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Abstract 

Background: Breast cancer is the second most prevalent cancer worldwide with around 1.7 

million new cases diagnosed every year. Whilst prognosis is generally favourable in early 

stages, this worsens significantly in advanced disease. Therefore, it is pertinent to focus on 

mitigating factors that may slow growth or progression. Recently, the gut microbiome has been 

implicated in a wide-range of roles in tumour biology. Through modulation of immunity, the gut 

microbiota can improve the efficacy of several immunotherapies. However, despite the 

prevalence of breast cancer, there is still a lack of microbiota studies in this field, including 

exploring the influence of external microbiome-modulating factors such as antibiotics. We 

describe herein how disruption of the gut microbiota via antibiotics may be detrimental to 

patient outcomes through acceleration of tumour growth.  

Results: Supplementing animals with a cocktail of antibiotics leads to gut microbiota 

alterations and is accompanied by significant acceleration of tumour growth. Surprisingly, and 

distinct from previous microbiome-tumour studies, the mechanism driving these effects do not 

appear to be due to gross immunological changes. Analysis of intratumoural immune cell 

populations and cytokine production are not affected by antibiotic administration. Through 

global tumour transcriptomics, we have uncovered dysregulated gene expression networks 

relating to protein and lipid metabolism that are correlated with accelerated tumour growth. 

Fecal metabolomics revealed a reduction of the microbial-derived short-chain fatty acid 

butyrate that may contribute to accelerated tumour growth. Finally, through use of a routinely 

administered antibiotic in breast cancer patients, Cephalexin, we have shown that tumour 

growth is also significantly affected. Metataxanomic sequencing and analysis highlighted 

significant antibiotic-associated reductions in the butyrate producing genera Odoribacter and 

Anaeotruncus, and increased abundance of Bacteroides. 

Conclusions: Our data indicate that perturbation of the microbiota by antibiotics may have 

negative impacts on breast cancer patient outcomes. This is of importance as antibiotics are 

regularly prescribed to breast cancer patients undergoing mastectomy or breast 

reconstruction. We have also shown that the metabolic impact of disruption to the microbiome 

should be considered alongside the potent immunological effects. We believe our work lays 

the foundation for improving the use of antibiotics in patients, and with further investigation 

could potentially inform clinical practice.  
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Background 

Breast cancer (BrCa) is the second most prevalent cancer globally and the most prevalent in 

women [1]. It was estimated to contribute 11.6% of the 18.1 million new cancer diagnoses and 

6.6% of the 9.6 million cancer related fatalities in 2018 [1]. While ~10% of BrCa cases are 

linked to hereditary or somatic mutations in tumour suppression genes, such as BRCA1 and 

BRCA2, the vast majority of cases are the result of lifestyle and environmental factors [2]. 

Hormone therapies, smoking, alcohol consumption, and diet have all been associated with the 

onset of BrCa, the latter likely being linked to a disruption in gut homeostasis [1–3].   

The gut microbiota comprises a diverse and complex array of microbes which play an integral 

role in maintaining human health. Under normal healthy conditions, these microbes regulate 

our immune system through molecular interactions at the intestinal barrier [4]. However, when 

the gut environment is altered unfavourably, such as after a course of antibiotics, the microbial 

community profile is shifted or disturbed, and gut homeostasis is lost [5, 6].  

Alterations in the gut microbiota are associated with an array of molecular and physiological 

changes. Inflammatory signalling pathways can be amplified or dampened depending on 

changes in bacterial metabolite production, and such alterations have been associated with a 

variety of diseases, including cancer [7, 8]. In colorectal cancer, a reduction in short-chain fatty 

acid (SCFA) production by Roseburia resulted in a proinflammatory cascade that promoted 

cancer progression in an in vivo mouse model [9]. Contrastingly, inoculation of mice 

harbouring subcutaneous melanomas with Bifidobacterium, a known beneficial or ‘probiotic’ 

genus, has been shown to amplify the anti-tumour effect of an anti-PD-L1 immunotherapy 

through the priming of CD8+ T-lymphocytes [10]. Studies like these demonstrate the 

microbiota’s integral role in regulating local and systemic responses to cancer.  

Since the discovery of penicillin in 1928, antibiotics have become an extremely effective way 

of preventing and fighting bacterial infections [11]. Nevertheless, with the evolution of 

antibiotic-resistant bacterial strains, and an emerging understanding of the risks associated 

with antibiotic-induced microbiota disturbances, the ubiquity of their use has become 

increasingly controversial [11, 12]. Whilst the use of prophylactic antibiotics to treat BrCa  

patients, particularly following a mastectomy and reconstructive surgery, is common practice, 

their clinical benefit is under debate [13, 14]. Additionally, the resultant alterations in the gut 

microbiota created by their use raises concerns over potential impacts on metabolism and 

inflammation that might drive tumorigenesis [15, 16].  Whilst the consequence of antibiotic use 

has been studied in other cancers, the impact on BrCa is largely unknown. 

