
EWAS-Galaxy: a tools suite for population epigenetics
integrated into Galaxy
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Abstract

Background, Epigenome-wide association studies (EWAS) analyse genome-wide
activity of epigenetic marks in cohorts of different individuals to find associations
between epigenetic variation and phenotype. One of the most common technique used
in EWAS studies is the Infinium Methylation Assay, which quantifies the DNA
methylation level of over 450k loci. Although a number of bioinformatics tools have
been developed to analyse the assay they require some programming skills and
experience to use them. Results, We have developed a collection of user-friendly tools
for the Galaxy platform for those without experience aimed at DNA methylation
analysis using the Infinium Methylation Assay. Our tool suite is integrated into Galaxy
(http://galaxyproject.org), web based platform. This allows users to analyse data from
the Infinium Methylation Assay in the easiest possible way. Conclusions, The EWAS
suite provides a group of integrated tools that combine analytical methods into a range
of handy analysis pipelines. Our tool suite is available from the Galaxy test toolshed,
GitHub repository and also as a Docker image. The aim of this project is to make
EWAS analysis more flexible and accessible to everyone.

Background 1

Over the last several years comprehensive sequencing data sets have been generated, 2

allowing analysis of genome-wide activity in cohorts of different individuals to be 3

increasingly available. Finding associations between epigenetic variation and phenotype 4

is a significant challenge in biomedical research. Recently performed genome-wide 5

association studies (GWAS) have identified variation naturally occurring in the genome 6

associated with disease risk and prognosis, including tumour pathogenesis [16]. This 7

raised interest in the concept of epigenome-wide association studies (EWAS). 8

Epigenome-wide association studies (EWAS) are the solution to exploring and 9

understanding how interactions between genetic background and the environment could 10

affect human health [8]. The term Epigenome means ”on top of” the genome and refers 11

to specific changes in genome regulatory activity occurring in response to environmental 12
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stimuli [26]. Epigenetic modifications do not change the underlying DNA sequence, but 13

can cause multiple changes in gene expression and cellular function [8]. Some of the 14

epigenetic modifications such as DNA methylation have been described as related to 15

oncogenesis in a range of cancers including one of the deadliest- melanoma [16]. In 16

humans, DNA methylation occurs by attaching a methyl group to the cytosine residue. 17

This has been suggested as a suppressor of gene expression [14]. Multiple methods for 18

DNA methylation analysis were developed, including the polymerase chain reaction 19

(PCR) and pyrosequencing of bisulfite converted DNA, dedicated to study a small 20

number of methylation sites across a number of samples [27]. Assays like whole genome 21

bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) 22

allow global quantification of DNA methylation levels. However, running this type of 23

analysis for a larger number of samples can be prohibitively laborious and expensive 24

[15]. The Illumina Methylation Assay [12] offers unprecedented applicability and 25

affordability due to the low costs of reagents, short time of processing, high accuracy 26

and low input DNA requirements. It determines quantitative array-based methylation 27

measurements at the single-CpG-site level of over 450k loci [25] covering most of the 28

promoters and also numerous other loci. The makes assay suitable for systematic 29

investigation of methylation changes in normal and diseased cells [26]. As such it has 30

become one of the most comprehensive solutions on the market [17]. However, Illumina 31

Genome Studio is not suitable for everyone and as a commercial software generates 32

additional costs. Therefore there is a need to create freely available software able to 33

perform comprehensive analysis including quality control, normalisation and detection 34

of differential-methylated regions [17]. Open-source software packages (e.g. DMRcate 35

[24], Minfi [10], ChAMP [18], methylumi [7], RnBeads [3]) require high performance 36

computational hardware as well as command line experience in order to run the analysis. 37

This is why one of aims of the our EWAS pipeline was to set and implement these 38

methods into user-friendly environment. An EWAS suite ( summarized in table 1) 39

developed to provide users with an enhanced understanding of the Infinium Methylation 40

