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Abstract

Background: Experimental evolution of microbes often involves a serial transfer protocol, where
microbes are repeatedly diluted by transfer to a fresh medium, starting a new growth cycle.
This protocol has revealed that evolution can be remarkably reproducible, where microbes show
parallel adaptations both on the level of the phenotype as well as the genotype. However, these
studies also reveal a strong potential for divergent evolution, leading to diversity both between
and within replicate populations. We here study how in silico evolved Virtual Microbe “wild
types” (WTs) adapt to a serial transfer protocol to investigate both the generic evolutionary
adaptation to such an environment which are independent of prior evolution, and the variety of
ways in which the adaptation is implemented at the individual and ecosystem level.

Results: We show that all pre-evolved WTs evolve to anticipate the regularity of the serial
transfer protocol by adopting a fine-tuned balance of growth and survival. We find that this
anticipation can be done in a variety of ways, either by a single lineage or by several lineages in
consort. Interestingly, replicate populations of the same WT initially show similar trajectories,
but may subsequently diverge along a growth rate versus yield trade-off.

Conclusions: We find that all our in silico WTs show the same anticipation effects — fitting the
periodicity of a serial transfer protocol — but do so by a variety of mechanisms. Our results
reveal new insights into the dynamics and relevant selection pressures in experimental evolution,
but also highlight how, in an eco-evolutionary context, numerous mechanisms can evolve to the
same end.

Keywords: experimental evolution; serial transfer protocol; eco-evolutionary
dynamics; in silico evolution; predicting evolution 1

2

Background 3

In order to see microbial evolution in action, we often rely on experimental evolu- 4

tion under controlled laboratory conditions. The Long-term Evolution Experiment 5

(LTEE)[1] and similar shorter studies[2, 3, 4] have, for example, evolved many gen- 6

erations of microbes using a serial transfer protocol, where microbes are repeatedly 7

diluted and transferred to a fresh medium to start a new growth cycle. Conceptu- 8

ally, if we learn to understand how microbes adapt to such a daily resource cycle, 9

we might one day be able to predict evolution in the lab and — ideally — also in 10

nature. Indeed, a lot of evolution in the lab seems remarkably reproducible, where 11

microbes show parallel adaptations both on the level of the phenotype as well as the 12

genotype [5, 6, 7, 8, 9, 10, 4, 11]. However, there also seems to be strong potential for 13

divergent evolution, leading to diversity both between and within replicate popula- 14

tions [12, 13, 14]. Diversification events within populations often entail cross-feeding 15

interactions [15, 16, 12, 17, 13, 18], where species emerge that grow on metabolic 16

by-products. These cross-feeding interactions are increasingly well understood with 17

the help of metabolic modeling and digital evolution [19, 20]. A recent metagenomic 18
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study has revealed even more coexisting lineages in the LTEE than were previously 19

reported [21]. It is however not yet clear whether all these polymorphisms are the re- 20

sult of uni-directional cross-feeding interactions, or if other mechanisms could drive 21

coexistence in a simple experiment such as a serial transfer protocol. Prior to being

A B C

Active transport
(import/export)

Figure 1 Virtual Microbes model overview. A) At the basis of the Virtual Microbe model is an
artificial “metabolic universe”, describing all the possible reactions that can be catalysed.
Resources (yellow and blue) are fluxed in, but building blocks (purple) and energy (red) must be
synthesized to express proteins and transport metabolites across the membrane, respectively. B) A
Virtual Microbe only needs to express a subset of all possible reactions to be viable, and that no
metabolic strategy is necessarily the “right” one. C) The individuals grow and reproduce on a
spatial grid, and can only reproduce when there is an empty spot. Death happens stochastically or
when a cell has accumulated toxicity by having excessively high concentrations of metabolites.
Since only cells that have grown sufficiently are allowed to reproduce, we simulate evolution with
no prior expectation.

22

subjected to lab conditions, the microbes used in the aforementioned experimental 23

studies have all had a long evolutionary history in natural environments, experienc- 24

ing harshly fluctuating and — more often than not — unfavorable conditions. While 25

a serial transfer protocol such as that of the LTEE at a first glance selects mostly 26

for higher growth rates when resources are abundant (i.e. during the log phase), 27

there is also selection to survive when resources are depleted and the population 28

no longer grows (i.e. during the stationary phase). In fact, given the unpredictable 29

conditions found in nature, some of the ancestors of Escherichia coli might have sur- 30

vived precisely because they diverted resources away from growth. Indeed, E. coli 31

does exactly this during the stationary phase by means of the stringent response, 32

regulating up to one third of all genes during starvation [22]. This response lowers 33

the growth rate, but promotes efficiency and survival (i.e. a higher yield). While 34

most microbes have ways to deal with starvation, the physiology of growth arrest 35

varies a lot across different microbes (for an excellent review, see [23]). Responses 36

to starvation, as well as other features that organisms have acquired during their 37

evolutionary history (such as gene clustering, gene regulatory network architecture, 38

metabolic regulation), might strongly influence the adaptation and reproducibility 39

we observe in the lab today. 40

What do we expect when a complex, “pre-evolved” microbe adapts to a serial 41

transfer protocol like the LTEE? We here use Virtual Microbes in order to firstly 42

mimic natural evolution, acquiring Virtual “wild types” (WTs), which we then 43

expose to a serial transfer protocol (see methods). We do so in order to obtain a 44

fresh perspective on what is being selected for, how this target can be achieved, and 45

which generic features might appear in spite of evolutionary contingencies. We find 46

that the evolved WTs — which are both genotypically and phenotypicall diverse 47
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— also lead to a variety of different solutions when subjected to a serial transfer 48

protocol. More specifically, we see many alternative paths in terms of a growth 49

dynamic trajectories, speciation and regulation. Despite this diversity however, all 50

WTs evolve the same anticipation towards the serial transfer protocol, timing their 51

growth rate, yield, and survival to accurately fit the daily cycle. Whereas some 52

WTs do this by means of clever gene regulation, others diverge into specialised 53

growth and survival strains, and other simply time their resource consumption as 54

to not over-exploit the medium. In short, our WTs all recognized and exploited the 55

regularity of the serial transfer protocol, anticipating resources to be available as 56

usual, but they solve this challenge by a variety of different mechanisms. 57

Results 58

Using Virtual Microbes to search for generic patterns 59

In this study we use Virtual Microbes, a model of the eco-evolutionary dynamics 60

of microbes (see methods). In short, the Virtual Microbe model is unsupervised, 61

meaning that it aims to combine relevant biological structures (genes, genomes, 62

metabolism, mutations, ecology, etc.) without a preconceived notion of “fitness”, 63

which is instead an emergent phenomenon. By not explicitly defining what the 64

model should do, it allows for a serendipitous approach to study microbial evolution. 65

Our main objective in this study is to elucidate generic patterns of evolution in a 66

serial transfer protocol, and to investigate the extend to which these are constrained 67

by prior evolution. In order not to lose track of the objective of finding generic 68

patterns, we refrain from discussing and analysing every mechanistic detail, and 69

instead focus on major observables and discuss some illustrative cases. Before 70

we start evolving Virtual Microbes in a serial transfer protocol, we first evolved 71

a set of Virtual “wild types” (WTs). Instead of optimizing these WTs solely for 72

high growth rates, we here mimic natural circumstances by fluctuating resource 73

conditions (Figure 2A). When too little resource is available, the Virtual Microbes 74

cannot grow. When too much resource is available however, the Virtual Microbes 75

run the risk of accumulating too high concentrations of metabolites, resulting in 76

increased death rates due to toxicity. To avoid extinction, we divided the total 77

grid into four sub-grids. In these sub-grids, the two resource metabolites A and C 78

(yellow and blue in Figure 1A) change in their influx rates with probability 0.01. 79

Both these resources can be converted into building blocks (purple) required for 80

growth. Maximally flourishing Virtual Microbes live on average 100 time steps. 81

Thus, a healthy Virtual Microbe experiences on average one fluctuation in resource 82

conditions in its lifetime (see full configuration in S1). As the rates of influx span four 83

orders of magnitude, conditions will vary from very favourable to very poor. This in 84

turn depends on which resources the evolved Virtual Microbes like to consume (and 85

at which rate), whether or not there is too much or too little resource, and whether 86

or not space for reproduction is available. All in all, this results in an unsupervised 87

evolutionary process where there is no prior expectation of what metabolic strategy 88

or gene regulatory networks might be best suited to survive. Because competitive 89

fitness is not a priori defined, we can study what will be the long-term target of the 90

eco-evolutionary dynamics, not in terms of fitness, but in terms of what the Virtual 91