This research aimed to identify how antibiotic-induced gut microbiota changes influences the 

progression of BrCa. Using MMTV-PyMT derived PYMT-BO1 and spontaneous EO771 breast 
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carcinoma cells in an orthotopic, mammary fat pad injection model, we identified a significantly 

increased rate of primary tumour growth in animals subjected to a broad-spectrum cocktail of 

antibiotics. Importantly, this also occurred in Cephalexin-treated animals, an antibiotic 

commonly administered to BrCa patients post-surgery in the US [16]. Immunological and 

proteomic analysis found little variation in the immune cell infiltration of tumours and no change 

in tumour cytokine production in antibiotic treated animals. However, whole tumour 

transcriptomics identified profound differences in regulation of metabolism pathways. 

Subsequent metabolomic analysis of fecal material following antibiotic treatment highlighted 

significant changes in SCFA metabolites, particularly the reduction of butyrate and acetate in 

addition to changes in microbiota derived amino acid production. Additionally, analysis of the 

microbiome in Cephalexin treated animals showed a significant reduction in butyrate-

producing bacteria. 

These findings highlight a possible mechanism by which antibiotic administration may be 

detrimental to patient outcomes. While it is not feasible to rule out their use, further 

consideration must be taken to optimise their use in a clinical setting. It is hoped that with 

further studies our work may help guide clinical practice through use of better targeted 

antibiotics in BrCa patients. 
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Results 

Treatment with broad spectrum antibiotics results in severe perturbation of the gut 
microbiota and acceleration of breast tumour growth 

To investigate the role of the microbiota on breast tumour growth we employed an orthotopic 

mammary fat pad injection model using two distinct cell lines. The PyMT-BO1 line is derived 

from MMTV-PyMT animals and exhibits a luminal B intrinsic phenotype,  whilst the EO771 line 

is derived from a spontaneous C57BL/6 breast tumour, and more closely resembles basal 

BrCa [17]. Prior to tumour cell injection, the microbiota of animals was depleted using a 

cocktail of antibiotics consisting of Vancomycin, Neomycin, Metronidazole and Amphoteracin 

(VNMA) via oral gavage with Ampicillin also available in drinking water. This cocktail has been 

previously shown to result in severe microbial changes [18, 19]. Following the regimen 

documented in Figure 1A, animals treated with the VNMA cocktail had very low fecal DNA 

concentrations, compared to water treated controls (Data not shown). Samples which could 

be quantified were subjected to PCR amplification of the V1+2 region of the 16S rRNA gene. 

Amplifiable DNA is present in all starting samples in both groups, however, after 5 days of 

VNMA treatment, amplifiable DNA is no longer present in feces and is maintained for at least 

22 days of treatment (DoT) (Figure 1B) indicating a severe microbiota knock-down in these 

animals. Crucially, animals with a depleted microbiota were shown to have significantly 

accelerated tumour growth when compared to water treated counterparts, both in the PyMT-

BO1 (Figure 1C and D) and the EO771 model of BrCa (Figure 1E). To determine any 

phenotypic differences in tumour properties, we used H&E staining to examine tumour 

architecture, however no significant changes were observed in antibiotic treated vs. control 

animals (Figure 1F). 

Antibiotic-induced microbiota changes do not alter frequencies of infiltrating 
leukocytes, myeloid cells, or to macrophage polarisation 

Given the known interactions between the microbiota and the immune system, and the 

previously published literature suggesting that manipulating the microbiota can alter anti-

tumour immunity, we decided to undertake high level immune cell phenotyping using flow 

cytometry. We performed profiling of intratumoural CD11b+ myeloid cells, and subsequently 

analysed proportions of F4/80+ macrophages and Ly6G+ neutrophils. We did not observe any 

significant changes in either population (Figure 2A). In addition, we profiled the activation state 

of tumour-associated macrophages (TAMs) using MHC-II and CD206 to delineate “M1” and 

“M2” polarisation. However, we did not observe any significant differences in either the number 

of cells presenting these markers or the median fluorescence intensity (MFI) (Figure 2A&B). 

