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Abstract 

 

The biology of all organisms is influenced by the associated community of microorganisms. 

In spite of its importance, it is usually not well understood how exactly this microbiome 

affects host functions and what are the underlying molecular processes. To rectify this 

knowledge gap, we took advantage of the nematode C. elegans as a tractable, experimental 

model system and assessed the inducible transcriptome response after colonization with 

members of its native microbiome. For this study, we focused on two isolates of the genus 

Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiome and 

are capable of colonizing and persisting in the nematode gut, even under stressful conditions. 

The transcriptome response was assessed across development and three time points of adult 

life, using general and C. elegans-specific enrichment analyses to identify affected functions. 

Our assessment revealed an influence of the microbiome members on the nematode’s dietary 

response, development, fertility, immunity, and energy metabolism. This response is mainly 

regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment 

of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets 

among the differentially expressed genes. We compared our transcriptome results with a 

corresponding previously characterized proteome data set, highlighting a significant overlap 

in the differentially expressed genes and the affected functions. Our analysis further identified 

a core set of 86 genes that consistently responded to the microbiome members across 

development and adult life, including several C-type lectin-like genes and genes known to be 

involved in energy metabolism or fertility. We additionally assessed the consequences of 

induced gene expression with the help of metabolic network model analysis, using a 

previously established metabolic network for C. elegans. This analysis complemented the 

enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans 

energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also 

folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing 

microbiome isolates on C. elegans life history and thereby provide a framework for further 

analysis of microbiome-mediated host functions.  
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Introduction 

 

All multicellular organisms live in close association with microbial communities, the so-

called microbiome or microbiota (McFall-Ngai et al., 2013). The microbiome appears to 

influence various biological functions of the host, for example food digestion and metabolism 

(Nicholson et al., 2012), development (Sampson and Mazmanian, 2015), immune defense 

(Tilg and Moschen, 2015), and aging (Heintz and Mair, 2014). It is also often linked to 

disease, such as obesity (Shen et al., 2013), liver cirrhosis (Abu-Shanab and Quigley, 2010), 

and even cancer (Garrett, 2015). However, the microbiome’s involvement in determining host 

traits is often based on correlation and exact information on its causal effects is usually absent 

due to missing possibilities for experimental manipulation. Well-established animal models 

may allow for such manipulations. Previous work with the fruitfly Drosophila melanogaster 

has indeed used an experimental approach to dissect the microbiome’s influence on host 

functions. These studies revealed that the microbiome influences gut morphology and 

physiological functions through changes in epithelial renewal rate, cellular spacing, and the 

distribution of different cell types in the epithelium (Broderick et al., 2014), that host 

genotype interacts with the microbiome to determine Drosophila nutritional state, as inferred 

from lipid content (Chaston et al., 2016), and that specific microbiome members enhance 

development and increase fly fitness (Pais et al., 2018). Moreover, microbiome members were 

demonstrated to interact with each other to influence host behavior, specifically olfactory and 

egg laying behaviors, mediated mainly through the odorant receptor Or42b (Fischer et al., 

2017). 

 

Another widely used model organism is the nematode Caenorhabditis elegans. The 

composition of its native microbiome has only been characterized relatively recently (Berg et 

al., 2016a; Dirksen et al., 2016; Samuel et al., 2016; Zhang et al., 2017). It includes a species-

rich community of mainly Gammaproteobacteria and Bacteriodetes, including taxa from the 

genera Enterobacter, Pseudomonas, and Ochrobactrum. Most of the associated bacteria can 

be cultivated and are hence available for experimentation. Some of the cultivable isolates 

were already used to demonstrate their influence on C. elegans fitness under stress conditions, 

for example changes in nematode population growth under high osmolarity or temperature 

stress (Dirksen et al., 2016). Moreover, several distinct bacteria such as isolates of the genera 

Pseudomonas, Enterobacter, and Gluconobacter, were identified to enhance C. elegans’ 

immune defense against pathogens (Berg et al., 2016b; Dirksen et al., 2016; Montalvo-Katz et 

al., 2013; Samuel et al., 2016). To date, it is yet unclear how exactly the microbiome affects 

host molecular mechanisms to influence C. elegans life history characteristics. 

 

The objectives of the current study were to fill this knowledge gap and obtain first insights 

into the effects of microbiome representatives on C. elegans molecular processes. For this 

study, we focused on two microbiome members of the genus Ochrobactrum, the isolates 

MYb71 and MYb237. These bacteria show the particular ability to colonize the nematode gut, 

even under adverse environmental conditions, and thereby form persistent associations with 

C. elegans (Dirksen et al., 2016). To assess the bacteria’s influence on the host, we performed 

a whole-genome transcriptome analysis across nematode development and adult life, using 

RNA sequencing. We used complementary types of enrichment analysis, including usage of a 

C. elegans-specific gene expression database (i.e., WormExp; (Yang et al., 2015b)) and an 

assessment of over-represented transcription factor binding sites (Shi et al., 2011), in order to 

characterize the affected biological functions and the signaling processes likely involved. We 

further compared our new data with a recently published proteome analysis of related material 

(Cassidy et al., 2018), in order to evaluate whether the inducible transcriptome and proteome 

vary, possibly indicating modifications after gene transcription . We further used the 
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expression data for a reconstruction of the inducible metabolic activities in the worm gut, 

using the recently established metabolic network for C. elegans (Gebauer et al., 2016).  