Assay analysis tool. The tool suite includes methods for preprocessing with stratified 41

quantile normalisation minfi ppquantile or extended implementation of functional 42

normalisation minfi ppfun with unwanted variation removal, sample specific quality 43

assessment minfi qc and methodology for calling differentially-methylated regions and 44

sites minfi dmr and positions detection minfi dmp. All scripts were wrapped into a 45

web based platform - Galaxy, a graphical interface with tools, ready to run workflows 46

providing a solution for non-programmer scientists to analyse their data and share their 47

experience with others [9]. Configuration files are publicly published on our GitHub 48

repository [22] with scripts and dependencies settings also available to download and 49

install via Galaxy test toolshed [21]. Our suite was created and tested using a Planemo 50

workspace with a default configuration and shed tool setup available via Docker 51

(operating-system-level virtualization) [22]. 52
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Figure 1. Simplified workflow for analysing epigenetics data
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Tools Description 53

The workflow combines 7 main steps (see Figure 1), starting with raw intensity data 54

loading (.idat) and then preprocessing and optional normalisation of the data. The next 55

quality control step performs an additional sample check to remove low-quality data, 56

which normalisation cannot detect. The workflow gives the user the opportunity to 57

perform any of these preparation and data cleaning steps, including the next highly 58

recommended genetic variation annotation step resulting in single nucleotide 59

polymorphism identification and removal. Finally, the dataset generated through all of 60

these steps can be used to hunt (find) differentially-methylated positions (DMP) and 61

regions (DMR) with respect to a phenotype covariate. Functional annotation of data 62

generates clinically meaningful information about methylation changes with visual 63

representation of these genes and functions. All the tools and single preparation and 64

analysis steps are shown in Figure 2 and explained in detail below. 65

Data Loading 66

The 450k assay interrogates fluorescent signals (qreen and red) from the methylated and 67

unmethylated sites into binary values which can be read directly as IDAT files [12]. 68

Illumina’s GenomeStudio solution converts the data into plain-text ASCII files losing a 69

large amount of information during this process [1]. To prevent this kind of data loss we 70

developed an R based tool minfi read450k which is a combination of illuminaio 71

readIDAT and minfi RGChannelSet functions. The tool loads intensity information from 72

both treatment and control data and based on this it builds up a RGChannelSet class. 73

Preprocessing and Normalization 74

RGChannelSet represents two colour data with a green and a red channel and can be 75

converted into methylated and unmethylated signals assigned to MethylSet or Beta 76

values. Betas build in RatioSet object, and estimate the methylation level using 77

channels ratio in a range between 0 and 1 with 0 being unmethylated and 1 being fully 78

methylated [1]. Users can convert from RGChannelSet into a MethylSet using the 79

minfi mset tool or compute Beta values using minfi rset tool, if no normalisation is 80

performed. However, these two classes can also be preprocessed and normalised with 81

two methods avaliable [1]. Minfi ppquantile implements stratified quantile 82

normalisation preprocessing and is supported for small changes like in one-type samples 83

e.g. blood datasets. In contrast, minfi ppfun is aimed at global biological differences 84

such as healthy and occurred datasets with different tissue and cell types. This is called 85

the between-array normalisation method and removes unwanted variation [1]. Both of 86

these methods return GenomicRatioSet class, that holds comprehensive information 87

about methylation assays mapped to a genomic location [1]. 88

Quality Assessment and Control 89

Data quality assurance is an important step in Infinium Methylation Assay analysis. 90

The minfi qc tool extracts and plots the quality control data frame with two columns 91

mMed and uMed which are the medians of MethylSet signals (Meth and Unmeth). 92

Comparing these against one another allows users to detect and remove low-quality 93

samples that normalisation cannot correct [10]. 94
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Table 1. Summary of the EWAS suite tools inputs and outputs

Tool ID Input Output Description
minfi read450k IDAT RGChannelSet read the .IDAT files

minfi mset RGChannelSet MethylSet
convert the Red/Green
.IDAT’s for an Illumina
methylation array

minfi qc MethylSet /GenomicMethylSet DataFrame quality assessment

minfi rset MethylSet/GenomicRatioSet RatioSet

converting methylation
data from methylation
and unmethylation
channels, to ratios
(Beta and M-values)

minfi ppfun RGChannelSet GenomicRatioSet
functional normaliza-
tion preprocessing

minfi ppquantile RGChannelSet/GenomicMethylSet GenomicRatioSet
stratified quantile nor-
malization