Whilst the proportion of immune cells in the tumour was overwhelmingly weighted towards 
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myeloid cells (90-95% of all CD45+ events), we also undertook profiling of T cell populations, 

identified as CD3+CD4+ and CD3+CD8+. T regulatory (Treg) cells were also identified from 

CD4+ cells by FoxP3 staining (Figure 2C). This analysis was also performed in spleen and 

mesenteric LN as a measure of peripheral immune cell populations, however no changes were 

observed at the tumour or in either organ (Figure 2D&E). After determining that immune cell 

populations did not appear to be significantly altered after VNMA treatment, we undertook 

analysis of intratumoural cytokine production by multi-plex assays. However, using whole 

tumour protein lysates we were unable to detect any significant changes to intratumoural 

cytokine production (Figure 2F). Conversely, cytokine analysis of colon tissue revealed 

multiple cytokines were significantly reduced by VNMA, including CXCL-1, IL-1β, IL-2 and 

TNF-α (Supplementary Figure 1). 

Transcriptomic analysis of whole tumour RNA reveals a gene expression pattern 
consistent with changes to metabolic processes 

The lack of changes at an immunological level led us to question what might be driving our 

phenotype. To address this, we undertook global transcriptomic sequencing of whole tumour 

RNA using 3 samples from each experimental condition. This differential gene expression 

analysis yielded a total of 172 differentially expressed genes (DEGs): 85 upregulated and 87 

downregulated in the VNMA treated animals, with respect to controls. The top 7 of each are 

annotated in the volcano plot (Figure 3A). The entire DEG list is available in Supplementary 

Figure 2. These genes were used for functional clustering analysis in the NIH DAVID tool 

according to Gene Ontology (GO) biological process definitions. The full list of biological 

processes highlighted using this method is available in Supplementary Tables 1 and 2, 

however a high frequency of processes involved in cellular metabolism were identified. In total, 

91 of 172 DEGs were associated with metabolic transduction, transcription, and migration and 

differentiation (Figure 3B). Given the overwhelming prominence of metabolic gene regulation 

in our analysis, we chose to delve further into the biological functions that may be 

consequentially altered. Using lower level GO definitions, we observed significant changes in 

lipid metabolism, gluconeogenesis, and protein metabolism (Figure 3C). Further analysis of 

these biological functions revealed two major groups of genes. One belonging to lipid 

metabolism, such as ACACB, LPL and ACSL1, whilst the other contains several genes relating 

to protein modification or metabolism such as FBXL5, MADD, OAZ2 and TIPARP (Figure 

3C&D). Genes associated with apoptosis, cell signalling, migration and differentiation are also 

significantly enriched in our DEGs and are described in Supplementary Figure 3.  
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Metabolomic analysis of antibiotic-treated fecal samples indicates profound alterations 
in microbially-derived metabolites 

As our transcriptomic analysis suggested antibiotic-induced acceleration of BrCa tumour 

growth may be related to metabolic reprogramming, we further probed this relationship via 

metabolomic analyses. Given we are unable to obtain information regarding the constituents 

of the microbiota in antibiotic treated animals (due to very low DNA yield), we decided to 

perform fecal metabolomics as a proxy. Fecal water samples were used in 1H NMR analysis 

which revealed that metabolite production in the antibiotic treated animals was significantly 

altered when compared to control animals as indicated in PCA (Figure 4A). Further analysis 

of metabolites revealed 17 which were significantly different, 8 were elevated whilst 9 were 

significantly depleted after antibiotic treatment (Figure 4B). The individual metabolites 

responsible for these changes are described in Figure 4C. Several amino acids including 

alanine, histidine and aspartate are significantly increased in the antibiotic treated animals in 

addition to the fermentation substrate and product raffinose and lactate respectively. 

Conversely, the short chain fatty acids butyrate and acetate are significantly decreased by 

antibiotic administration in addition to the branched chain fatty acid isovalerate (Figure 4C).   

Treatment with a single, BrCa relevant antibiotic also results in acceleration of tumour 
growth and causes significant changes to the microbiota  

Due to the knock-down efficacy of the previously used VNMA antibiotic cocktail, we were 

unable to amplify microbial 16S rRNA DNA for sequencing and were therefore unable to profile 

the microbiota of these animals. In addition, whilst clinically relevant in certain scenarios, the 

VNMA cocktail is not applicable to most BrCa patients. We therefore turned our attention to 

BrCa relevant antibiotics, particularly Cephalexin, which is widely prescribed to BrCa patients 

in the US after mastectomy. Treatment of C57BL/6 animals harbouring PYMT-BO1 tumours 

with Cephalexin at a patient relevant dose (8.64mg/kg) led to significantly accelerated tumour 

growth (Figure 5A). Analysis of the microbiota of these animals revealed that, post-treatment, 

the antibiotic and control animals cluster independently of their pre-treatment samples. 

Additionally, the post-treatment samples of the control and antibiotic treated samples also 

cluster differently (Figure 5B). The changes in abundance that lead to this clustering appear 

to be related to an interplay between the genera Lactobacillus and Faecalibaculum. 