Microbes evolve to do. 92
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Figure 2 Evolution of Virtual “wild types” under naturally unpredictable and fluctuating
resource conditions. A) Natural evolution is mimicked by (harsly) fluctuating resource conditions,
resulting in a wide variety of resource conditions. The (actual) grid is 40x40, with four 20x20
subspaces where the rates of influx vary stochastically. These subspaces do not impede diffusion of
metabolites or reproduction. The fluctuations of the A and C resource (blue and yellow
respectively) are independent, resulting in a variety of different conditions. Building blocks
(purple) must be synthesized for growth and protein expression. B) We repeat the evolution in
natural conditions 16 times starting from the same (minimally viable) initial clone (varying the
mutations that happen) yielding 16 distinct WTs. These WTs are later transfered to a serial
transfer protocol. C) In the white labels we show how many of the evolved WTs adapted to use
particular reactions. The thicker arrows represent the shared core genome which consists of two
resource importers, a metabolic cycle, and a C-exporter. Transcription factors (diamonds) were
always present across WTs, but only 11/16 WTs visibly display changes in gene expression
correlated with changes in the environment.

Using this protocol, we evolved the same initial clone in the exact same “random” 93

resource fluctuations, only varying the mutations that happened across ∼10.000 94

generations of evolution. This produced 16 distinct WTs with their own evolu- 95

tionary history, which we then expose to the serial transfer protocol (Figure 2B). 96

Despite experiencing precisely the same fluctuations, no two WTs evolved to be the 97

same. For example, we observe a great diversity in gene content, kinetic parameters 98

of enzymes, gene regulatory networks and their complexity, and responses to envi- 99

ronmental stimuli. The core metabolism is however strikingly similar across WTs, 100

always consisting of a simple metabolic cycle. The rates of building block production 101

and death rates are also very similar across all WTs (Figure S3). In other words, 102

it appears that there are many different ways to be fit, and that no solution is 103

evidently better. The similarities and differences between our WTs are summarized 104

in Figure 2C, but we discuss this in more detail in Supplementary Section 1. 105

Long-term evolution experiment in silico 106

After evolving a variety of different WTs, we mimic a serial transfer protocol like 107

that of the LTEE. With regular intervals, all but 10 percent of the cells are removed, 108

while at the same time refreshing the medium. Although time in Virtual Microbes 109

has arbitrary units, we will refer to this process as the “daily” cycle from this point 110

forward. Early in the day, during the log phase, high growth rates are very rewarding 111

as there is a lot of opportunity to reproduce. However, once the population has 112

reached stationary phase (having consumed all resources), it is favourable to survive 113
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and to not invest in growth any further. We will focus on how our WTs adapt to 114

these alternating selection pressures. The results discussed here are found for a 115

variety of different medium conditions (e.g. also see Table S2). In the main text 116

however, we present the 50 time step serial transfer protocol where the medium 117

contained both resources (A and C), as this was a condition on which all WTs 118

could be cultivated, ensuring equal treatment. We focus on the generic features of 119

the adaptation towards this protocol, and how specific WTs and contingent factors 120

from their evolutionary history shape these outcomes. 121

All wild types evolve to anticipate the serial transfer protocol 122

After 800 days of evolving in a serial transfer protocol, we compare the ancestral 123

WTs with the evolved populations. We firstly look at some of the well-known growth 124

dynamics of microbes: the lag-, log-, and stationary phase (Figure 3A). As most ex- 125

perimental evoultionary studies in the lab, we too observe a decreased lag phase 126

and an increased growth rate. The increased growth rate in the evolved popula- 127

tion results in an earlier onset of the stationary phase, which therefore takes much 128

longer than for their WT ancestors. Eventually, this leads to a phase where the 129

cell count decreases again (death phase), revealing a decrease in survival for the 130

evolved populations. To further study how this decreased survival comes about, we 131

next investigated the dynamics of average cell volumes, which are indicative of the 132

“health” of the population: cell volume determines the ability to divide (minimal 133

division volume) and survive (minimal viable volume). A first interesting observa- 134

tion is an increase in average cell volume during the log phase (Figure 3B-C), which 135

is also one of the first results from the LTEE[24]. However, after this increase in cell 136

volumes during the log phase, evolved populations display a clear decrease in cell 137

volumes, either at the end of the day (Figure 3B), or during the whole stationary 138

phase (Figure 3C). Indeed, if we expose the populations to prolonged starvation by 139

extending the day, the evolved populations die shortly after the anticipated serial 140

transfer, while their WT ancestors survived for much longer (Figure 3B-C, right- 141

hand side). Interestingly, we observed that the cell volume at the time of transfering 142

the cells to a fresh medium (henceforth ‘transfer volume’) fall into two distinct cat- 143

egories. In the high yield scenario (Figure 3B), cell volumes are maintained above 144

the division volume until the very end of the day, whereas the low yield scenario 145

leads to a transfer volume that is just above minimal. While the distribution of 146

these observed transfer volumes across ancestral WTs are mostly high (Figure 3D, 147

left-hand side), the evolved cells show a bimodal distribution (Figure 3D, right-hand 148

side). The WTs evolved to either be ready to immediately divide at transfer (Fig- 149

ure 3B), or exploit as much resource as possible while remaining above the minimal 150

viable volume (Figure 3C). Despite this difference, both alternative strategies have 151

evolved to anticipate the regularity of the serial transfer protocol. Indeed, when the 152

extended yield (the total biomass that was generated after prolonged starvation) 153

is measured, it shows a consistent decrease across all evolved populations (Figure 154

3E) relative to the WTs, as these long term effects are now masked from natural 155

selection. We found that this anticipation effect did not depend on details in the 156

protocol, such as the length of the daily cycle or the number of resources used 157

(Figure S5, Table S2). This reveals that a key selection pressure in a serial transfer 158
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Figure 3 Virtual Microbes adapt to anticipate the regularity of a serial transfer protocol. A)
Growth dynamics of WT (green, day 10) and evolved populations (blue, day 760) in terms of cell
counts. (WT03#1 taken as an illustrative example). B-C) Two WTs (green) and the population
after prolonged evolution in the serial transfer protocol (blue) are shown as an illustration of the
anticipation effects. Over the course of 3 cycles, the average cell volume is plotted against time
for the ancestral WT (green) and for the evolved population (blue). The y-axis (cell volume)
indicates the minimal viable volume and division volume (which are fixed for the model), and the
evolved transfer volume (as measured at the end of the third cycle). Daily and extended yield are
measured as defined in the method section. After the third cycle, serial transfer is stopped
(transparent area), showing decreased survival of the evolved populations with respect to their
ancestor. D) Stacked density distributions are plotted for the transfer volumes both early (transfer
0-40, green) and late (transfer 760-800, blue). E) The evolved changes in yield both “daily”
(within one cycle of the protocol) and “extended” (after prolonged starvation) for all 16 WTs.

protocol is not only growth as fast as possible, but also remaining viable until the 159

next day, anticipating the next food supply. 160
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Figure 4 Prior evolution determines trajectories of adaptation towards a serial transfer
protocol. A) Growth rate (average building block production during log phase) is plotted against
daily yield (average population biomass within a single cycle), for all the 48 experiments after
adaptation to 800 serial transfers. The black dotted line is a linear regression model (p <<
10e-16, R2 = 0.54). B) Shows the initial points for all 16 WTs, which actually have a positive
correlation between growth and yield (p << 10e-5, R2 = 0.32) instead of the negative correlation
(black dotted line). C-E) These insets display how the repeated evolution of most WTs produces
similar trajectories towards the trade-off (time points are day 0, 20, 40, 100, 200 and 800), ending
in either high daily yield (C) or low daily yield (D). A minority of WTs diverge after reaching the
trade-off, and thus show more diverse trajectories when repeated (E). The colours of the end
point symbols depict different modes of adaptation as discussed in the next paragraph (grey = no
coexistence, blue = quasi-stable coexistence, purple = stable balanced polymorphisms, black cross
= extinction).