 

 

Material and Methods 

 

C. elegans and bacteria strains 

 

The canonical C. elegans laboratory strain N2 was used for all assays and generally 

maintained following standard procedures (Stiernagle, 2006). N2 was originally obtained 

from the CGC (Caenorhabditis Genetics Center), which is funded by NIH (National Institutes 

of Health) Office of Research Infrastructure Programs (P40 OD010440).  

 

Three bacterial strains were used. The two Gram-negative bacteria Ochrobactrum anthropic 

strain MYb71 and Ochrobactrum pituitosum strain MYb237 are members of the native 

microbiome of C. elegans, obtained from the C. elegans isolate MY316 collected from a 

rotten apple in Kiel, Germany (Dirksen et al., 2016). The bacteria were freshly thawed for 

each experiment and cultured for two days at 25 °C on tryptic soy agar (TSA). Fresh colonies 

were used to produce liquid cultures in tryptic soy broth (TSB) at 28 °C in a shaking 

incubator for approximately 42 h. The Escherichia coli strain OP50 was used as a control and 

cultured in TSB at 37 °C in a shaking incubator overnight. 

 

Transcriptomic analysis of the inducible C. elegans response by RNA-Seq 

 

N2 worms were maintained for a minimum of two generations on peptone-free medium 

(PFM) plates inoculated with the bacteria used for the experiments in order to allow 

adjustment to the bacteria. The transcriptome of C. elegans N2 was analyzed for six time 

points to cover various life stages: 6 h (second larval stage, L2), 24 h (L3), 48 h (L4), 72 h (1-

day old adults, Ad1), 120 h (3-day old adults, Ad3) and 216 h (7-day old adults, Ad7). The 

worms were grown on 9 cm PFM plates with a 700 µl bacterial lawn (OD600 10) of either 

MYb71, MYb237, or E. coli OP50. The worm stage was synchronized by bleaching. For each 

replicate 500 to 2000 synchronized hermaphrodites at the first larval stage (L1) were pipetted 

onto the bacterial lawn. The worms were maintained at 20 °C and harvested after the 

indicated periods. To separate the initially added worms from their offspring and to ensure 

sufficient food, worms were transferred to new plates every two days starting from first day of 

adulthood. Worm stages which did not produce eggs (L2, L3, and L4) were washed from the 

plates with M9 buffer and centrifuged to obtain a worm pellet. The supernatant was removed 

and 700 µl TRIzolTM (Thermo Fisher Scientific, Waltham, Massachusetts, USA) was added. 

Adult worms of Ad1, Ad3, and Ad7 were picked directly into 700 µl TRIzolTM to separate the 

initially placed worms from their offspring. All worms in TRIzolTM were five times frozen in 

liquid nitrogen and thawed at 46 °C in a thermo shaker to break open the cuticle. 

Subsequently, the samples were frozen and stored at -80 °C until the total RNA was extracted 

using the NucleoSpin RNA Kit (Macherey-Nagel, Düren, Germany). The transcriptome was 

analyzed for three replicates from independent runs of the exposure experiment. The only 

exception refers to L2 nematodes exposed to MYb237, for which only two independent 

replicates had sufficient amounts of RNA. All assays were performed without current 

knowledge of strain identity, and all treatment combinations were evaluated in parallel and in 

randomized order to avoid observer bias. RNA libraries were prepared for sequencing using 

standard Illumina protocols. Libraries were sequenced on an Illumina HiSeq™ 2000 

sequencing machine with paired-end strategy at read length of 100 nucleotides. The raw data 
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is available from the GEO database (Barrett et al., 2012; Edgar et al., 2001) under the GSE 

number GSE111364. 

 

After removal of adaptor sequences and low quality reads via Trimmomatic (Bolger et al., 

2014), RNA-Seq reads were mapped to the C. elegans genome (Wormbase version WS235; 

www.wormbase.org) by STAR 2.5.3a (Dobin et al., 2013) under default settings. Transcript 

abundance (read counts per gene) was extracted via HTSeq (Anders et al., 2015). Differential 

expression analysis was performed by aFold from ABSSeq (Yang et al., 2016). The log2 

transformed fold-changes (Ochrobactrum vs. E. coli OP50) were taken as input for K-means 

cluster analysis using cluster 3.0 (de Hoon et al., 2004) with 8 initial clusters. A heat map was 

generated by TreeView version 1.1.4r3 (Saldanha, 2004). Core Ochrobactrum responsive 

genes were detected via aFold using a linear model to account for variation due to 

development and different adult life stages. 

 

Gene ontology, gene set, and motif enrichment analysis 

 

Gene ontology (GO) analysis was performed using DAVID with a cut-off of FDR < 0.05 

(Huang et al., 2009). A taxon-specific gene set enrichment analysis was performed using 

WormExp (Yang et al., 2015b), a web-based analysis tool for C. elegans, containing all of the 

available gene expression data sets for this nematode, thus allowing characterization of 

species-specific expression patterns. Only gene sets with FDR < 0.05 were considered to be 

significant. Motif analysis was carried out on the promoter regions, -600 bp and 250 bp 

relative to transcription start sites (TSS), of genes in each group. De novo motif discovery was 

performed using AMD (Shi et al., 2011).  

