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Abstract

Antibiotics are the major tool for treating bacterial infections. With rising antibiotic resistance in mi-
crobes, strategies that limit further evolution and spread of drug resistance are urgently needed, in indi-
viduals and populations. While classical recommendations favor longer and aggressive treatments, more
recent studies and clinical trials advocate for moderate regimens. In this debate, two axes of aggressive
treatment have typically been conflated: treatment intensity and treatment duration, the latter being rarely
addressed by mathematical models. Here, by using a simple mathematical model of a generic bacterial
infection, controlled by host’s immune response, we investigate the role of treatment timing and antibiotic
efficacy in determining optimal duration of treatment. We show that even in such simple mathematical
model, it is impossible to select for universally optimal treatment duration. In particular, short (3 day) or
long (7 day) treatments may be both beneficial depending on treatment onset, on the criterion used, and
on the antibiotic efficacy. This results from the dynamic trade-off between immunity and resistance in
acute, self-limiting infections, and uncertainty relating symptoms to the start of infection. We find that
treatment timing can shift the trend between resistance selection and length of antibiotic exposure in in-
dividual hosts. We propose that major advances in predicting impact of antibiotics on bacterial infections
must come from deeper experimental understanding of bacterial infection dynamics in humans. To guide
rational therapy, mathematical models need to be constrained by data, including details of pathology and
symptom thresholds in patients, and of host immune control of infection.
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Introduction

The treatment of bacterial infections has for many decades relied on the use of antibiotics. Although
antibiotics have saved many lives and enabled uncountable medical practices, their widespread use in
human and animal populations has led to the rise of antibiotic resistance, posing now a threat to human
health and modern medicine [1]. Of particular concern is the rise of multidrug-resistant bacteria, favored
by use of wide-spectrum antibiotics especially in clinical settings [2, 3]. To confront these challenges,
much research has been devoted to understand the molecular, genetic, and non-genetic mechanisms lead-
ing to drug resistance in bacteria [4, 5, 6], their population dynamics, and interplay with treatment strate-
gies [7, 8, 9]. While alternative approaches such as anti-virulence [10] or host-directed therapies [11]
are also being considered, with their own potential limitations [12], reducing antibiotic use remains an
essential step in addressing the antibiotic resistance crisis. In this context, it is important to understand
the rational principles by which antibiotics succeed and fail in clearing infections, and whether and when
aggressive or moderate treatments are superior.
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The conventional wisdom of treating infections with high antibiotic doses (aggressive treatment) [13]
to avoid resistance emergence has recently been challenged [14, 15], on the basis of evolutionary argu-
ments showing a bigger risk of resistance selection in target pathogens with more aggressive treatments
(see [9] for a review). Many studies including clinical trials have by now shown that for some infections
shorter treatment is not inferior to the longer ones and that longer treatment may in fact result in failure
if resistant bacteria are already present when treatment starts [16, 17, 18, 19, 20]. This issue is now
recognized in clinical practice and checklists of improving antibiotic prescribing have been suggested
[21].

On one hand, clinical studies have been concerned mainly with optimal duration of therapy, on the
other, the multiple mathematical studies addressing the question of optimal antibiotic treatment of bacte-
rial infections [22, 23, 24, 25], have focused mainly on the dosing dimension, with a few studies exploring
duration [26] and timing of treatment [27]. While these studies have highlighted the various complexities
in optimal treatment, typically two axes of aggression have been conflated: treatment length and treat-
ment intensity, and a single criterion for defining optimality, e.g. resistance emergence or selection, has
been considered.

Here, we extend these previous studies by formulating one of the simplest mathematical models
of bacterial infection that is controlled by the immune response and investigate the role of treatment
timing, intensity and duration, across different metrics of success. We show that duration of antibiotic
treatment, antibiotic efficacy (defined as the antibiotic kill rate), and treatment timing interact nonlinearly
to determine final outcome, and that optimal regimes vary widely with target criterion for optimization
even at the single host level. Our results suggest that it is unlikely that one optimal treatment duration even
exists, and that specific details of particular infections and antibiotic efficacy are important in determining
the needed duration of treatment.