WTs have distinct trajectories toward a growth-yield trade-off 161

The two extreme categories of cell volume dynamics from Figure 3 suggest a trade- 162

off between growth and yield. We next investigate how our different WTs evolve 163

towards this trade-off, and how reproducible these trajectories are. For this, we 164

repeated the serial transfer protocol 3 times for each WT, and follow the trajectories 165

over time. After ∼800 serial transfers, all populations have adapted along a trade- 166

off between growth and yield (Figure 4A, p << 10e-16, R2 = 0.54). This trade-off 167

was not observed during the first cycle of the protocol, which instead shows a 168

positive correlation between growth and yield (Figure 4B, p << 10e-5, R2 = 0.32). 169

Most WTs predictably evolve towards the trade-off by improving both growth and 170

yield (e.g. by importing more resources, or producing more building blocks), but 171

subsequent evolution is very WT-specific. Many WTs maintain high yield (e.g. 172

Figure 4C), but others consistently trade off yield for a higher growth rate (Figure 173

4D). For instance, importing even more resources can improve growth even further, 174

but leads to prolonged starvation and/or toxicity. Lastly, some WTs are showing 175

variable trajectories after having arrived at the trade-off (Figure 4E, Figure S6). 176

Taken together, these results illustrate how prior adaptations strongly shape the way 177
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subsequent evolution plays out. Evidently, specific WTs more readily give rise to 178

certain solutions, having specific adaptations in their “mutational neighbourhood”. 179

This is also illustrated by two WTs that repeatedly gave rise to mutants with 180

extremely high, but unsustainable growth rates, causing multiple populations to go 181

extinct (black crosses in Figure 4). In summary, some WTs adapt predictably to 182

the serial transfer protocol, while others have diverging evolutionary trajectories 183

and can reach different solutions. The consistency of WTs in combination with 184

the diversity of trajectories illustrates how prior evolution can bias — but not 185

necessarily constrain — subsequent evolution. 186

Polymorphism based anticipation by evolution growth and survival strains 187

So far we have only looked at population averages. Next, we study the dynamics 188

of lineages and the evolved dynamics within cells. To track lineages we tag each 189

individual in the population with a neutral lineage marker at the start of the exper- 190

iment (analogous to DNA barcoding). When a single lineage reaches fixation, we 191

reapply these neutral markers, allowing us to quickly detect long-term coexistence. 192

Moreover, these neutral markers allow us to study which arising mutants are adap- 193

tive in the different phases of the growth cycle. In Figure 5A we show dynamics of 194

neutral lineage markers that are frequently redistributed when one lineages fixates 195

in the population, indicating that there is no long-term coexistence of strains. In 196

contrast, figure 5B displays a repeatedly observed quasi-stable coexistence, where 197

two lineages coexist for some time, but coexistence was not stable in the long-term. 198

Lastly, Figure 5C shows stable, long-term coexistence, where two lineages coexisted 199

until the end of the experiment. Coexistence (either quasi-stable or stable) was 200

observed in 21 out of 44 extant populations (Figure 5D). 201

By zooming in on the dynamics of coexisting lineage markers over a shorter time 202

span (Figure 5B-C, right-hand side), we can better understand how these lineages 203

stably coexist. Notably, one lineage is dominating during log phase, while the other 204

lineage performs better during stationary phase. In other words, the lineages have 205

specialized on their own temporal niche. We find that these dynamics can be the 206

result of three mechanisms (or combinations thereof): 1) cross-feeding on building 207

blocks, 2) specialisation on resource A or C, 3) based on the growth vs. yield trade- 208

off. Cross-feeding dynamics always resulted in quasi-stable coexistence (such as 209

depicted in 5B), and never resulted in the balanced polymorphism as depicted in 210

Figure 5C), while the other two mechanisms (resource specialisation and growth vs. 211

yield differentiation) most often resulted in long-term coexistence where the lineages 212

perform better together than they do alone (Figure S8). While specialisation on 213

different resources is a well known mechanism for negative frequency dependent 214

selection, it is far less evident how a growth vs. yield trade-off would result in a 215

fully balanced polymorphism. Mutants with higher growth rates but elevated death 216

rates have a very distinct signature of increasing in frequency early in the daily 217

cycle and decreasing to much lower frequencies during the stationary phase (Figure 218

S7A), as apposed to lineages that increase in frequency throughout all phases of 219

the cycle (Figure S7B). While such mutants readily arise across our experiments, 220

they often have difficulty rising to fixation due to an increasing duration of the 221

stationary phase. In the meantime, a slower growing lineage with lower death rates 222
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Figure 5 Dynamics of neutral lineage markers reveal balanced polymorphisms based on the
daily cycle. A-C) Neutral lineage markers (random colours) frequencies are plotted along 800
serial transfers (left hand side) and along 3 cycles. Panel A shows an example with no coexistence
which is found in 23 out of 44 replicates, and panel B and C show (quasi-)stable coexistence,
found in the remaining 21 replicates. D) shows these 3 possible outcomes for all 3 replicates of 16
WTs (grey = no coexistence, blue = quasi-stable coexistence, purple = stable balanced
polymorphisms, black cross = extinction) Four replicates went extinct during the serial transfer
experiment due to over-exploiting of the medium (black crosses).

can be optimized to utilize resources at low concentrations during stationary phase. 223

Evidently, these dynamics can give rise to a balanced polymorphism that does not 224

depend on resource specialisation, as it is also observed in our experiments with 225

a single resource (Table S2). Indeed, Figure 5A illustrates how two lineages with 226

more than a three-fold different death rates can stably coexist. 227

Besides this speciation on the basis of the growth vs. survival trade-off, we also 228

found well-known mechanisms of speciation, such as cross-feeding [11, 16, 18], 229

canabalism[13], or other resources in the medium [15, 25]. The nature of the co- 230

existence can differ strongly across WTs and replicated experiments. For example, 231

since de novo gene discoveries were disabled during this experiment, cross-feeding 232

on building blocks is only possible if the ancestral WT had the necessary importer 233

for said building block, which was true only for 7/16 WTs. Similarly, even though 234

all WTs have the necessary importers for both the A and C resource, only one WT 235

consistently diverged into an A- and C-specialist (WT10). While other WTs have 236

multiple gene copies for these importers, WT10 had only 1 copy of both genes, 237

making the loss-of-function mutations readily accessible. In conclusion, all poly- 238

morphic population anticipate the serial transfer protocol, but do so by a variety of 239

mechanisms. However, they all have in common a generic pattern of strains which 240

time growth and survival strategies in relation to each other to precisely finish the 241

available food resources by the end of the day. 242
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A) Anticipation based on lineages specialising on growth rate and survival

B) Anticipation based on single lineage with two metabolic modes

Figure 6 Anticipation can entail polymorphism or a single lineage that switches between two
metabolic modes. A) Two lineages occupy different niches on the growth vs. yield trade-off
WT02#01 diverges into a slow growing lineage (yellow lineage, average death rate ±0.015) and a
faster growing lineage with elevated death rates (blue lineages, average death rate ±0.048),
together anticipating the serial transfer protocol. B) A single-lineage anticipates the daily cycle by
trimming and tuning the gene regulatory network. All three replicates of WT07 anticipate as a
single lineage with two metabolic modes. The ancestral gene regulatory network (GRN), protein
allocation dynamics, and resource concentrations are displayed for WT07 during the first cycle of
the serial transfer protocol, and for the three replicated experiments after 400 serial transfers.

Single lineage anticipation by tuning and trimming the gene regulatory network 243

The previous section illustrates how multiple lineages can coexist because the pre- 244

dictable serial transfer protocol produces temporal niches. However, many of our 245

WTs do not show any tendency to speciate like this, and instead always adapt to 246

the serial transfer protocol as a single lineage (Figure 6D). In order to better un- 247

derstand this, we will now look at the intracellular dynamics of WT07, and how 248

it changes when adapting to the protocol. WT07 is one of the more “clever” WTs 249

with a relatively complex GRN, and displays strong responses in gene expression 250

when exposed to “natural” fluctuations. In Figure 6B we show that WT07 con- 251

sistently adapts to the protocol by switching between two modes of metabolism, 252

where importer proteins are primed and ready at the beginning of the cycle, and 253

exporter proteins and anabolic enzymes are suppressed during stationary phase. De- 254

spite some differences in the evolved GRNs, the evolved protein allocation patterns 255

are virtually indistinguishable across the three replicates. Interestingly, although no 256

parallel changes were observed in the kinetic parameters of proteins, we do observe 257

the parallel loss of a energy-sensing transcription factor as well as increased sen- 258

sitivity of the TF that senses the external resource C. In other words, evolution 259

apparently happened mostly through loss, and tuning and trimming of the GRN. 260

Modulation between two metabolic modes allows this single lineage to switch be- 261
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tween log and stationary phase, occupying both temporal niches. Indeed, a second 262

lineage never appeared for this WT (Figure 6B and Table S2). 263

Strikingly, a GRN does not necessarily lead to a single lineage adaptation. For 264

example, another regulating wild type (WT13) repeatedly evolved into multiple co- 265

existing lineages, while maintaining the ability to regulate gene expression. Vice 266

versa, non-regulating wild types (WT01 and WT15) also evolved single-lineage 267

anticipation. Hence, even though the GRN of WT07 has a major impact on the 268

repeatability of single-lineage adaptation (as illustrated in Figure 6B), the presence 269

of a functional GRN is neither sufficient nor necessary for single lineage adaptation. 270
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Discussion 271