 

Transcriptome-proteome comparison 

 

We compared our transcriptome results with the corresponding, previously published 

proteome data employing an isobaric labeling / LC-MS approach (Cassidy et al., 2018). The 

proteome data was generated from exposure experiments that were performed in almost 

identical form than those used for the transcriptome analysis. The main differences were that 

for the proteomics approach worms were grown on 15 cm plates (instead of 9 cm plates), 

Merck filters were used to separate larvae from the focal nematodes (instead of individual 

transfer of the focal worms with the help of worm-pickers), and only a single time-point was 

included, namely the young adult stage (i.e., after 72 h exposure of worms to the bacteria). 

 

Metabolic network analysis 

 

Context-specific metabolic networks based on transcriptomic and proteomic data were 

reconstructed as described previously (Gebauer et al., 2016). Briefly, we used a two-step 

procedure in which first gene expression states were binarized into on and off and 

subsequently these states were used to derive activity of metabolic pathways through mapping 

to a genome-scale reconstruction of C. elegans metabolism using the iMAT procedure (Zur et 

al., 2010). In the first step, the procedure uses false discovery rate-adjusted p-values and fold-

changes from differential expression analyses of the transcriptomic data to derive for each 

time point and condition the most likely activity state of a gene. While in the original 

procedure (Gebauer et al., 2016) this only involved comparisons to adjacent time points, we 

extended the approach by also comparing, for each time point, gene expression between all 

conditions. Differential gene expression analysis was performed using DESeq2 with standard 

parameters (Love et al., 2014). Only genes for which at least one comparison yielded an 

adjusted p-value below 0.05 across all comparisons were considered for the second step. The 
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expression state of all other genes was left open in the second step of the analysis. In the 

second step, the iMAT-procedure (Zur et al., 2010) is used to derive a context-specific 

metabolic network that obeys the constraints of the network (steady state, flux bounds), 

maximizes the utilization of reactions associated with genes determined as on in the first step 

and minimized the utilization of reactions associated with genes determined as off. To 

determine changes in the activity of metabolic pathways, we used the subsystem annotation of 

each reaction present in the network reconstruction and counted the number of active 

reactions associated with each pathway for each condition and time point.  

 

We next identified key enzymes involved in the response to bacterial colonization, using the 

metabolic transformation algorithm (MTA, (Yizhak et al., 2013)). The metabolic 

transformation algorithm is able to identify reaction knockouts that are best able to transform 

a metabolic network from a given source state to a desired target state. We modified MTA in 

two points. First, we used the context-specific metabolic networks we reconstructed as 

described above as source state instead of the purely iMAT-derived metabolic networks used 

in the original approach (Yizhak et al., 2013) to maximize comparability of the identified key 

enzymes to the context-specific metabolic networks we derived. Second, to facilitate 

interpretation, we did not consider single-reaction knockouts but rather gene knockouts. Thus, 

we did not assess the ability of knockouts of specific reactions to move the source network 

towards the target state but rather we performed knockouts on the level of genes. Thus, we 

tested for each metabolic gene present in the reconstruction whether its knockout blocked any 

reaction and performed MTA on the metabolic network after constraining the flux through all 

correspondingly blocked reactions to zero. 

 

We performed two sets of MTA runs on the transcriptomic and the proteomic data: one for 

the transition between growth of either Ochrobactrum species to growth on E. coli OP50 and 

vice versa. For each set of runs we performed MTA runs for every time point and each 

comparison. Thus, for the analysis of the metabolic transition between growth on 

Ochrobactrum to growth on E. coli OP50, we considered for each time point either of the two 

Ochrobactrum-growth specific metabolic networks as source state and the E. coli OP50-

specific metabolic network as target state. MTA returns for each gene a score indicating to 

which extent the knockout of this gene shifts the source state towards the target state. 

Moreover, MTA determines a threshold score at which the knockout of a gene is considered 

to lead to a significant shift towards the target state. Since the absolute values of MTA-scores 

change between runs (but rarely their order), we summarized each run by setting all runs with 

an MTA-score equal or below the cut-off threshold to zero, replacing the remaining scores 

with their rank in the ordered list and normalizing values to a maximum of 1 (highest MTA 

score) and a minimum of 0. For each comparison we performed five bootstrap runs in which 

we randomly removed 10 % of gene expression values before performing MTA to assess 

robustness of results. MTA-scores were summarized through averaging the rank-normalized 

scores for each gene across all runs of a set and subsequent normalization of scores to a range 

from 0 to 1. Subsequently, an overall MTA score for each gene was determined by summing 

MTA-scores for the transition from growth on Ochrobactrum to growth on E. coli OP50 

using transcriptomic and proteomic data and subtracting the scores for the opposite transition. 