minfi maptogenome MethylSet/RGChannelSet/RatioSet GenomicRatioSet

add genomic coordi-
nates to each probe to-
gether with some addi-
tional annotation infor-
mation

minfi geo GEO accession GenomicRatioSet
download data from
GEO database

minfi getbeta MethylSet/RatioSet/GenomicRatioSet DataFrame return Beta value

minfi getCN MethylSet/RatioSet/GenomicRatioSet DataFrame
return coordinating
node

minfi getM MethylSet/RatioSet/GenomicRatioSet DataFrame
return the Fisher infor-
mation corresponding
to a model and a design

minfi pheno RatioSet/GenomicRatioSet DataFrame extract phenotype data

minfi getanno GenomicRatioSet DataFrame
access provided annota-
tion

minfi getsnp GenomicRatioSet DataFrame
return SNP informa-
tion of the probes

minfi dropsnp GenomicRatioSet GenomicRatioSet

drop the probes that
contain either a SNP at
the metylated loci inter-
rogation or at the single
nucleotide extension

minfi dmp MethylSet/GenomicRatioSet DataFrame
return differentially-
methylated positions

minfi dmr GenomicRatioSet DataFrame
return differentially-
methylated regions

Annotating probes affected by genetic variation 95

Single nucleotide polymorphism (SNP) regions may affect results of downstream 96

analysis. Minfi getsnp return data frames containing the SNP information of 97

unwanted probes to be removed by minfi dropsnp tool [1]. 98
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Figure 2. Screenshot from the Galaxy Workflow Editor, showing EWAS example
workflow as discussed in the Analyses section.

DMPs and DMRs Identification 99

The main goal of the EWAS suite is to simplify the way differentially-methylated loci 100

sites are detected. The EWAS suite contains a minfi dmp tool detecting 101

differentially-methylated positions (DMPs) with respect to the phenotype covariate, and 102

minfi dmr provides a solution for finding differentially-methylated region (DMRs) [10]. 103

DMRs can be tracked using a bump hunting algorithm. The algorithm first implements 104

a t-statistic at each methylated loci location, with optional smoothing, then groups 105

probe into clusters with a maximum location gap and a cutoff size to refer the lowest 106

possible value of genomic profile hunted by our tool [13]. 107

Functional Annotation and Visualization 108

In addition to downstream analysis, users can access annotations provided via Illumina 109

(minfi getanno) [1] or perform additional functional annotations using the Gene 110

Ontology (GO) tool (clusterprofiler go). The Gene Ontology (GO) tools provides a 111

very detailed representation of functional relationships between biological processes, 112

molecular function and cellular components across data [6]. Once specific regions have 113

been chosen, clusterprofiler go visualize enrichment result (see Figure 5). Many 114

researchers use annotation analysis to characterise the function of genes, which 115

highlights the potential for Galaxy to be a solution for wide-ranging multi-omics 116

research. 117

Documentation and Training 118

We have also provided training sessions and interactive tours for user self-learning. The 119

training materials are freely accessible at the Galaxy project Github repository [19]. 120

Such training and tours guide users through an entire analysis. The following steps and 121

notes help users to explore and better understand the concept. Slides and hands-on 122

instruction describes the analysis workflow, all necessary input files are ready-to-use via 123

Zenodo [20], as well as a Galaxy Interactive Tour, and a tailor-made Galaxy Docker 124

image for the corresponding data analysis. 125
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Potential implications 126

Increased interest in skin cancer biomarker identification led us to validate the 127

differentially-methylated regions analysis using the Illumina 450K Methylation array 128

data of melanoma biopsies pre and post MAPKi treatment [11], obtained from the Gene 129

Expression Omnibus (GEO) (GSE65183). Methylation profiling by genome tiling array 130

in melanoma can help us understand how non-genomic and immune changes can have 131

an impact on treatment efficiency and disease progression. Raw image IDAT files were 132

loaded into the Galaxy environment using Data Libraries. EWAS workflow was run on 133

Red and Green dataset collections of patient-matched melanoma tumours biopsied 134

before therapy and during disease progression. The IDAT files, pre-defined phenotype 135

tables and up-to-date genome tables (UCSC Main on Human hg19 Methyl450) [22] were 136

used as inputs. In order to detect poorly performing samples we ran quality diagnostics 137

with minfi qc tool. The provided samples passed the quality control test (on figure 3) 138

as they clustered together with higher median intensities confirming their good quality 139

[1]. 140

Figure 3. Quality Control Plot representation of melanoma pre and post MAPKi
treatment samples.