In this study we have taken a serendipitous approach to study how microbes adapt 272

to a serial transfer protocol, and to what extent this is determined by their evo- 273

lutionary history. The Virtual Microbe modelling framework serves this goal by 274

not explicitly defining the concept of fitness. Instead, it builds up biology from the 275

bottom up by implementing basic biological features and their interactions. We 276

observe that regardless of their evolutionary history, all WTs learn to anticipate 277

the regularity of the serial transfer protocol by evolving a fine-tuned balance be- 278

tween high growth rate and yield. Long-term survival without food, which is now 279

masked from natural selection, always deteriorates after prolonged exposure to such 280

a protocol. We next show that, if the same WT is repeatedly evolved in a serial 281

transfer protocol, it has similar trajectories towards a growth versus yield trade- 282

off, but may subsequently diverge along it. Polymorphisms within populations are 283

frequently observed, which can happen by means of cross-feeding interactions, re- 284

source specialisation, or growth vs. yield specialisation. We furthermore find that 285

coexisting lineages are dependent on each other, as they would perform better in the 286

presence of the other. In general, our results are robust to details in the serial trans- 287

fer protocol, such as using only a single resource, or varying the interval between 288

transfers (see Table S2). The anticipation effects therefore appear to be generic 289

features of microbes exposed to prolonged evolution in a serial transfer protocol. 290

Moreover, the concept of microbial populations anticipating predictable changes has 291

also been observed in previous in silico[26] and experimental studies[27]. Combined 292

with diversification and bet hedging strategies, anticipation might well play an im- 293

portant role in natural populations, the details of which are yet to be elucidated[28]. 294

295

How do our results map onto experimental evolution in the lab? E. coli Bc251 296

has been subjected to a daily serial transfer protocol for over 30 years (∼70.000 297

generations) in the LTEE. Many of our observations are remarkably similar to the 298

LTEE, such as the improved growth rate and cell sizes during the log phase[24], 299

the (quasi-)stable dynamics of coexisting lineages[21], and “leapfrogging” dynam- 300

ics (e.g. Figure 5A-B) where an abundant lineage is overtaken by another lineage 301

before rising to fixation[29, 30]. The comparison with respect to the growth versus 302

yield dynamics and the anticipation effects discussed in this work is however less 303

straightforward. We have observed how all our WTs quickly evolve to be maxi- 304

mally efficient given our artificial chemistry, and only subsequently diverge along 305

the apparent growth versus yield trade-off (see Figure S6). For this strain of E. coli, 306

growth and yield have continued to improve so far, and although a trade-off has 307

been observed within the populations[31], no growth versus yield trade-off between 308

the replicate populations has been observed yet. Likewise, our interesting results on 309

the evolution of anticipation could not be corroborated as of yet (T. Hindré and D. 310

Schneider, personal communication, November 2018). Nevertheless, we propose that 311

anticipation of periodic environmental change, and a growth versus yield trade-off, 312

provides testable hypotheses for the future of the LTEE, and similar experimental 313

studies. 314

315

Cross-feeding interactions are commonly observed in the LTEE and similar studies 316

[18, 11, 11, 17], and modeling has shown that this adaptive diversification involves 317
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character displacement and strong niche construction[19], and can furthermore 318

strongly depend on the regularity of a serial transfer protocol [20]. While similar 319

cross-feeding interactions are observed in some of our in silico experiments, we also 320

found balanced polymorphisms involving one lineage with high growth rates during 321

log phase and a slower growing lineage which performs better in stationary phase. 322

This can happen by means of resource specialisation, or purely on the basis of a 323

growth versus yield specialisation which does not require cross-feeding or cannibal- 324

ism. While the resource specialisation is only relevant to experimental studies that 325

use more than one carbon source, the growth versus yield diversification also hap- 326

pens on a single resource (Table S2). Indeed, other studies have also suggested the 327

importance of these dynamics, such as the coexistence of respiratory and fermenting 328

strains in Saccharomyces cerevisiae[32] in a chemostat, and the presence of multiple 329

selection pressures in a mathematical model of a serial transfer protocol [33]. Our 330

findings show that these dynamics can emerge in a more complex eco-evolutionary 331

setting. It however remains to be seen if such diversification happens in experi- 332

ments such as the LTEE. Earlier work on the LTEE has shown that, although no 333

significant negative correlation was found for an evolutionary trade-off of growth 334

and yield, isolated clones from within a population do display a negative correlation 335

[31], suggestive for the dynamics we observed in Virtual Microbes. With a great 336

deal of polymorphisms in the LTEE left unexplained so far[21], we thus suggest this 337

as a search image for future evolutionary experiments. 338

339

Much to our surprise, we failed to observe any consistent difference between the 340

WTs that had evolved regulated gene expression before the onset of the serial trans- 341

fer protocol, and those that did not. Even though we observed that gene regulation 342

was often tuned to anticipate the serial transfer protocol (Figure 6), this solution did 343

not appear to be any more productive than solutions that used no gene regulatory 344

mechanisms. Because all the kinetic parameters of enzymes (Km, Vmax, etc.) in 345

the Virtual Microbes are freely evolvable, it is possible that metabolic regulation of 346

homeostasis plays a very important role in Virtual Microbes, and can in many ways 347

be just as “good” as a functional gene regulatory network. Furthermore, we noticed 348

that for certain WTs, a change in metabolism could bypass protein expression by 349

means of kinetic neofunctionalistaion of paralogous genes. Although such a solution 350

does waste more building blocks on the continuous production of protein, it is also 351

much more responsive to environmental changes. Indeed, recent work has shown 352

that adding enzyme kinetics to models of metabolic fluxes leads to much more ro- 353

bustness without leading to a loss in adaptive degrees of freedom [34]. However, the 354

LTEE has revealed many changes in the GRN [7] and global transcription profiles. 355

Thus, the GRN appears to add knobs and buttons for evolution to push [9], but it 356

does not change what is actually being selected for: anticipating the serial transfer 357

protocol. 358

Moving towards an eco-evolutionary understanding 359

The dynamics of Virtual Microbes expose that even a simple serial transfer pro- 360

tocol entails much more than sequentially evolving faster and faster growth rates. 361

Instead, adaptation is an eco-evolutionary process that strongly depends on prior 362
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evolution, timescales, the presence of other competitors and mutants, and transient 363

fitness effects. In accordance with these dynamics, temporal positive selection for 364

certain alleles can be inferred from a metagenomics study on the LTEE[21]. Strik- 365

ingly, although competition experiments favoured the evolved population over the 366

ancestral WTs in almost all cases, there were exceptions to this rule. It is therefor 367

possible that the ancestral WTs perform better in such an experiment, but that this 368

does not describe a stable eco-evolutionary attractor. Indeed, survival of the fittest 369

is an eco-evolutionary process where a lineage interact with other lineages, or with 370

mutants, through changes in the environment. In the LTEE, faster growth might 371

become less and less important as the years pass, perhaps making the aforemen- 372

tioned interactions between lineages increasingly relevant. Other recent studies have 373

recently elucidated the importance of eco-evolutionary dynamics[35], and how this 374

can readily give rise to coexistence of multiple strains which could not have formed 375

from a classical adaptive dynamics perspective[36, 37]. Indeed, metagenomics have 376

revealed much more diversity in the LTEE than previously anticipated[21]. Shifting 377

focus from competition experiments towards the ever-changing selection pressures 378

that emerge from the eco-evolutionary dynamics and interactions, will make the 379

field of experimental evolution harder, but more intriguing, to study. 380

Conclusions 381

We have studied how in silico WTs of Virtual Microbes adapt to a serial transfer 382

protocol like that of the LTEE. While the LTEE has shown a sustained increase 383

in competitive fitness, and intensive research displays how the evolved clones are 384

still improving with respect to their ancestor up until today [38, 39, 40]. It is how- 385

ever still unclear what the actual selection pressures are which are at stake. Our 386

experiments have generated a novel hypothesis that what is being selected for is 387

not necessarily high, but balanced growth, which happens with a great variety of 388

underlying mechanisms. A fine-tuned balance between growth and yield causes an 389

accurate anticipation of the serial transfer protocol, which happen by “clever” sin- 390

gle lineages, or by multiple lineages that arise on the basis of the growth versus 391

yield trade-off. Taken together, our results reveal important insights into the dy- 392

namics and relevant selection pressures in experimental evolution, advancing our 393

understanding of the eco-evolutionary dynamics of microbes. 394

List of abbreviations 395

• LTEE: Long Term Evolution Experiment (first published by R Lenski, 1991) 396

• WT: wild type (plural: WTs) 397

• TF: Transcription Factor (plural: TFs) 398

• GRN: Gene Regulatory Network (plural: GRNs) 399
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Methods 400

A full description of the model and underlying equations is available online

(bitbucket.org/thocu/virtual-microbes and https://virtualmicrobes.

readthedocs.io). Here we summarize the sections of these documents that are

relevant to this study.