As a result, we obtained an overall MTA score which is positive if a gene mediates the 

transition from growth on Ochrobactrum to growth on E. coli OP50 and negative in the other 

direction.  
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Results and Discussion 

 

Transcriptional variation is determined by nematode development and microbial 

exposure 

 

The C. elegans microbiome isolates Ochrobactrum MYb71 and Ochrobactrum MYb237 are 

able to efficiently colonize the nematode gut (Figure 1A and also (Dirksen et al., 2016)). To 

assess the effects of MYb71 and MYb237 on molecular processes in the C. elegans host, we 

performed transcriptome analysis using RNAseq across three developmental stages (L2, L3, 

and L4) and three time points during adulthood (day 1, day 3, and day 7). The standard 

laboratory food bacterium Escherichia coli OP50 served as control (Figure 1B). We first used 

principal component analysis (PCA) to explore transcriptomic variation across treatments and 

time points. We found that both the first and second principal component separate different C. 

elegans developmental stages (Figure 1C), suggesting development as the main determinant 

of gene expression variation. The different bacterial treatments account for less overall 

variation. As indicated by the third principal component, it appears that colonization by the 

Ochrobactrum strains and the E. coli control produce more pronounced differences at the 

middle time points (i.e., L4 larval stage and the first adult time point Ad1; Figure 1D). This 

observation may suggest that Ochrobactrum and E. coli vary in how they affect nematode 

development from L4 to adult. 

 

Next, we specifically assessed transcriptional variation by either Ochrobactrum strains versus 

E. coli for each time point, in order to explore the gene functions affected by these 

microbiome members. A total of 893 genes were differentially expressed, falling into eight 

clusters of co-regulated genes, as identified through K-means clustering (Figure 2A). These 

observations highlight that the transcriptional response is indeed influenced by Ochrobactrum 

across time, whereby the two Ochrobactrum strains do not appear to vary much in inducible 

expression patterns (Figure 2A). Clusters 1 and 5 refer to genes with strong differential 

expression across all time points (up- and down-regulated genes, respectively), while other 

clusters show differential expression at specific time points only. This pattern possibly 

indicates that Ochrobactrum influences C. elegans’ life history in more than one way. 

 

To uncover the affected biological processes, we applied gene ontology (GO) enrichment 

analysis on all identified 893 differentially expressed genes. A variety of GO terms were 

found to be significantly over-represented among these genes (Supplementary Table S1). 

Several of the most significant GO terms are related to immunity, for example GO:0045087 

(e.g., innate immune response) and IPR001304 for the C-type lectins (Pees et al., 2015), the 

latter term particularly over-represented among the up-regulated gene clusters (Figure 2B). 

These results are consistent with repeated previous reports of a link between the microbiome 

and the host immune system (Cullender et al., 2013; Thaiss et al., 2016; Tilg and Moschen, 

2015). Moreover, many metabolism-related processes are significantly enriched (e.g., 

GO:0055114~oxidation-reduction process and GO:0006629~lipid metabolic process; Figure 

2B; Supplementary Table S1). This may suggest an influence of Ochrobactrum on C. elegans 

metabolism, consistent with previous work on the alternative food bacterium Comamonas 

DA1877 (MacNeil et al., 2013). Interestingly, clusters 1 and 5 show a stronger relationship to 

the indicated GO terms than clusters related to only one time point. This may imply that the 

major effects of these microbiome members on C. elegans persist across the various life 

stages. 

 

The complementary enrichment analysis with WormExp (Yang et al., 2015b) revealed 

significant over-representation of gene sets, which were related to pathogen infection (e.g., 
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nematocidal Bacillus thuringiensis strain BT247 (Yang et al., 2015a), Staphylococcus aureus 

(Bond et al., 2014), Pseudomonas aeruginosa strain UCBPP-PA14 (Nakad et al., 2016); 

Table 1, Supplementary Table S1). Moreover, data sets related to the GATA transcription 

factor gene elt-2 (RNAi (Schieber and Chandel, 2014), ChIP-Seq targets (Mann et al., 2016)) 

or the E-box transcription factor gene hlh-30 (study on S. aureus (Visvikis et al., 2014) and 

hlh-30 mutant (Grove et al., 2009)) were also enriched, suggesting an involvement of these 

transcription factors in the nematode’s response to the microbiome. Additional over-

represented gene sets relate to C. elegans dietary responses, for example gene sets related to 

the insulin-like pathway (daf-2 (Knutson et al., 2016) and daf-16 (McElwee et al., 2004)), 

fasting (Lee et al., 2014, 1), and starvation (Mueller et al., 2014). We further found an 

enrichment of the worm’s response to the previously studied food bacterium Comamonas 

DA1877 (MacNeil et al., 2013). Overall, our results suggest that the Ochrobactrum isolates 

affect dietary responses, metabolic processes, and also interact with the immune system. 