Results

The modeling framework
To investigate the impact of antibiotic treatment duration on treatment success or failure we utilized

a mathematical model of a generic acute bacterial infection which includes the dynamics of three pop-
ulations: drug-sensitive (Bs) and drug-resistant (Br) bacteria and bacteria-specific immune response (E,
see Eqns. (1)–(3) in Materials and Methods). Bacterial growth is described by a logistic equation with
growth rate r and carrying capacity K, and the presence of bacteria induces immune response which
expands exponentially and eventually clears the infection (Figure 1A). In our analysis, infections always
start with drug-sensitive strain but at some level, a drug-resistant variant may appear due to mutations
(at rate m); drug-resistance bears a fitness cost (γ). The proposed model is similar to previously pub-
lished models [28, 23, 25]. In the model we assume that treatment starts when the total bacterial density
B = Bs + Br reaches a critical level Ω (symptom threshold). Treatment administration lasts for τ days
with a given antibiotic efficacy (kill rate) Am which represents the average net rate of antibiotic-induced
bacterial killing at the infection site per unit of time.

Optimizing the duration of antibiotic treatment is likely to involve several alternative goals (e.g., re-
ducing bacterial load, minimizing antibiotic resistance, speeding infection clearance [14, Figure 1B]),
but from the perspective of the patient and treating physician, successful treatment generally means rapid
reduction in symptoms and no disease relapse after treatment completion. To investigate whether al-
ternative treatment goals conflict with the optimal duration of treatment, we track several instantaneous
and cumulative measures such as the density of bacteria B(t) or the level of immunity E(t) at the end
of treatment, the duration of infection, cumulative bacterial load (area under the curve, AUCB) and total
resistance load (AUCR).
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Both short and long treatment may be optimal
In clinical studies, the definitions of ‘short’ and ‘long’ antibiotic treatment vary [19, 29], and here

we compare treatments that are either 3 (“short”) or 7 (“long”) days. The endpoint in clinical trials is
typically a measurement of bacterial load or clinical symptoms at a given period after conclusion of
therapy. We compare outcomes of 3- and 7-day treatment first on infection profiles (e.g. at the end of
treatment), or using different metrics evaluated at 20 days post-infection.

By varying the duration of treatment and the time when treatment starts (defined by Ω), a variety of
outcomes can be observed in the model (Figure 2); most importantly, both short and long treatments may
result in treatment failure (defined as detectable bacteria at the end of treatment, e.g., Figure 2C&D).
Similarly, both short and long treatments may be successful (e.g., Figure 2E&F). These results stem from
the assumptions in the model [30] due to interplay between generation of the immune response (which
aids in clearing the infection) and generation of resistance (which prevents clearance upon treatment).
Specifically, longer treatment may help in faster clearance of bacteria when the treatment starts early
(low Ω, Figure 2B) but leads to resistance selection and failure when treatment starts late, due to random
generation of resistance strain by the time of treatment start (high Ω, Figure 2D &H). Shorter treatment
resulted in bacterial clearance during treatment only when early and at higher dose (Figure 2E), but failing
in the case of too low kill rates (Figure 2A). However, such antibiotic exposure was still able to limit
bacterial growth post-treatment and constrain resistance selection, when applied later and moderately
(Figure 2C). When higher antibiotic kill rates are applied later, short and long treatments result in similar
dynamics of resistance selection during and post-treatment (Figure 2G&H).

Another way of looking at this continuum of scenarios is by distinguishing treatment failures on one
extreme where resistance is causative of the relapse (Figure 2D & H), and treatment failures unrelated to
resistance per se (Figure 2A & C). In the first case, the relapse is due to slowed down immune response
during treatment. In the second case, if resistance weren’t there, treatment would have resulted in the
clearance of infection.

A more comprehensive analysis further demonstrates that optimal duration of treatment strongly de-
pends on the chosen metric defining successful treatment, threshold of treatment start, and antibiotic kill
rate (Figure 3). Two features are i) the non-monotic relation to antibiotic kill rate, and ii) the tendency
to shorter non-inferior regimens, when higher antibiotic kill rates are applied. In particular, while 3-
day treatment at moderate kill rate (Am = 2/day) may be superior when started early when success of
treatment is defined by the duration of infection (Figure 3A), it is inferior when success of treatment
is measured by final bacterial burden (Figure 3D). Furthermore, even though 3-day treatment leads to
a higher final immunity overall, the difference between the 3-day and 7-day treatment strongly depends
on the antibiotic efficacy and timing of treatment, and it vanishes when treatment is started at higher
pathogen loads (Figure 3I). Finally, while final immunity may be higher after a 3-day treatment (Figure
3H) at moderate kill rates, the corresponding values of cumulative immunopathology are lower than a
7-day treatment (Figure 3K), suggesting conflicting optima by instantaneous and cumulative indicators
of success.