401

Finding generic patterns of evolution 402

Experimental evolution is, of course, done on organisms that have evolved for a 403

long time under a wide variety of conditions. These studied organisms all have 404

their own evolutionary history, and differences in how they deal with starvation, 405

stress, changes in resource etc. With Virtual Microbes we are able to evolve a 406

de novo set of “wild types” (WTs), adapted to live in such severely fluctuating 407

resource conditions. We can then explore how these WTs adapt to experimental 408

evolution, and find generic patterns of evolution. To find generic patterns without 409

being biased towards specific solutions, the biology of Virtual Microbes build-up 410

from many levels with many degrees of freedom. One downside of this strategy 411

can be that every simulation (like biological evolution itself) results in a slightly 412

different anecdote. However, once we find a result repeatedly across a series of 413

simulated experiments, we can have more confidence in that the observed pattern 414

is truly a generic pattern and readily accessible by evolution. With or without 415

and understanding of the mechanistic details, relatively simple multilevel models 416

can capture the eco-evolutionary dynamics of microbes, allowing us to study what 417

happens, what else emerges from these dynamics “for free”, and equally important: 418

what needs further explanation? 419

Model overview 420

Virtual Microbes metabolise, grow and divide on a spatial grid (Figure 1C). Here, 421

we use two parallel 40x40 grids with wrapped boundary conditions. One grid con- 422

tains the Virtual Microbes and empty grid-points, and the other describes the local 423

environment in which the Virtual Microbes live. This environmental layer holds 424

influxed metabolites, waste products of Virtual Microbes, and spilled metabolites 425

from lysing cells (Figure 1B). In order to express proteins, grow, and maintain their 426

cell size, Virtual Microbes must synthesize predefined metabolite(s), which we call 427

building blocks. These building blocks are not directly provided, but must be syn- 428

thesized by the Virtual Microbes by expressing the right proteins, allowing them 429

to pump / convert metabolites into one another (Figure 1A). The expression of 430

these proteins depends on genes on genomes that undergo a wide variety of possible 431

mutations upon reproduction (Table 1). Genomes are circular lists of genes, each 432

with their own unique properties (e.g. Km, Vmax for enzymes, Kligand and binding 433

motif for TFs). The level of expression is unique for each gene, and is determined 434

by its evolvable basal transcription rate and how this rate is modulated by tran- 435

scription factors. When an enzyme or transporter gene is expressed, that specific 436

reaction will take place within the cell that carries that gene. Note however that in 437

the complete metabolic universe, many more possible reactions exist. The genome 438

of an evolved Virtual Microbes will typically only use a subset of all the possible re- 439

actions. Proteins to catalyse new reactions and novel TFs can be discovered through 440

rare events. 441
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Table 1 Types of mutations and their probabilities in WT evolution and serial transfer protocol (STP)

Mutation Description Prob (WT
evolution)

Prob (STP)

Duplication A stretch of 1 or more genes is duplicated
in tandem

0.005 0.0015

Deletion A stretch of 1 or more genes is deleted 0.005 0.0015
Inversion A stretch of 1 or more genes is inverted

in order
0.005 0.0015

Translocation A stretch of 1 or more genes is moved to
a random location

0.005 0.0015

(stretch length) Geometricly distributed with p = 0.3 - -
Gene discovery Per time-step probability of discovering

a new (randomly parameterised) gene.
0.0002 (disabled)

HGT Per time-step probability of copying a
gene from a cell closeby

0.002 (disabled)

Point mutation Per gene per generation probability of
modifying a single parameter of a gene
(promoter strength, Michaelis Menten
constants)

0.005 0.0015

Regulatory mutation Per gene per generation probability of
(partially) modifying the upstream bi-
nary operator sequence of a gene

0.005 0.0015

Table 2 Gene level mutations and the boundary conditions

Parameter Gene Types Value range in simulation

Promoter Strength Enzyme, Transporter, TF [0.001, 10]
Ksubstrate Enzyme, Transporter [0.001, 10]
Kenergy Transporter [0.001, 10]
Kligand TF [0.001, 10]
Koperator TF [0.001, 10]
Vmax Enzyme, Transporter [0.001, 10]
effect-bound TF [0.001, 10]
effect-apo TF [0.001, 10]
ligand TF A, B, C, or e
exporting Transporter True,False
sense-external TF [True,False]
binding-motif TF bit flip at random position
operator-sequence Enzyme, Transporter, TF bit flip at random position

Note that unlike most evolutionary models, fitness is not explicitly defined. Both 442

the rate of birth and death are dynamically defined, and evolvable properties for 443

Virtual Microbes. Birth depends on the availability of empty space and resources to 444

synthesize building blocks, whereas death depends on the ability to survive under 445

a variety of different conditions and the potential accumulation (and avoidance) of 446

toxicity. The resulting survival of the fittest (referred to as “competitive fitness” by 447

Fragata et al., 2018) is an emergent phenomenon of eco-evolutionary dynamics[41]. 448

Metabolic universe The metabolic universe in Virtual Microbes is an automatically 449

generated (or user defined) set of metabolites and reactions between them. The 450

simple metabolic universe used in this study was automatically generated by a 451

simple algorithm that defines 4 classes of molecules, how then can be converted 452

into one another by means of 6 reactions, how fast they degrade, diffuse over the 453

membranes, etc. (see Table 4). 454
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Table 3 Grid setup and environmental forcing in WT evolution and serial transfer protocol (STP)

Option (WT evolu-
tion)

Description Value or range

Maximum population
size

As defined by the size of the grid (40x40) 4900

Sub-grids The grid is sub-divided into n grids where fluctuations
are independent

4

Fluctuation frequency Probability (per time step) of 1 metabolite (A or C)
changes in influx in one of the sub-grids

0.01

Fluctuation range New influx of metabolite is sampled uniformly from range [10e-5, 10e-1]
Extracellular metabo-
lite outflux

Rate at which metabolites outside of cells wash out 0.01

Option (serial transfer
protocol)

Description Value

Maximum population
size

As defined by the size of the grid (70x70) 4900

Number of cells seri-
ally transferred

A (near) tenfold dilution of cells 500

Time steps of cycle This represents, for example, the“ 24 hour” serial transfer
protocol of the LTEE

50 (AUT)

[A] at beginning of cy-
cle

Amount of resource A given at the beginning of the cycle 1.25

[C] at beginning of cy-
cle

Am mount of resource C given at the beginning of the
cycle

1.25

Extracellular metabo-
lite outflux

Assuming metabolites can no longer wash out of the sys-
tem

0.0

Table 4 A priori defined metabolites and reactions in artificial chemistry

Metabolite Mass Class Degradation
rate

Diffusion
rate

Toxicity level

A 4 Resource 0.01 0.02 0.2
B 5 Building

block
0.1 0.0015 0.2

C 6 Resource 0.01 0.015 0.2
e 1 Energy car-

rier
0.5 0.0015 0.2

Potential reactions (6)