Differentially-methylated loci were identified using single probe analysis implemented 141

by minf dmp tool with the following parameters: phenotype set as categorical and 142

qCutoff size set to 1. The bump hunting algorithm was applied into the minfi dmr 143

tool to identify differentially-methylated regions (DMRs) with maximum location gap 144

parameter set to 250, genomic profile above the cutoff equal to 0.1, number of 145

resamples set to 0, null method set to permutation and verbose equal FALSE which 146

means that no additional progress information will be printed. Differentially-Methylated 147

Regions and Positions revealed the need for further investigation of tissue diversity in 148

response to environmental changes [4]. Nearest transcription start sites (TSS) and 149

enhancer elements annotations founded in the gene set can be listed as follows: PITX1, 150

SFRP2, MSX1, MIR21, AXIN2, GREM1, WT1, CBX2, HCK, GTSE1, SNCG, PDPN, 151

PDGFRA, NAF1, FGF5, FOXE1, THBS1, DLK1 and HOX gene family. Although 152

hyper-methylated genes identified by ’EWAS-suite’ have been previously associated with 153

cancer, this is the first time a link between them and MAPKi treatment resistance is 154
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reported. These data demonstrates that PDGFR, which is suggested to be responsible 155

for RAS/MAPK pathway signaling trough activation may regulate the MAPKi 156

mechanism in non responsive tumours. The methylation regulation of this altered status 157

of PDGFR requires additional studies [11]. The PITX1 suppressor gene was found as 158

one of the factors decreasing gene expression in human cutaneous malignant melanoma 159

and might contribute to progression and resistance via promoting cell proliferative 160

activity [23]. It has been found that homeodomain transcription factor MSX1 and 161

CBX2 polycomb protein are likely to be treatment resistance factors and are reported 162

as downregulated and inactivated in melanoma tumours [5]. Previous published studies 163

are limited to local surveys and serial biopsies. Thus, the stimulus of innate or acquired 164

MAPKi resistance may converge on epigenetics. 165

Figure 4. UCSC Example Track.

Functional annotation with GO is a scheme to understand how the annotations are 166

assigned to the genes [2]. These are enrichment GO categories after controlling for false 167

discovery rate (FDR) control figure (see in 5). The greatest significance to the gene 168

output was the pattern specification process (GO:0007389), skeletal system development 169

(GO:0001501) and regionalisation (GO:0003002) meaning that melanoma MAPKi 170

resistance could be related to the cells developmental process within specific 171

environments. 172

Figure 5. Functional Annotation of DMR’s found in melanoma biopsies pre and post
MAPKi treatment.
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Conclusion 173

With the rapidly increasing volume of epigenetics data available, computer-based 174

analysis of heritable changes in gene expression becomes more and more feasible. Many 175

genome-wide epigenetics studies have focused on generation of the data, however data 176

interpretation is a challenge now. Risk evaluation, disease management and novel 177

therapeutic development are prompting researchers to find novel bioinformatic 178

frameworks and approaches. In this regard we propose a user friendly tool suite available 179

via Galaxy platform ’EWAS-Galaxy’ This tools suite allows life scientist to run complex 180

epigenetics analyse. [22]. The use case presented provides a tangible example how the 181

EWAS tool suite can provide additional insights into melanoma therapeutic resistance. 182

Availability of source code and requirements 183

Project name: EWAS-Galaxy: a tools suite for epigenomics data analysis integrated 184

into Galaxy 185

Project home page:https://github.com/kpbioteam/ewas galaxy 186

Operating system(s): Linux (recommended), Mac 187

Programming language: R programming language (version 3.3.2, x86 64bit) 188

Other requirements: Galaxy [19] 189

License: License version x 190

Availability of supporting data and materials 191

Test data-set from this article are available in the GEO database under accession 192

GSE65186. 193
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