We further highlight the inability to select universally optimal duration of treatment by a series of
simulations in which we varied duration of treatment and antibiotic efficacy continuously, for different
timing of treatment, and measured deviation of several metrics of successful treatment from their baseline
values (Supporting Information Fig. S1). We observe that the quantitative landscapes of different metrics
are variable, thus confirming that each effectiveness indicator displays its own nonlinear dependence
with duration, intensity, and timing of treatment. Furthermore, as the sensitivity of these metrics is
typically higher for the antibiotic efficacy axis, the more beneficial treatments tend to include short and
long treatments where crucially, the same effects can be achieved using minimally effective therapeutic
durations. When treatment onset occurs later during the infection course, unsurprisingly, the marginal
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benefits of treatment decrease for most metrics, making reductions of at least 50% in target criteria
relative to no treatment harder to reach. However such later timing appears to shift the optimality region
to high-antibiotic efficacy and short duration combinations, especially for resistance selection.

Treatment timing and the immunity-resistance trade-off
Typically the timing of treatment relative to the natural infection course is not known. Previous

models assumed that treatment occurs throughout infection or when infection reaches a peak [23, 22],
which imposed strong constrains on the model dynamics. We have shown that relaxing this assumption
and starting the treatment at different bacterial densities results in dramatically different predictions on
which specific treatment duration is optimal.

In this model, the key to understanding how treatment duration affects infection dynamics is how
bacterial load impacts generation of the immune response. We assumed that immune response expan-
sion is directly driven by the amount of bacteria and that immune response does not contract during the
timescale of infection. This implies that the net growth rate of bacteria is dynamic: it declines progres-
sively due to the activation of the immune response, until it reaches negative values for super-critical
levels of immunity (Figure 4). In parallel, due to increasing bacterial levels, the probability of resis-
tance emergence increases. Nonetheless, this increase in chances of emergence is counterbalanced by
the top-down immune control, whereby the effective growth potential of any resistant sub-populations
gets progressively reduced, limiting their ascent and eventual competitive release via treatment. In this
context, any treatment that does not result in clearance of bacteria but significantly slows down immune
response dynamics, may then lead to relapse. And the later such treatment is administered, the higher the
probability that this relapse is constituted by a majority of resistant bacteria, freed by their competitors,
and favored by weakened immunity.

Such trade-off between immunity and resistance is naturally modulated by treatment onset, fitness
cost of resistance, and activation kinetics of immune response, which ultimately determine how fast
immunity grows and antibiotic resistance ascends, and which force is strongest in a given infection. Al-
though the quantitative details likely vary with parameter values, qualitatively, we find that this trade-off

can lead to opposite trends between resistance selection and treatment duration, depending on treatment
start (Figure 5). In particular, when treatment happens relatively early over the infection course, longer
treatments tend to reduce resistance selection. In contrast, when treatment happens relatively later, the
situation gets reversed: longer treatments tend to increase resistance selection. This negative association
trend for early treatment becomes even more pronounced and significant when stronger antibiotic kill
rates are used (Supporting Information Fig. S2), while the positive association trend between duration
and resistance selection in later treatment is reinforced by lower immune competence of the host (Sup-
porting Information Fig. S3). It should be noted, however, that absolute resistance levels increase when
treatment starts late (e.g., Figure 5A vs. Figure 5C), simply because of a higher chance of resistance being
present later in infection (Figure 4). A more comprehensive analysis of Spearman correlation coefficients
(Supporting Information Fig. S4) confirms the treatment-timing effect on the monotonic relationship
between resistance levels and length of antibiotic exposure.