1C → 1B +
1e

1C → 1A +
2e

1A + 1B →
1C

2A → 1C 2A → 1B 1B → 1A +
1D

The metabolism is simulated on the grid in terms of Ordinary Differential Equa- 455

tions (ODEs) using the Gnu Scientific Library in Cython. These ODEs include the 456

influx of molecules into the system, diffusion between grid points, transport or diffu- 457

sion across the membrane, intracellular metabolism (including expression and decay 458

of proteins), biomass production, cell volume, etc.. Due to computational efficiency, 459

the number of simulations was limited to 16 WTs and 16x3 “lab” experiments. 460

Transmembrane transport For all molecules, transporters exist that import or ex-

port molecules across the cell membrane. Michaelis-Menten kinetics determine the

transmembrane transportation with rate v :

v = vmaxT · [T ] · [S] · [e]
([S] +KS) · ([e] +Ke)

where [T ] is the concentration of the transporter protein, [S] is the concentration 461

of substrate transported, and [e] is the concentration of available energy carrier 462

metabolites. KS and KE are the Michaelis-Menten constants for the substrate and 463
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energy carrier respectfully. Depending on the direction of transport (importing or 464

exporting) [S] is either the external or the internal concentration of the substrate. 465

Note that for any gene on the genome of a Virtual Microbe, VmaxT , KS and KE 466

are all freely evolvable parameters. 467

Metabolism Similar to the transport, metabolic rates are catalysed by proteins by

Michaelis-Menten kinetics with rate v:

v = vmaxE · [E ] ·
∏
R∈R[R]∏

R∈R([R] +KR)

where [E ] is the concentration of the enzyme catalysing the reaction, R the set of 468

all reactant metabolites, and KR and vmaxE are evolvable kinetic parameters of 469

enzyme E . 470

Biomass production Virtual microbes convert building block B to a biomass prod- 471

uct P , which is consumed for cell growth and maintenance Growth(B) and protein 472

production Prod(B), and determines strength with which individuals compete to 473

reproduce. Biomass is next converted to cell volume with a fixed rate, and used 474

for protein expression depending on the demands by the evolved genome. In other 475

words, high rates of expression demand more biomass product for proteins, leav- 476

ing less biomass product to invest in cell volume or maintainance (see cell volume 477

growth). In total, the rate of change of P then becomes 478

dP

dt
= Production(B)−Growth(B)−Protein−expression(B)−dilution−degredation

where B is the concentration of building block metabolites. Production is a lineair 479

conversion of B into P, whereas growth, protein expression, and dilution depend on 480

the dynamics of the cell. Biomass product is then consumed by cellular growth 481

and protein expression which are a function of the building block concentration, is 482

diluted proportional to the changes in cell volume, and degradation is fixed. 483

Consumption for protein expression is summed over all genes:

Ngenes∑
i=1

Pri ·Regi

where Pri is the basal expression rate of gene i, either up or down-regulated if 484

transcription factors are bound to its operator sequence Regi (see transcriptional 485

regulation). 486

Cell volume growth We assume that cell volumes a maximum cell size MaxV and

that there is a continuous turnover d of the cell volume at steady state, ensuring

the necessity to keep on metabolising even if there is no possibility to reproduce

(i.e. if the grid points are all full). Volume then changes as

dV

dt
= g · V · 1− V

MaxV
− d · V
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Transcriptional regulation The rates at which genes are expressed is a function of 487

the basal expression rate of the gene and the concentrations of binding TFs and 488

their molecular ligands. The intrinsic basal expression rate of a gene is encoded 489

by a strength parameter in a gene’s promoter region. This basal expression rate 490

can be modulated by TFs that bind to an operator sequence associated with the 491

gene. Binding sites and TF binding motifs are modelled as bit-strings and matching 492

depends on a certain fraction of sequence complementarity. If a minimum comple- 493

mentarity is chosen < 1 a match may occur anywhere within the full length of the 494

operator binding sequence and the TF binding motif. The maximum fraction of 495

complementarity achieved between matching sequences linearly scales the strength 496

with which a TF binds the target gene. In addition to binding strength following 497

from sequence complementarity, TFs encode an intrinsic binding affinity for pro- 498

moters Kb , representing the structural stability of the TF-DNA binding complex. 499

500

TFs can, themselves, be bound to small ligand molecules with binding afinity

Kl , altering the regulatory effect they exert on downstream genes. These effects

are encoded by parameters effbound and effapo for the ligand-bound and ligand-free

state of the TF, respectively, and evolve independently. Ligand binding to TFs is

assumed to be a fast process, relative to enzymatic and transcription-translation

dynamics, and modeled at quasi steady state. We determine the fraction of TF that

is not bound by any of its ligands L:

Wapo =
∏
l∈L

(1− [l]

[l] +Kl
)

The fraction of time that a TF τ in a particular state σ (bound or apo) is bound

to a particular operator o:

Vo =
[τσ] · cτo ·Kbτ

1 +
∑
σ∈S

∑
τσ∈T [τσ] · cτo ·Kbτ

depends on the inherent binding affinity Kbτ as well as the sequence complementar- 501

ity score cτo between the tf binding motif and the operator sequence [cite Neyfahk]. 502

The binding polynomial in the denominator is the partition function of all TFs T 503

in any of the states S that can bind the operator. Note that small declines in the 504

concentration of free TFs due to binding to operators are neglected. 505

Now, the operator mediated regulation function for any gene is given by

Reg =
∑

Vi · Ei

with Vi the fraction of time that the operator is either unbound or bound by a TF

in either ligand bound or unbound state and Ei the regulatory effect of that state
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(1 if unbound or effbound or effapo when bound by a ligand bound or ligand free TF,

respectively). Finally, protein concentrations [P] are governed by the function:

d[P]

dt
= Pr · Reg · degr · [P]

where Pr is the evolvable parameter promoter strength and degr a fixed protein 506

degradation rate which is not evolvable. 507

Toxicity and death Virtual Microbe death is a stochastic process depending on a

basal death rate, which is potentially increased when internal metabolite concentra-

tions reach a toxic threshold. A cumulative toxic effect is computed over the current

life time τ of a microbe as

etox =
∑
m∈M

∫ τ

t=0

f(m, t)dt

for all internal molecules M , with

f(m, t) = max (0,
[m]t − toxm

toxm
)

the toxic effect function for the concentration of molecule m at time t with toxicity

threshold toxm . This toxic effect increases the death rate d of microbes starting at

the intrinsic death rate r

d =
etox

s+ etox
· (1− r) + r

where s scales the toxic effect. Virtual Microbes that survive after an update cycle 508

retain the toxic level they accumulated so far. Apart from toxicity and stochastic 509

death, cells can also starve. When insufficient biomass product is availble to keep 510

up the slowly decaying volume of the cell, the cells decrease in volume. If the cell 511

volume drops below a minimally viable volume, this cell is automatically for death. 512

Reproduction When cells compete for reproduction, the cells are ranked accord- 513

ing to cell size. The “winner” is then drawn from a roulette wheel with weights 514

proportional to this ranking. Upon reproduction, cell volume is divided equally 515

between parent and offspring, and the genome is copied with mutations (see be- 516

low). Molecule and protein concentrations remaining constant. Toxic effects built 517

up during the parent’s lifetime do not carry over to offspring. 518

Genome and mutations The genome is a circular list of explicit genes and their 519

promoter region, organised like “pearl on a string”. Genes can be enzymes, trans- 520

porters, or transcription factors. At birth, the genome is subject to various types of 521

mutations. Large mutations include duplications, deletions, inversions, and translo- 522

cations of stretches of genes (see Table 1). At the single gene level, point mutations 523
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allow all evolvable parameters to mutate individually (see Table 2). Horizontal gene 524

transfer can occur on every time step. Innovations are an abstraction of “HGT 525

from an external (off-grid) source”, and allow randomly parametrised genes to be 526

discovered at any given moment with a low probability. 527

Experimental setup 528

Metabolic network and wild type evolution We use a very simple metabolic net- 529

work with 2 resource metabolites, 1 building block metabolite, and an energy carrier 530

(Figure 2A). We initialised 16 minimally viable Virtual Microbes, and evolved them 531

for ∼10.000-15.000 generations in fluctuating resource conditions by applying ran- 532

dom fluctuations of the influx rates for the A and the C resource. Because the rate 533

of influx for the two resource metabolites fluctuates between very high (10−1) and 534

very low values (10−5), conditions can be very poor, very rich, and/or potentially 535

toxic. To avoid total extinction, we subdivided the 40x40 grid into four 20x20 sub- 536

spaces, in which these fluctuations are independent (see Figure 2B). Note however 537

that these subspaces do not impede diffusion and reproduction, but merely define 538

the rate at which resources flux into different positions on the grid. In this study, 539

the microbes do not migrate during their lifetime. These conditions, summarized in 540