 

The presence of co-regulated gene clusters, as inferred through our cluster analysis, could be 

caused by transcription factors. To explore this idea, we performed de novo motif enrichment 

analysis on promoter regions of the genes within each cluster. We identified one or two 

informative transcription factor binding motifs for each cluster (Figure 2C). However, only 

two of them have been previously characterized for C. elegans: the GATA motif with 

consensus sequence GATAA and the E-box with the sequence motif CACGTG. GATA 

transcription factors are known to play a role in immunity (Shapira et al., 2006), intestine 

development (mainly through ELT-2 (McGhee et al., 2007)), and aging (mainly through ELT-

3, ELT-5, and ELT-6 (Budovskaya et al., 2008)). The GATA motif is enriched in clusters 1, 

2, 3, and 5, which generally showed an over-representation of GO terms and gene sets related 

to above characteristics, especially immunity (Figure 2B, Table 1). E-box transcription factors 

were shown to shape C. elegans immunity (e.g., hlh-30 (Visvikis et al., 2014)) and muscle 

development (Grove et al., 2009). The corresponding motif was only identified for cluster 1, 

which similarly produced an enrichment for immunity-related GO terms. As the motif 

analysis is corroborated by the enriched gene expression sets for mutants of known GATA 

and E-box transcription factors, we conclude that these regulators play a central role in 

coordinating the response of C. elegans to its microbiome members. 

 

Signature genes in the C. elegans response to Ochrobactrum 

 

To identify genes specific for the response to the microbiome members only, we employed a 

model-based statistical analysis (based on the linear model-option in aFold (Yang et al., 

2016)), in which we statistically accounted for the factor time. Thus, these genes specifically 

respond to the presence of Ochrobactrum, irrespective of any variation in gene expression 

across worm development. This analysis revealed a total of 86 differentially regulated genes: 

65 differentially expressed in the presence of MYb237 and 71 in the presence of MYb71. 

More than 70 % of these genes were identical, confirming our above notion that these two 

Ochrobactrum isolates induce a similar expression response. Of the total of 86 genes, 18 and 

59 were continuously up- and down-regulated across the six studied time points, respectively 

(Figure 3A). Of these genes, six showed a more than twofold change in expression. They may 

therefore be suited as indicator markers for the C. elegans response towards Ochrobactrum 

colonization. They include the four down-regulated genes acdh-1, metr-1, cth-1, and mtl-2, 

and the two up-regulated genes Y53G8AM.5 and F59D6.3. acdh-1 and metr-1 were 

previously identified as reporters for a dietary response (MacNeil et al., 2013; Watson et al., 

2013). The down-regulated gene mtl-2 is known to play a role in regulating growth and 

fertility (Freedman et al., 1993). cth-1 encodes a putative cystathionine gamma-lyase, which 

may contribute to metabolic processes. 
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A motif enrichment analysis on these 86 genes again suggests that the microbiome response is 

controlled by a GATA transcription factor (Figure 3B). This is additionally supported by the 

significantly over-represented gene set that is downstream of the GATA transcription factor 

gene elt-2 (Figure 3C; Supplementary Table S2). Our enrichment analysis generally yielded 

results that are consistent with above analysis (cf. Figure 2B). They indicate a potential 

interaction between Ochrobactrum and immunity and also the involvement of the dietary 

response, the microbe’s influence on metabolic pathways, energy production, and the 

response to the bacterial food source Comamonas DA1877 (Figure 3C; Supplementary Table 

S2). Moreover, in this analysis, we also found enriched gene sets related to development (i.e., 

downstream targets of lin-35 (Kirienko and Fay, 2007)) and fertility (i.e., downstream targets 

of glp-1 (Gracida and Eckmann, 2013)). The latter suggest that the microbiome additionally 

affects these two characteristics in C. elegans. 

 

Concordance between the C. elegans proteome and transcriptome responses to 

Ochrobactrum 

 

We next compared the transcriptome response at the first adult time point to a corresponding 

proteome data set, which was obtained for the same time point upon colonization with 

Ochrobactrum (Cassidy et al., 2018). This proteome data set revealed significant differential 

abundance of 123 out of more than 3,600 quantified proteins. Of these, 50 had higher and 73 

had lower abundance. These differentially abundant proteins showed consistent changes at the 

transcript level upon colonization of nematodes to both MYb71 and MYb237 (Figure 4A, 

4B). In detail, 40 genes showed consistently higher (80 % of the 50 up-regulated proteins) and 

67 consistently lower abundance (91.8 % of the 73 down-regulated proteins) in both the 

transcriptome and proteome data sets. One example is the short-chain acyl-CoA 

dehydrogenase gene, acdh-1, which was consistently and strongly down-regulated in the 

presence of the two Ochrobactrum isolates. Similarly, four C-type lectin-like genes produced 

consistent and significant expression changes at transcript and protein levels (up-regulation: 

clec-63 and clec-65, down-regulation: clec-47 and clec-218). These results were in line with 

the enriched GO term of C-type lectin genes (Figure 2B), suggesting an important role of C-

type lectins in mediating the nematode’s interaction with specific microbiome members, 

which are highly numerous in nematodes and could contribute to recognition of microbe-

associated molecular patterns (MAMPs) (Pees et al., 2015). Only two genes showed 

significant opposite expression patterns at transcript and protein levels. These included two 

members of the C. elegans lysozyme gene family (Boehnisch et al., 2011), lys-4 and lys-5, 

which were up-regulated at mRNA, yet down-regulated at protein level, indicating a post-

transcriptional regulation. 