Considering that typically infected hosts seek treatments at later stages of their infection, the notion
that higher antibiotic exposure via longer treatments leads to higher levels of resistance, would favor
shorter antibiotic courses in most cases. While the symptomatic causes of treatment remain often unclear,
our results suggest that in less tolerant hosts who, instead, seek treatment at lower pathogen thresholds,
longer antibiotic courses would be better to constrain resistance risk.
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Discussion

Antibiotics are key to modern medicine and preserving their effectiveness is a global priority. Avoid-
ing antibiotic overuse remains an essential step in addressing the antibiotic resistance challenge [31, 32,
9]. Epidemiological studies have linked higher antibiotic exposure to higher levels of antibiotic resistance
[33, 34], sometimes with contrasting results [35]. It is likely that a better understanding of how individual
infection processes and treatment parameters affect resistance dynamics will help devising efficient treat-
ment strategies that use minimal drug amounts. In this study, we focused on a comparison of treatment
outcome between short and long antibiotic treatment, taking into account several treatment target criteria,
and highlighting a previously neglected parameter of treatment start time (but see [27, 36, 37]). We found
several parameter regimes and target criteria by which 3-day treatment is non-inferior and even superior
to 7-day treatment, favoring a reduced use of antibiotics to achieve similar clinical outcomes. However,
we also observe that optimal treatment duration varied widely, depending on the time point of treatment,
antibiotic efficacy, host immunity characteristics, and the treatment criterion to optimize.

This difficulty in drawing general principles from a multi-factorial problem is not new. At the epi-
demiological level, it is also being recognized that ranking antibiotic treatment protocols is highly de-
pendent on methodological factors, e.g. the criterion of choice for comparison [38]. In studies of the
evolution of virulence, early work has argued that a single factor such as the route of transmission de-
termines virulence of pathogens [39, 40], while later studies showed that a single factor is unlikely to
determine optimal virulence of very diverse pathogens [41]. Hard-to-reach conclusions on optimality of
antibiotic treatment duration might tempt one to logically constrain mathematical models so that a robust
conclusion can be reached. For example, by assuming that immune system-mediated killing of bacteria
is always high, treatment does not have to be long to be efficient since strong immunity can easily fin-
ish the job of eliminating bacteria if antibiotic does not [25]. However, what makes immune response
“strong”, how quickly it becomes “strong”, how long it is “strong” for, and how the strength varies be-
tween individuals remains unknown, challenging the applicability of such a generic argument for the
actual bacterial infections of humans. Better understanding of optimal duration of treatment necessar-
ily requires solid empirical data, which can constrain theoretical models and may allow to discriminate
between alternatives [30].

There are a number of potential limitations of our modeling analysis. We did not study the role
of transmitted pre-existing resistance; starting the infection with already pre-existing resistant variants
is likely to disfavor longer treatments [14]. We ignored pharmacokinetics and pharmacodynamics of
the antibiotics which may also on their own add uncertainty in defining optimal treatment duration.
We considered a single mutational step to complete resistance. This is likely a worst-case scenario.
Resistance may be acquired in multiple gradual mutational steps [4, 42] where transient phenotypes in
fitness cost and antibiotic susceptibility may interact differently with treatment, slowing down evolution.

Our mathematical model is broadly deterministic with a hybrid component in emergence of resistant
bacteria, similar to the deterministic threshold approximation used previously (e.g., [43]). Changing the
threshold for probability of emergence to random values confirmed that the behaviors described in the
paper capture up to 80% dynamics under stochastic arrival times for the resistant strain (Supporting In-
formation Figs. S5-S7). Furthermore, this variation did not influence the overall conclusion that selection
of optimal treatment duration strongly depends on infection details (Supporting Information Fig. S8).

Perhaps the strongest limitation of the model is its lack of specificity and exact parameter estimates for
bacterial infections of humans from which to derive final quantitative conclusions. This limitation is com-
mon for most (if not all) of the previously published mathematical modeling-based studies. Our approach
was to consider perhaps the simplest mathematical model of a bacterial infection which includes resis-
tance to antibiotics and control by host immunity; even such a simple model already generates a variety
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of complex behaviors precluding reaching a solid conclusion on the uniformly optimal antibiotic treat-
ment duration. Conceivably, use of more complex mathematical models with more poorly constrained
parameters is likely to display even richer behaviors.

Model predictions are logical extensions of the assumptions, and therefore, if the list of assump-
tions is unbounded, any conclusions can be reached [30]. Experimental studies by measuring dynamics
of infections and infection-controlling immune responses in humans will allow to constrain the model
assumptions — to define which assumptions are unrealistic — and thus, to build more accurate mathe-
matical models. Such constrained models are more likely to predict when a treatment will succeed and
when it will fail. Testing such model predictions in clinical trials will be important, especially when
anticipated outcomes do not match the observations [44].

