve greater regional sensitivity for the detection of both458

low-level tau, as well as high confidence tangle aggregation. Importantly,459

this approach did not require any arbitrary threshold (e.g. [56]) and resulted460

in discreet probability values, and therefore may benefit future studies or461

clinical evaluations seeking to classify regions as ”tau-positive” with a given462

level of confidence.463

Our study comes with a number of limitations. The premise of testing464

the hypothesis of tau spread through communicating neurons requires that465

both neuronal connections and tau burden are accurately measured. We466

attempt to partially surmount these issues by introducing a data-driven ap-467

proach for overcoming off-target and non-specific binding in AV1451-PET468
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data, and by validating our findings over different connectomes across dif-469

ferent samples and modalities. Our mixture-modeling strategy is sensitive470

to sample size and composition. While it is unlikely that this phenomenon471

strongly affected the present findings, it is an important point worth con-472

sideration for future studies utilizing this approach to transform tau-PET473

data. Another limitation is raised by our choice to remove regions that do474

not demonstrate measurable tau burden, namely subcortical regions, from475

the model altogether. Certain subnuclei of subcortical structures such as the476

thalamus do accumulate tau pathology in Alzheimer’s disease [57], though477

we were unable to detect such pathology, perhaps due to the resolution of478

our measurements. While it is possible that subcortical structures partici-479

pate in neuronal transmission of pathology without expressing the pathology480

itself, the current implementation of our model does not support this type481

of dynamic. However, while incidental measurement of indirect functional482

connectivity is a common critique of functional MRI, here it may pose an483

advantage, as functional connectivity mediated by subcortical connections484

may still be present in functional connectomes used for this study.485

5. Conclusion486

Altogether, our data strongly supports the notion that tau pathology it-487

self, or information leading to the the expression of pathology, is transmitted488

from cell to cell in humans, principally through neuronal connections, and not489

extracellular space. Our findings further suggest that this phenomenon pro-490

ceeds slowly but perhaps ubiquitously in normal aging, and that the process491

is accelerated dramatically in specific brain regions demonstrating β-amyloid492

burden. While our in vivo results cannot prove that tau spreads through neu-493

ronal connections, we show that more highly connected regions have a higher494

tendency to be affected closer in time by tau along a specific network path495

cascading from the medial temporal lobe. Future models may be able to496

improve results by incorporating region-specific vulnerability factors, direc-497

tional flow and amyloid dynamics, though contributing such information in498

a parsimonious way presents a difficult challenge.499
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