 

An enrichment analysis of the 123 differentially expressed proteins revealed several 

significantly enriched functions. These included GO terms related to metabolism and energy 

production, such as the terms cel01100:Metabolic pathways, GO:0008152~metabolic process, 

and GO:0005739~mitochondrion (Figure 4C; Supplementary Table S3). The enriched term 

GO:0055114~oxidation-reduction process could similarly indicate a role in energy 

metabolism or, alternatively, stress response. The WormExp analysis yielded similar results 

as above, including significant over-representation of gene sets related to immunity, dietary 

response, ageing, and that controlled by elt-2. We also found enrichment of genes controlled 

by aak-2, which is part of the AMPK pathway (Burkewitz et al., 2015; Hou et al., 2016) and 

thus further supports the possible influence of the microbiome members on C. elegans energy 

production (Figure 4D). 
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Metabolic network analysis indicates colonization-specific changes in fatty acid, amino 

acid, folate, and energy metabolism 

 

Since we observed considerable metabolism-associated changes in response to bacterial 

colonization, we performed a more detailed analysis of metabolic changes associated to 

bacterial colonization. To this end, we derived context-specific metabolic networks by 

mapping the transcriptomic and proteomic data to a genome-scale reconstruction of C. 

elegans metabolism (Gebauer et al., 2016). This method comprises two steps that initially 

discretizes gene expression states into on and off based on differential expression between 

conditions. In the second step, a subnetwork of the metabolic network is determined that can 

carry flux and maximizes the utilization of reactions catalyzed by enzymes that are active 

based on the first step while minimizing the utilization of reactions catalyzed by enzymes that 

are inactive (Gebauer et al., 2016). 

 

In a first step, we compared the reconstructed context-specific networks of the different 

developmental stages upon exposure to the different bacteria separately (Figure 5A). In 

agreement with the expression-based analysis, we found that developmental stage had the 

strongest impact on metabolic activity. Bacterial colonization affected metabolism mostly 

during larval development and had only little impact in adult worms. On a global scale, amino 

acid metabolism, carbohydrate metabolism, and vitamin metabolism were most strongly 

affected by bacterial colonization (Figure 5B, Supplementary Tables S4 and S5). Differences 

among bacterial effects were found for fatty acid metabolism, the metabolism of various 

amino acids (branched-chain amino acids, cysteine/methionine metabolism, tryptophan 

metabolism, lysine metabolism), and also folate (Figure 5C). Intriguingly, folate metabolism 

has previously been observed to be a key process involved in the modulation of host 

physiology and lifespan by food microbes (Cabreiro et al., 2013). Moreover, branched-chain 

amino acids, cysteine as well as methionine and tryptophan are important modulators of C. 

elegans nutritional and stress responses (Gebauer et al., 2016; Lee et al., 2015; Mansfeld et 

al., 2015; van der Goot et al., 2012). 

 

In a second step, we used the metabolic transformation algorithm (Yizhak et al., 2013) to 

identify enzymes that most strongly contributed to the metabolic shifts associated with 

bacterial colonization (Supplementary Table S6). The metabolic transformation algorithm 

identifies knockouts in a metabolic network that shift the metabolic network from a specific 

source state to a desired target state. Thus, this algorithm allows us to assess which enzymatic 

processes mediate the metabolic transition from C. elegans growth on the Ochrobactrum 

strains towards growth on E. coli OP50 and vice versa. In order to ensure robustness of the 

results, we used combined data sets of the transcriptomic and proteomic results for these 

analyses. For the transition from E. coli to Ochrobactrum (i.e., requirements for growth on the 

microbiome bacteria), we observed a considerable number of potential key mediators in N-

glycan biosynthesis, serotonin/octopamine biosynthesis and co-factor metabolism. For N-

glycan biosynthesis, several genes in N-glycan precursor biosynthesis including algn-1 – 

algn-3, algn-5, algn-7 and algn-10 – algn-13 were identified. N-glycans have been implicated 

in the interaction with microbial pathogens in C. elegans (Butschi et al., 2010; Shi et al., 

2006) and commensals in higher organisms (Koropatkin et al., 2012). Thus, our results may 

indicate a role of N-glycans also in the interaction of C. elegans with its microbiome 

members. For serotonin/octopamine metabolism, we identified tyrosine decarboxylase (tdc-1) 

as well as tyramine beta-hydroxylase (tbh-1) involved in octopamine biosynthesis and 

tryptophan hydroxylase (tph-1) involved in serotonin biosynthesis as key mediators of 

metabolic transitions. Serotonin and octopamine are antagonists that are important modulators 

of C. elegans behavior and energy metabolism (Niacaris and Avery, 2003; Noble et al., 2013; 
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Suo et al., 2009). For the transition from Ochrobactrum to E. coli OP50 (i.e., requirement for 

growth on E. coli), we identified only two enzymes as key mediators: a predicted adenosine 

kinase, R07H5.8, and C05C10.3 involved in ketone body metabolism as well as the first step 

in mevalonate/terpenoid metabolism. Interestingly, adenosine kinase catalyzes the conversion 

of adenosine and ATP to AMP and ADP and thereby influences central aspects of C. elegans 

physiology via AMPK-signaling.  