What are the unknown details of bacterial infections of humans? There are many. For example,
the kinetics of most acute bacterial infections in humans have not been accurately measured (but see
[45, 46]). One critical parameter in our analysis was the time when treatment starts (which in the model
was strictly determined by the bacterial density). Physiological factors driving patient symptoms and
treatment onset remain unclear, and are likely to widely vary between individuals, as evidenced, for ex-
ample, by differences in microbiologic confirmation at baseline across patients with the same symptoms
[29].

Furthermore, how the dynamics of immune response, both innate and adaptive, depends on the pres-
ence of the infection in humans is not understood and may well depend on the type of infection [47] and
different aspects of host susceptibility [48]. In particular, yellow fever virus-specific CD8 T cell response
continues to expand long after the infection disappears from the blood [49, 50]. How immunity clears the
infection is also unknown, and, for example, if killing of drug-sensitive and drug-resistant bacteria by the
immune response occurs at the same rate – an assumption made by most previous studies (e.g., [27, 25]).
Unequal distribution of antibiotics in different tissues or tissue compartments may select for resistance
at different rates, effectively resulting in different rate of bacteria elimination by immunity, especially if
antimicrobial susceptibility and susceptibility to host immunity correlate.

Better understanding of mechanisms regulating abundance of bacteria and bacteria-specific immune
responses in tissues in human infections is likely to constrain mathematical models, and will help to make
more robust predictions about eventual intervention strategies.
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Figure 1: Typical dynamics of the bacterial infection in the mathematical model and treatment optimization
challenge. A. Population dynamics of a generic bacterial infection with sensitive bacteria Bs, emergence and
potential selection of a drug-resistant sub-population Br and host immune response E (see Eqns. (1)–(3)). Default
parameters are given in Table 1. B. Treatment strategies evaluated in a 3-dimensional space (antibiotic efficacy,
treatment duration and timing), along several target criteria of clinical and epidemiological importance.

0 10 20

10
4

10
8

A

W
it
h
in

−
h
o
s
t 
d
e
n
s
it
y

3d treatment

0 10 20

10
4

10
8

B 7d treatment

0 10 20

10
4

10
8

C 3d treatment

0 10 20

10
4

10
8

D 7d treatment

A
m

 = 3

0 10 20

10
4

10
8

E

W
it
h
in

−
h
o
s
t 
d
e
n
s
it
y

Time (days)
0 10 20

10
4

10
8

F

Time (days)
0 10 20

10
4

10
8

G

Time (days)

 

 

0 10 20

10
4

10
8

H

Time (days)

A
m

 = 4.5

Treatment B
s

B
r E Ω

Earlier Later Later

LaterLaterEarlierEarlier

Earlier

Figure 2: Both short and long treatments can result in treatment failure. Earlier onset: Ω = 104, Late onset:
Ω = 105. We show dynamics with a short (3-day) and long (7-day) treatment for two antibiotic efficacies Am = 3
(A-D) and Am = 5 (E-H), both representing supra-inhibitory levels. Parameters as specified in Table 1.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/555334doi: bioRxiv preprint 

https://doi.org/10.1101/555334
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 3 4 5 6

5

10

15

T
im

e
 t

o
 c

le
a

ra
n

c
e

(d
a

y
s
) 

  
  

  
  

  

A
Ω=10

3.5

 

 

1 2 3 4 5 6

2

4

6

B
a

c
te

ri
a

l 
b

u
rd

e
n

 
(l
o

g
) 

  
  

  
  

  
 

D

1 2 3 4 5 6

5

10

15

B
Ω=10

4

1 2 3 4 5 6

2

4

6

E

1 2 3 4 5 6

5

10

15

C
Ω=10

5

1 2 3 4 5 6

2

4

6

F

2 4 6

5

10

15

20

F
in

a
l 
  

  
  

  
 

im
m

u
n

o
p

a
th

o
lo

g
y

J

Antibiotic efficacy A
m

 

 
3d

7d

2 4 6

5

10

15

20

K

Antibiotic efficacy A
m

2 4 6

5

10

15

20

Antibiotic efficacy A
m

L

2 4 6
0

2

4

6
x 10

4

F
in

a
l 
  

im
m

u
n

it
y

G

 

 

2 4 6
0

2

4

6
x 10

4
H

2 4 6
0

2

4

6
x 10

4
I

3d

7d

Figure 3: Benefits of short or long treatment depend on the metric of success.. We compare outcome of 3-
and 7-day treatments for different metrics for successful treatment and antibiotic efficacy. Success of treatment is
defined in terms of: (A-C) duration of infection, (D-F) bacterial burden, (G-I), the final level of immunity, or (J-L)
cumulative immunopathology level (Eqn. (4)). Infection was simulated for 20 days with default parameters (Table
1).