Table 3, aim to simulate natural resource fluctuations, evolving what we call “wild 541

types” (WTs) of Virtual Microbes. (see supplement S1) 542

The initial population consists of cells that have 3 enzymes, 3 pumps, and 5 543

transcription factors. All these proteins are randomly parameterized, meaning that 544

these proteins are unlikely to have good binding affinities and catalytic rates. The 545

amount of building block required to grow and produce protein is therefor very 546

minimal in the early stages of evolution, and increases up to a fixed level as the 547

Virtual Microbes improve. 548

In silico serial transfer protocol We mimic a serial transfer protocol like that of 549

the LTEE by taking our evolved WTs and – instead of fluctuating the resource 550

conditions – periodically supplying a strong pulse of both the A- and the C-resource. 551

While WTs are evolved in a spatial setting where resources flux in and out of the 552

system, we here mix all cells and resources continuously and fully close the system, 553

meaning no metabolites wash out. To apply strong bottlenecks while at the same 554

time allowing for sufficient growth, we increased the size of the grid from 40x40 to 555

70x70. We dilute the approximately tenfold, transferring 500 cells to the next cycle. 556

Firstly, horizontal gene transfer was disabled to represent the modified (asexual) 557

Escherichia coli Bc251 clone that is used in the LTEE [1]. Furthermore, as the 558

strong bottlenecks cause more genetic drift than the WT evolution, we found it 559

necessary to dial back the mutation rates for the evolution of WTs to 30% to avoid 560

over-exploiting mutants from appearing (see Table 1). Other parameters of the serial 561

transfer protocol are listed in Table 3. 562

Growth rate and yield measurements Yield was approximated by taking sum of 563

all cell volumes, normalized by the maximum number of cells (i.o.w. the size of the 564

grid). We measured yield both within a single serial transfer cycle (“daily yield”), 565

and as the extended yield when we tested for long-term survival. As all WTs had 566

slightly different log phases, we estimated the growth rates as the average building 567

block production during the first half of the protocol. 568

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/554766doi: bioRxiv preprint 

https://doi.org/10.1101/554766
http://creativecommons.org/licenses/by-nc-nd/4.0/


van Dijk et al. Page 22

Curating (quasi-)stable coexistence Using the neutral lineage markers, we manu- 569

ally characterized coexistence by looking at the dynamics of neutral lineage markers. 570

When two neutral markers had relatively stable frequencies with a daily pattern as 571

visualised in Figure 5C for at least 10.000 time steps (approximately 100 genera- 572

tions), it was scored as coexistence. When this persisted for a while, but later got 573

lost, it was scored as quasi-stable. When two neutral markers had balanced frequen- 574

cies for at least 10.000 time steps and this pattern lasted until the end of the 800 575

serial transfers, it was scored as stable. If neither happened, it was annotated at no 576

coexistence. 577

Further configuration of Virtual Microbes Apart from the parameters within the 578

confines of this article (Table 1-4), we have used the default settings for Vir- 579

tual Microbes release 0.1.4, with the configuration files provided in Supplementary 580

Section 2. Further details on the model and parametrisation are available online 581

https://bitbucket.org/thocu/virtual-microbes 582
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9. Hindré, T., Knibbe, C., Beslon, G., Schneider, D.: New insights into bacterial adaptation through in vivo and in 603

silico experimental evolution. Nature reviews. Microbiology 10(5), 352 (2012) 604

10. Laan, L., Koschwanez, J.H., Murray, A.W.: Evolutionary adaptation after crippling cell polarization follows 605

reproducible trajectories. Elife 4, 09638 (2015) 606
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Supplementary materials - S1: 700

Evolution of Virtual Microbes wild types 701

Convergent and divergent evolution in Virtual Microbe wild types 702

In the evolution of our WTs we observed strong convergence as well as diver- 703

gence in the metabolic and gene regulatory networks that evolved. Because the 704

evolved populations consist of a rich mix of different genotypes, we here describe 705

the WTs by profiling the gene repertoires and GRNs at the end of the simulation 706

(∼10.000 generations). For this, we took 20 (maximally unrelated) individuals from 707

the evolved populations and determined the consensus metabolism (Figure S1A). 708

While there is some diversity in the metabolic networks across WTs, the shared 709

gene repertoire constitutes a metabolic network that forms a metabolic cycle com- 710

plemented with resource importers and an exporter for the C metabolite (Figure 711

S1B). We observed that the discovery of both the metabolic cycle as well as the 712

exporter favour survival, as it coincides with an increase in population size and a de- 713

crease in the number of generations per time step (Figure S4). Note that in Virtual 714

Microbes survival is improved by avoiding toxic effects of high metabolite concen- 715

trations and by only investing in growth when conditions are favourable for growth. 716

The latter can be done via gene regulatory networks that respond to the quality of 717

the environment, but we also found forms of metabolic regulation where microbes 718

accurately fine-tuned kinetic parameters to automatically maintain homeostasis. 719

Although the shared gene repertoire from Figure S1B does not contain transcrip- 720

tion factors (TFs), all of the 16 WTs have at least one type of TF. These TFs can 721

constitutively repress or activate certain genes, or can respond to environmental 722

conditions by binding to a ligand molecule. The latter response depends on the 723

kinetic properties of the TFs and the properties of the genes which they regulate, 724

all of which are evolvable (see Table S1). To get a better overview of how the WTs 725

respond to environmental stimuli we therefore chose to directly measure the gene ex- 726

pression levels in a variety of different resource concentrations (displayed for 6 WTs 727

in Figure S2). On the level of these GRNs, and their sensitivity the environment, we 728

clearly see signs of strong divergent evolution. Note however, that the effect on the 729

importer and exporter proteins seems very similar between WTs with different net- 730

works, showing that similar responses can be encoded by different GRNs. Finally, 731

as seen in these graphs, some WTs have no response to environmental stimuli. We 732

found that these non-regulating WTs are equally “fit”, in that they have the same 733

rates of building block production and death rates (see Figure S3). However, the 734

majority (11/16) WTs evolved clear regulatory mechanisms. 735

In short, during the de novo evolution of Virtual Microbe WTs, some evolved 736

features seem highly predictable. Namely, all have evolved the metabolic cycle, all 737

express both resource importer proteins, and all but one WT have a C-exporter. On 738

the other hand, regulatory mechanisms and some of the secondary reactions display 739

considerable diversity. Note that this divergence cannot be explained by differences 740
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in initial conditions or fluctuations in resource concentrations, because the WTs 741

only differ with respect to the mutations that have happened in their evolutionary 742

history. However, as shown in the main text, these differences have a profound effect 743

on further evolution. 744
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Table S1 - Important parameters for TFs for an environmental response
Property TF Description

Expression TF The TF itself needs to be sufficiently expressed
Binding motif The binary binding motif (10 bits) must have a sufficient match to the operator

sequences of genes (50 bits) in order to affect their expression
Kligand If the binding constant to the ligand Kligand is not in range of the observed

concentration of metabolites, the TF will always have the same (up or down)
regulatory effect, regardless of the environment or internal concentrations.

Effect of ligand The ligand-bound and ligand-unbound regulatory effects of TFs need to be dif-
ferent to effectively change expression of genes given any environmental stimulus

Table S2 - Anticipation and polymorphisms are also observed when changing

in the serial transfer protocol For different transfer times, dilutions, and resources

concentrations, seven WTs (11-16, and WT07 from Figure 6 from the main text) have

been tested for the anticipation effect and polymorphisms. Note that anticipation is

not tested by prolonging the cycle (like in the main text), but by comparing the

patterns in cell cycle dynamics with those from Figure 3 in the main text. If a clear

decrease in cell volume was observed at the end of the cycle, it was scored as

anticipation. Polymorphisms are scored as defined in the methods.

textbf Shorter transfer time (25), 800 cycles

WT Anticipation

(Yes/No)

Polymorph

(Yes,No,Quasi)

11 Y N

12 Y N

13 Y Q

14 Y N

15 Y Q

16 Y Q

07 Y N

textbf Higher transfer time (75), ∼250 cycles

WT Anticipation

(Yes/No)

Polymorph

(Yes,No,Quasi)