 

 

Conclusions 

 

We here provide the first study on the transcriptional response of C. elegans towards 

colonizing members of its native microbiome, both from the genus Ochrobactrum. This 

response was characterized across three larval and three adult stages, capturing different parts 

of the worm’s life cycle. We link the transcriptomic results with proteome data and further 

combine gene expression enrichment analyses with metabolic network modelling, thereby 

providing a comprehensive reference framework for the inducible molecular response of C. 

elegans towards colonizing microbiome members. 

 

We found that there is a specific response to Ochrobactrum that involves several biological 

processes, such as those related to immunity, ageing, fertility, and development, and the three 

connected characteristics dietary response, metabolism, and energy production (Figure 2). We 

further identified an Ochrobactrum-exclusive signature of 86 differentially expressed genes 

(Figure 3), some of which are directly related to above functions and could serve as indicator 

genes for the worm’s response to this microbiome taxon. We additionally identified a 

significant overlap between the Ochrobactrum-mediated response at transcript and protein 

levels (Figure 4), thereby providing one of the few examples in C. elegans which could 

directly connect these two levels within one study set-up. This overlapping set of genes is 

again enriched in functions related to pathogen responses, dietary responses, and energy 

metabolism, highlighting that these are indeed central processes affected by the presence of 

colonizing microbiome members rather than non-colonizing food bacteria. Our metabolic 

network analysis confirms the influence of Ochrobactrum on energy metabolism (e.g., via the 

AMPK pathway; (Burkewitz et al., 2015; Hou et al., 2016)), and furthermore metabolism of 

specific amino acids, fatty acids, and also folate biosynthesis (Figure 5). 

 

Our complementary analyses consistently identify a role of GATA transcription factors, most 

likely ELT-2, in coordinating the response to Ochrobactrum (Table 1; Figures 2C, 3B, 3D, 

4D). ELT-2 is known to control gene expression in the intestine (McGhee et al., 2007) where 

the microbiome resides, thus providing ample opportunity for direct interactions between 

bacterial molecules and upstream regulators of ELT-2 and, conversely, between ELT-2 

downstream factors and the colonizing bacteria. Moreover, ELT-2 was suggested to act as 

central regulator of inducible gene expression against pathogenic bacteria in the adult 

intestine (Block and Shapira, 2015; Yang et al., 2016b), thereby providing a link to the 

enriched set of immune-related genes. However, Ochrobactrum does not behave as a 

pathogen, as it neither enhances nematode mortality (compared to the standard food source E. 

coli) nor causes any obvious damage during intestinal colonization (Figure 1A). Therefore, 

the enrichment of immune-related genes may indicate multiple functions of the pathogen-

responsive genes, which could be involved in both digestion and pathogen degradation or the 

recognition of any gut-colonizing microbe (e.g., possible for the enriched group of C-type 

lectins; (Pees et al., 2015)). This enriched category may also reflect the previous notion that 

immune-related genes are generally involved in coordinating composition of the host-

associated microbes (Eberl, 2010; McFall-Ngai, 2007).  
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Table 1. Enriched WormExp gene sets for differentially expressed genes upon 

Ochrobactrum colonization. 

Category Gene set Counts Bonferroni 

Microbes 
down by B. thuringiensis at 6 h 

(BT247, 1:10) (Yang) 
232 4.13E-149 

TF Targets low-complexity elt-2 targets 338 4.68E-133 

DAF/Insulin/food down by daf-2 mutant (Knutson) 171 7.24E-130 

Mutants down by elt-2 RNAi under normoxia 141 4.78E-90 

Microbes up by PA14, 12 h 106 1.29E-81 

DAF/Insulin/food down by fasting (Lee) 90 8.03E-65 

Microbes down by Bt toxin, Cry5B 110 7.36E-64 

Microbes down by PA14, 12 h 63 7.59E-62 

Microbes down by S. aureus (Bond) 84 2.05E-53 

Microbes 
down by B. thuringiensis (BT247),  

12 h 
157 2.32E-49 

DAF/Insulin/food down by starved (Mueller) 170 4.55E-48 

Microbes down fed by E. coli HT115 vs. OP50 38 3.25E-47 

DAF/Insulin/food up by daf-16 mutant (McElwee) 90 1.84E-46 

Microbes 
up by B. thuringiensis at 6 h (BT247, 

1:10) (Yang) 
112 2.35E-41 

DAF/Insulin/food down by daf-16 mutant (McElwee) 95 3.11E-39 

Microbes 
up by S. aureus, dependent on hlh-30 

(Visvikis) 
100 1.07E-38 

Microbes up by S. aureus (Bond) 85 5.18E-36 

DAF/Insulin/food 
down fed by Comamonas DA1877 vs. 

OP50 young adult 
67 8.49E-33 

DAF/Insulin/food up by fasting (Lee) 52 1.39E-25 

DAF/Insulin/food up by starved (Mueller) 140 3.55E-25 

DAF/Insulin/food 
up fed by Comamonas DA1877 vs. 