0 1 2 3 4 5 6 7 8
0

2

4

6

8

Individual infection course

B
a
c
te

ri
a
l 
p
o
p
u
la

ti
o
n
 s

iz
e

(l
o
g
)

0 1 2 3 4 5 6 7 8
−10

0

10

R
a
te

 o
f 
b
a
c
te

ri
a
l 
g
ro

w
th

Time over infection (days)
0 1 2 3 4 5 6 7 8

0

0.5

1

P
ro

b
a
b
ili

ty
 o

f 
re

s
is

ta
n
c
e

B(t)

A

B

1
B

dB
dt

P (t) = 1− e
−m

∫ t

0
B(s)ds

Immune action 
> Bacterial growth

Figure 4: Immunity-resistance trade-off. A. Graphical illustration of typical acute infection dynamics. B. Proba-
bility of resistance emergence (P(t)) increases over infection, while the net rate of bacterial growth ( 1

B
dB
dt ) decreases

as a result of immune activation. Impairment of immune buildup at later stages of infection could therefore select
for more resistance.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/555334doi: bioRxiv preprint 

https://doi.org/10.1101/555334
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 4 6 8
0

20

40

60

80

100

Ω=10
3.5

R
e

s
is

ta
n

c
e

 A
U

C

Treatment duration (days)

A

2 4 6 8
20

40

60

80

Ω=10
4

R
e

s
is

ta
n

c
e

 A
U

C

Treatment duration (days)

B

2 4 6 8
0

2

4

6
x 10

4 Ω=10
5

R
e

s
is

ta
n

c
e

 A
U

C

Treatment duration (days)

C

Figure 5: Treatment timing changes the trend between resistance selection and treatment duration. We
simulated 30 treatments with random values of kill rates Am ∈ [0.1, 6] for each treatment duration τ ∈ [2, 7] days,
and computed the overall resistance burden (AUCR) for early (A, Ω = 103.5), intermediate (B, Ω = 104), or late
(C, Ω = 105) treatment start times. Markers indicate mean values over all kill rates for each treatment duration
(parameters as in Table 1), and the red line a linear fit y = a + bx in Matlab, together with 95% CI (dashed lines)
for illustration. Spearman correlation coefficients: A. Negative trend (ρ = −0.9, p < 0.01) B. Negative trend
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Table 1: Parameters of the mathematical model on bacterial infection. The mathematical model is given in Eqns.
(1)–(3). We show the default set of parameters used in simulations as well as the range of parameters varied in
some of our analyses. Most of these parameters have been chosen to give a reasonable dynamics for the bacteria
and immune response (e.g., rapid bacterial and immune response growth). Yet, it should be noted that few if any of
these parameters have been accurately measured for bacterial infections of humans.

Symbol Parameter Default Range
r Growth rate of bacteria 2/day
K Carrying capacity of bacteria 107 cell/ml
γ Fitness cost of resistant bacteria 0.1
B0 Initial inoculum 100 cell/ml
σ Maximal growth rate of the immune response 2/day
k Half-saturation constant for antigen-dependent

immunity
104 cell/ml 103 − 104

d Elimination rate of bacteria by host immunity 1 × 10−4/day
E0 Initial immunity 20
m Mutation rate conferring drug resistance per

sensitive cell
10−5

Bem/ Bext Resistance emergence/pathogen extinction
threshold

10

Pem Probability threshold for high-level resistance
mutant

0.5

Ω Bacterial density at which treatment starts 104 cell/ml 103 − 105

Am Antibiotic kill rate of drug-sensitive bacteria
(efficacy)

1/day 0.1 − 6/day

τ Duration of treatment 3 1 − 10 days
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Materials and methods