11 Y N

12 Y N

13 Y Y

14 Y N

15 Y N

16 Y Q

07 Y N
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Supplementary materials - S2: 745

Virtual Microbe configuration 746

The evolution of these WTs was done with Virtual Microbes version 0.1.4 which is 747

publicly available as a Python package. Complete documentation on the methods is 748

publicly available on http://bitbucket.org/thocu/virtualmicrobes. For this 749

study, we used the configuration below. We removed options that are not relevant 750

for reproducability (e.g. memory-limit, thread-count, data-storage-frequency etc.) 751

or are default (e.g. universal-mutation-rate scaling=1.0) To reproduce these results 752

with the newer versions of Virtual Microbes (0.2.4 as of January 2019), feel free to 753

contact the corresponding author if help is required. 754

virtualmicrobes.py @reggen.cfg - evo @reg-evo.cfg --name My WT Vmicrobe755
756

general options.cfg: 757

−−base−death−ra te 0 .01 758
−−mutation−r a t e s 759
chrom dup=0.0 760
chrom del=0.0 761
ch rom f i s s =0.0 762
chrom fuse=0.0 763
point mutat ion =0.005 764
tandem dup=0.005 765
s t r e t c h d e l =0.005 766
s t r e t c h i n v e r t =0.005 767
s t r e t c h t r a n s l o c a t e =0.005 768
s t retch exp lambda =0.3 769
ex t e rna l hg t =0.0002 770
i n t e r n a l h g t =0.002 771
regu latory mutat ion =0.005 772
r eg s t r e t ch exp lambda =0.1 773
−−point−mutation−r a t i o s 774
l i g a n d c l a s s =0.1 775
export ing =0.1 776
−−rand−gene−params 777
base=10 778
lower=−1.0 779
upper=1.0 780
−−mutation−param−space 781
base=10 782
lower=−0.5 783
upper=0.5 784
min=0.01 785
max=10. 786
−−max−h i s t o r i c−max 0.1 787
−−growth−rate−s c a l i n g 1 788
−−competit ion−s c a l i n g 1 789
−−s e l e c t i on−pre s su re h i s t o r i c w indow sca l ed 790
−−h i s t o r i c−production−window 1000 791
−−s ca l e−prod−hi s t−to−pop 792
−−small−mol−d i f f−const 0 .02 793
−−prot−degr−const 0 .7 794
−−t ranspor te r−membrane−occupancy .1 795
−−i n f lux−range 796
base=10 797
lower=−1.0 798
upper=−5.0 799
−−f l u c tua t e−f r e qu en c i e s 0 ,0 .01 800
−−i n i t−externa l−conc 0 . 801
−−small−mol−ext−degr−const 1e−2 802
−−bb−ext−degr−const 1e−1 803
−−ene−ext−degr−const 5e−1 804
−−t r an s c r i p t i on−cos t 0 .002 805
−−energy−t r an s c r i p t i on−s c a l i n g 0 .01 806
−−s p i l l−conc−f a c t o r 1 . 807
−−v−max−growth 1 808
−−min−bind−s co r e 0 .85 809
−−per−grid−c e l l−volume 8 810
−−enzyme−volume−occupancy 3 811
−−grid−sub−div row=2, co l=2 812
−−sub−env−part−i n f l u x 1 .0 813
−−grid−c o l s 40 814
−−grid−rows 40 815

evosim options.cfg: 816

−−durat ion 1000000 817
−−env−rand−seed 87 818
−−reproduce−s i z e−propor t i ona l 819
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−−c e l l−i n i t−volume 1 .5 820
−−c e l l−growth−ra te 2 .0 821
−−c e l l−shrink−ra te 0 .6 822
−−c e l l−growth−cos t 0 .2 823
−−c e l l−d iv i s i on−volume 2 . 824
−−i n i t−prot−mol−conc . 1 825
−−max−c e l l−volume 5 826
−−nr−resource−c l a s s e s 3 827
−−nr−energy−c l a s s e s 1 828
−−ene−energy−range 1 ,1 829
−−res−energy−range 2 ,10 830
−−nr−bui ld ing−blocks 1 831
−−bui ld ing−block−s t o i s 1 ,1 832
−−nr−c e l l−bui ld ing−blocks 1 833
−−mol−per−ene−c l a s s 1 834
−−mol−per−res−c l a s s 1 835
−−nr−cat−r e a c t i on s 3 836
−−nr−ana−r e a c t i on s 3 837
−−max−nr−cat−products 2 838
−−min−cat−energy 1 ,3 839
−−max−nr−ana−products 1 840
−−nr−ana−r eac tant s 2 841
−−chromosome−compos i t ions t f =0, enz=1,pump=1 842
−−binding−seq−l en 10 843
−−operator−seq−l en 50 844
−−p r i o r i t i z e−in f luxed−metabolism 845
−−i n i t−prot−mol−conc 0 .01 846
−−degradation−var iance−shape 100 847
−−no−t ox i c i t y−var iance−shape 848
−−t o x i c i t y 0 .2 849
−−tox ic−bui ld ing−blocks 850
−−t ox i c i t y−s c a l i n g 1000 851
−−t f−binding−c oope r a t i v i t y 2 852
−−homeostatic−bb−s c a l i n g 1 853
−−high−energy−bbs 854
−−p r i o r i t i z e−energy−r ich−i n f l u x 855
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Figure S1 The evolved gene repertoires for all 16 WTs The gene repertoires of WTs (20
maximally unrelated individuals) is displayed for all 16 replicate simulations after 1.000.000 time
steps. Rows represent the different types of proteins (transporters, enzymes and TFs), and the
columns the gene repertoires. Note that the presence of a gene does not imply it is functional,
since properties such as Ks and Vmax might be poorly parameterised. Genes found in less than 4
cells or genes with low concentrations (i.e. low expression) were omitted. The seperate column
depicts the genes found in at least 90% of WTs.
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Figure S2 WTs have great diversity of transcriptional regulation, and not all respond to
changing resource concentrations The graphs shows how the protein allocation shift to imposed
changes in resource concentration of the environment. Single clones from the WTs were taken
and resource concentrations of the A- and C-resource were varied from low (0.01) to high (1.0).
The gene regulatory network responsible for these changes is displayed next to each graph. The
colours for different enzymes are as displayed in the legend. Thicker arrows in the gene regulatory
network represent higher expression levels of the transcription factors. Genes with very low
expression levels were omitted for clarity.
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Figure S3 Different WTs have similar building block production rates and death rates. For 6
WTs, the last 2000 generation of WT evolution did not show any differences in “fitness”, which is
approximated by the rates of building block production and death. Furthermore, regulating WTs
showed not difference compared to non-regulating WTs.
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Figure S4 Decrease in number of generations per time step for WTs coincides with a decrease
in toxicity and/or fixation of a metabolic cycle Decrease in number of generations per time step
coincides with a decrease in toxicity accumulation and/or fixation of a metabolic cycle. Every dot
represents an average over a 100 generations of simulation. For panel A, red dots represent a
toxicity level above which death rate is increased at least threefold (toxicity > 20), and black dots
represent the lower toxic levels (toxicity <= 20). In panel B, the cyan dots represent the fixation of
both the C-exporter and the metabolic cycle, green dots the fixation of only the C-exporter, blue
dots the fixation of the metabolic cycle, and black dots the fixation of neither of these features.
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Figure S5 The anticipation effect is present after evolving in shorter (left) and longer (right)
time intervals.
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Figure S6 Three replicate serial transfer experiments for all 16 WTs. This image is shows all
the data from the examples from Figure 4.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/554766doi: bioRxiv preprint 

https://doi.org/10.1101/554766
http://creativecommons.org/licenses/by-nc-nd/4.0/


van Dijk et al. Page 11

A B

Li
n
e
a
g
e
 m

a
rk

e
r 

fr
e
q
u
e
n
cy

Time (serial transfers 10-20) Time (serial transfers 10-20)

Figure S7 Dynamics of different invading mutants A) Neutral lineage markers linked to
mutations which cause high growth rates but poor survival increase in frequency early, but are
losing in frequency during stationary phase. B) Neutral lineage markers linked to mutations that
have higher growth rates without trading off against survival show no such temporal fitness effect.
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Figure S8 Lineages based on resource specialisation (top) and growth vs. yield specialisation
(bottom) perform better in the presence of the other In the upper panel, two resource
specialists over-exploit their resource in the absence of the other. In the bottom panel, without
evident resource specialisation, both lineages have increased toxicity (given that this happens
through enzymatic changes, this is likely due to changes in fluxes), which accumulates to
significant levels near the end of the cycle. This figure thus shows that lineages can grow
dependent on one another, as they are part of each-others environment.
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