OP50 young adult 
31 1.06E-23 

Mutants up by elt-2 RNAi under normoxia 39 3.64E-18 

Microbes up fed by E. coli HT115 vs. OP50 19 1.21E-16 

DAF/Insulin/food up by daf-2 mutant (Knutson) 41 2.90E-13 

Microbes up by Bt toxin, Cry5B 46 4.86E-12 

Mutants down hlh-30 mutant 27 7.65E-12 

The enriched gene sets (second column) are ordered according to their significance, as 

indicated by the Bonferroni-adjusted p-values (right column). The column Counts shows the 

number of genes present in the current data set and that from the database. Detailed results are 

provided in Supplementary Table S1. 
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Figure 1. Colonized C. elegans individual, workflow and principal component analysis of 

transcriptomic variation. (A) Colonization of C. elegans strain N2 by Ochrobactrum 

MYb71, highlighting distribution of the microbiome isolate (labeled with red fluorescence) 

throughout the pharynx and gut lumen. (B) Workflow. (C, D) Variation was assessed for N2 

fed with E. coli OP50 (indicated by filled cycle) or colonized by Ochrobactrum isolates 

MYb237 (triangles up and down) or MYb71 (filled squares) at six time points including the 

second larval stage (L2, 6 h), L3 (24 h), L4 (48 h), 1-day old adults (Ad1), Ad3 (3 d), and 

Ad7 (7 d), as indicated by different colors. 
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Figure 2. Induced differential gene expression in C. elegans after colonization with 

Ochrobactrum isolates. Differential expression is identified via comparison of worms 

colonized by the Ochrobactrum isolates versus those fed with E. coli OP50. (A) Co-regulation 

of differentially expressed genes. Eight clusters (indicated by the numbers on the left) of co-

regulated genes were identified via K-means clustering. Red and blue colors refer to up and 

down regulation, respectively. Heatmap scale bars indicate fold changes at log2 scale. (B) 

Enriched gene ontology (GO) terms of differentially expressed genes. GO enrichment 

analysis was performed by DAVID. 15 selected GO terms are shown with significance (top 

panel, bar plot with adjusted p-values). The percentage of genes, which contributed from each 

cluster to the identified GO terms is shown as a heatmap in the middle panel. (C) Enriched 

transcription factor binding sites (Motif) for each cluster. Motifs were detected by AMD at the 

promoter region of genes. 
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Figure 3. Core responsive genes. (A) Differential gene expression of 86 core responsive 

genes are shown using a heatmap. Genes with the strongest change of expression are marked 

on the right. Red and blue colors refer to up and down regulation, respectively. Heatmap scale 

bars indicate fold changes at log2 scale. (B) Venn diagram showing the overlap of core 

responsive gens induced upon colonization by MYb71 and MYb237 and the enriched binding 

motif. (C) Enriched GO terms. GO enrichment analysis was performed by DAVID. (D) 

Enriched WormExp gene sets. 
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Figure 4. Comparison of differential gene expression at transcript and protein levels. (A) 

Comparison of expression levels at transcript and protein level. Data are only shown for genes 

with significant differential expression at protein level. Results are shown separately upon 

exposure to either MYb71 or MYb237. (B) Expression changes of genes at transcript and 

protein levels at the 1-day old adult stage (Ad1, 72 h). Red and blue colors refer to up and 

down regulation, respectively, or higher and lower protein abundances. Heatmap scale bars 

indicate fold changes at log2 scale. A selection of genes with functional information is shown 

on the right. (C) Enriched GO terms. GO enrichment analysis was performed by DAVID. (D) 

Enriched WormExp gene sets.  
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Figure 5. Metabolic response of C. elegans to bacterial colonization and exposure. (A) 

Principal component analysis of context-specific metabolic networks. (B) Changes in the 

number of active reactions in top-level pathways across developmental stages and bacterial 

treatment. (C) Changes in the number of active reactions in individual metabolic pathways. 

Only eight pathways with highest absolute difference in the number of active reactions 

between Ochrobactrum (MYb237 and MYb71) and E. coli OP50 exposure across all time 

points are shown. Numbers of active reactions in all subsystems are provided in 

Supplementary Tables S4 and S5. 
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Supplementary Material 

 

Supplementary Table S1. Fold-change in expression of differentially expressed genes, 

gene ontology (GO) term enrichment, and WormExp enrichment. 

 

Supplementary Table S2. Core responsive genes induced upon Ochrobactrum 

colonization, GO term enrichment, and WormExp enrichment. 

 

Supplementary Table S3. Comparison of differential expression at transcript and 

protein levels and WormExp enrichment. 

 

Supplementary Table S4: Inferred active reactions in metabolic subsystems across 

developmental stages and different bacterial microbiome species. 

 

Supplementary Table S5: Inferred active reactions in individual metabolic pathways 

across developmental stages and different bacterial microbiome species. 

 

Supplementary Table S6: Identification of key enzymes mediating the response to 

Ochrobactrum species and Escherichia coli. 

 

Supplementary Movie 1. 3D reconstruction of Ochrobactrum MYb71 colonization in a C. 

elegans N2 host via fluorescence in situ hybridization. Signal of general bacterial probe 

EUB338 is shown in red, nuclei stained with DAPI in blue. The individual shown is the 

same as in figure 1A. 
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