Simplest mathematical model of a bacterial infection
We extend a previous model of an acute infection controlled by the immune response [28] by allowing

generation of antibiotic-resistant strain and by including antibiotic treatment. Infection is initiated by the
drug-sensitive bacteria (Bs) which grow exponentially at a rate r until reaching a carrying capacity K (i.e.,
the bacterial dynamics follows a logistic growth as it has been observed in humans, e.g., [46]). Drug-
resistant bacteria (Br) are generated via mutation with rate m; thus, the total density of bacteria in the host
is B = Bs + Br. For resistance emergence, we adopt a hybrid approach, tracking the probability of no-
emergence by time t, P(t) = e−m

∫ t
0 Bs(x)dx, and simulating emergence of the resistant sub-population when

the probability hits a deterministic threshold P = 0.5, similar to [43]. Br at that emergence time point, tem,
are initialized at the value Br(tem) = Bem, and subsequently let to follow deterministic growth. Generation
and extinction are handled through the ODE Events option in Matlab ode solver ode45. We assume
an extinction threshold Bext when either bacterial compartment falls below this level. We assume that
resistance bears a cost γ which reduces the growth rate of the drug-resistant variant to r(1−γ). Antibiotic
treatment starts when the total bacterial density exceeds value Ω, lasts for τ days, and is described by the
step-function η. Antibiotics increase the death rate of drug-sensitive bacteria Bs by the rate Am (antibiotic
kill rate), while the Br strain is fully drug-resistant.

For bacterial infections of humans it is generally poorly understood which types of immunity – in-
nate or adaptive – are most important in control of the specific infection. Here we do not make an
explicit distinction between innate and adaptive immunity, and rather implement immune response ki-
netics generically via two mathematical features: antigen-dependent stimulation and negative feedback
on infection. The major assumption we make is that immune response gets triggered after total bacteria
reach some density, defined by the half-saturation constant k. When bacterial density is high, immune
response magnitude increases exponentially at maximal rate σ until infection is cleared. This immune
response eliminates sensitive and resistant bacteria at equal rate d. The initial level is given by E(0) = E0.
With these assumptions, the model is given by the following ordinary differential equations:

dBs

dt
= rBs

(
1 −

B
K

)
− dEBs − AmBsη(t), (1)

dBr

dt
= r(1 − γ)Br

(
1 −

B
K

)
− dEBr, (2)

dE
dt

= σE
B

B + k
, (3)

where B = Bs + Br and η(t) is varied between 0 and 1 to reflect treatment interval from onset through its duration.

Treatment outcome metrics
Success of the antibiotic treatment can be defined in many different ways. In our analysis we consider the

following metrics: i) duration of infection T (the period from t = 0 to t = T when all populations of bacteria reach
an extinction threshold Bext), ii) total bacterial burden Btot =

∫ T
0 B(t)dt, (AUCB), iii) total resistance burden Rtot =∫ T

0 Br(t)dt (AUCR), iv) final immunity ET , and v) cumulative immunopathology HE
tot, defined as the cumulative

deviation from initial immunity:

HE(t) = 1 −
( E0

E(t)

)
=⇒ HE

tot =

∫ T

0
HE(t)dt. (4)
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Model parameters
The formulated mathematical model is likely to apply to extra- and intracellular bacterial infections and is

also similar to previously proposed models for viral infections [51]. Quantitative details of bacterial infections of
humans are nearly absent, and therefore, we chose model parameters to constrain the overall bacterial dynamics in
the absence of treatment. Specifically, bacteria are likely to reduce their replication rate within a few days since
infection [46] which in our model required rapidly activating and expanding immune response. To our knowledge,
the kinetics of immune response to bacteria in humans has not been accurately measured, but virus-specific T cell
responses tend to expand relatively slowly [49, 52, 50]. Antibiotic kill rates have been accurately measured for
several drugs in vitro [53] but not in humans, and thus were varied within expected range.
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Mathematical modeling links benefits of short and long antibiotic
treatment to details of infection:
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Supplemental Figure S1: Intensity-duration treatment landscapes. The contour plots show quantitative treat-
ment effects (ratios relative to no-treatment) on several infection metrics, varying antibiotic strength (Am) and
treatment duration simultaneously. We examine three treatment timings to illustrate contrasting qualitative pat-
terns: earlier treatment, when B(t) = Ω = 103.5 (first column), intermediate timing B(t) = Ω = 104 (second
column) and later treatment when B(t) = Ω = 105 (third column). (A-C) Infection duration. (D-F) Bacterial bur-
den. (G-I) Resistance selection. (J-L) Immuno-pathology. The black solid line depicts the 0.5 contour line relative
to no-treatment, when applicable.
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Supplemental Figure S2: Resistance vs. treatment duration, over bactericidal doses. Replicate of Fig. 5. (each
scatter point represents the mean Rtot of 30 simulations with random Am ∈ [3, 6] for each duration τ ∈ [2, 7]). All
parameters as in Table 1. The pattern of treatment onset-dependent trends in Figure 5 changes with more aggressive
kill rates. Results of the linear fit y = a + bx, for each treatment timing, are plotted for illustration, while the
Spearman correlation coefficients are: A. (ρ = −0.93, p < 0.001) B. (ρ = −0.93, p < 0.001) C. (ρ = 0.33, p = 0.22)
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Supplemental Figure S3: Resistance vs. treatment duration, in immune-compromised hosts (σ = 0.5). Replicate
of Fig. 5. (each scatter point represents the mean Rtot of 30 simulations with random Am ∈ [0.1, 6] for each duration
τ ∈ [2, 7]). All parameters as in Table 1. In hosts with lower activation rate of the immune response as a function
of pathogen density, longer treatment duration leads to increased resistance over more treatment onset scenarios.
Results of the linear fit y = a + bx are plotted for illustration. Spearman correlation coefficients for trends are: A.
ρ = 0.35, p = 0.19 B. ρ = 0.22, p = 0.41 C. ρ = 0.77, p < 0.01. The positive trend becomes significant in the late
timing scenario.
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Supplemental Figure S4: Correlation coefficient for the association between resistance selection and treatment
duration. 30 random realizations, each replicating the data in Fig. 5, are shown. Here, each scatter point represents
the Spearman correlation coefficient and corresponding p-value, between mean Rtot (over 30 simulations with
random Am ∈ [0.1, 6]) and treatment duration τ ∈ [2, 7]. All parameters as in Table 1. A) Early treatment (Ω = 103.5
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Later treatment (Ω = 105) results in positive and generally significant associations between resistance and treatment
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Supplemental Figure S5: Model dynamics for random arrival times of the resistant mutant (30 realizations). All
parameters as in Table 1. The threshold for probability of emergence is set to a random uniform variable between
0 and 1, instead of the fixed number 0.5, assumed in the paper. Replicates of Fig.1A.
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Supplemental Figure S6: Model dynamics with treatment (Am = 3, τ = 3,Ω = 104) for random arrival times of
the resistant mutant (30 realizations). All parameters as in Table 1. The threshold for probability of emergence is set
to a random uniform variable between 0 and 1, instead of the fixed number 0.5, assumed in the paper. Replicates
of Fig. 2A. Only in 2 out of 30 cases (< 10%) the short treatment resulted in qualitatively different dynamics
(resistance selection) than the one captured by the average deterministic threshold approximation. This due to the
rare event of extremely early stochastic emergence of Br.
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Supplemental Figure S7: Model dynamics with treatment (Am = 3, τ = 7,Ω = 104) for random arrival times of
the resistant mutant (30 realizations). All parameters as in Table 1. The threshold for probability of emergence is set
to a random uniform variable between 0 and 1, instead of the fixed number 0.5, assumed in the paper. Replicates of
Fig. 2B. Only in 6 out of 30 cases (=20%) the long treatment resulted in qualitatively different dynamics (resistance
selection and longer infection) than the one captured by the average deterministic threshold approximation. This
due to the rare event of extremely early stochastic emergence of Br.
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Supplemental Figure S8: Resistance vs. treatment duration, in immune-compromised hosts (σ = 0.5) with
stochastic arrival times of resistance. Replicate of Fig. 5. (each scatter point represents the mean Rtot of 30
simulations with random Am ∈ [0.1, 6]) for each duration τ ∈ [2, 7]. All parameters as in Table 1, but here instead
of a fixed threshold for stochastic emergence, a random threshold is used in each model simulation. Linear fits are
shown for illustration of trends. Spearman correlation coefficients are: A. ρ = 0.26, p = 0.4 B. ρ = 0.57, p < 0.05,
C. ρ = 0.92, p < 0.01. Compared to Figure S3, the same qualitative trends are preserved under more stochasticity
in resistance arrival times.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/555334doi: bioRxiv preprint 

https://doi.org/10.1101/555334
http://creativecommons.org/licenses/by-nc-nd/4.0/