Visualisation of relative abundance by bar plot shows that both the control and antibiotic 

treated animals lose relative abundance of Lactobacilli over time. In the control animals, this 

‘gap’ appears to be predominantly replaced by Faecalibaculum, however this does not occur 

in the antibiotic treated animals. Instead, several other genera have increased relative 

abundance (Figure 5C). This change is highlighted by alpha diversity analysis that shows the 
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reciprocal Simpson index significantly increases from 2.352 in the pre-treatment samples to 

5.422 after Cephalexin treatment. By comparison, whilst the microbiota of control animals also 

increases in diversity during experimentation, this is non-significant (2.486 to 3.073) (Figure 

5D). Further analysis revealed that 11 genera were differentially abundant. When accounting 

for multiple comparisons, 8 genera were significantly altered by antibiotic treatment: 

Mucisprillum, Marvinbryantia, Parabacteroides, Anaeroplasma, Bacteroides and 

Paraprevotella were significantly increased, whilst Alloprevotella, Alistipes, Odoribacter, 

Faecalibaculum and Anaerotruncus were significantly decreased after Cephalexin treatment 

(Figure 5E). 
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Discussion 

The use of antibiotics is widespread amongst cancer patients to prevent opportunistic infection 

during periods of immunocompromisation. However, now more than ever is the time to re-

evaluate antibiotic use in the clinic. The threat of antibiotic resistant pathogens is imminent 

and serious. According to the 2016 review by the UK Department of Health, antimicrobial 

resistance is already killing 700,000 people per year worldwide and this figure is expected to 

grow exponentially over the next 30 years [20] . Additionally, some evidence suggests that 

antibiotic use may not be beneficial to all patients. Recent studies have demonstrated an 

unequivocal role of the patient microbiome in orchestrating anti-tumour responses, and many 

have found that the use of antibiotics compromises treatment efficacy in several cancers. It is 

therefore prudent that clinicians begin to carefully consider the efficacy of antibiotic use in their 

patients. To do so, we must fully understand how the microbiome impacts different cancer 

pathologies. Other groups have made progress in understanding how antibiotics affect 

immunogenic cancers, however there is a paucity of data regarding how the microbiota might 

impact BrCa [21–23]. 

Our work intended to understand whether the use of antibiotics has any impact on primary 

tumour growth in BrCa. To address this, we undertook tumour studies using orthotopically 

implanted PyMT derived luminal (PYMT-BO1) or spontaneously derived basal (EO771) 

tumours in animals which had been administered a robust, VNMA antibiotic cocktail. This 

revealed that severe disruption of the gut microbiota results in accelerated tumour growth 

across both models. Importantly, this suggests that antibiotic treatment is detrimental 

regardless of the BrCa intrinsic subtype, however we are yet to test this in additional subtypes. 

This is largely in agreement with the findings of groups studying other cancers. Use of 

antibiotics has been shown to impact tumour growth in both pre-clinical, and human studies. 

However, these studies focus on the influence of the microbiome on anti-tumour therapies. 

For example, Vetizou et al. and Routy et al. probe the impact of antibiotics on anti-CTLA4 and 

anti-PD-1 therapies respectively, finding that these treatments are rendered ineffective when 

the microbiome is depleted [23, 24]. However, when comparing control and antibiotic-treated 

animals without administration of anti-tumour agents, these groups found no difference in 

tumour volume. This suggests that our findings may be specific to BrCa, and is supported by 

Rossini et al., who in 2006 demonstrated, using HER2/neu transgenic mice, that antibiotic 

administration alone increased the incidence of spontaneous BrCa [25]. Analysis of our 

tumours by H&E staining revealed no overt differences in tumour architecture or cellular make-

up between control and antibiotic tumours. Therefore, based on the known roles of the gut 

microbiota in guiding anti-cancer immune responses, we hypothesised that the mechanism 

driving our phenotype was likely to be immunological. However, after wide profiling of immune 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 19, 2019. ; https://doi.org/10.1101/553602doi: bioRxiv preprint 

https://doi.org/10.1101/553602


 10 

cell populations at the tumour and peripherally, we were unable to find any significant 

differences. We also undertook analysis of cytokine production using MSD V-PLEX assays to 

quantitatively assess intratumoural and intestinal cytokine production. Whilst none of the 

profiled cytokines were significantly altered intratumourally, several were significantly 

decreased in intestinal tissue. Both IL-1β and TNFα play key roles in orchestration of gut-

immune responses through chemoattraction and modulation of inflammation. Both have also 

been shown to drive CXCL1 expression and their decreased production may explain our 

observed significant reduction of CXCL1 in intestinal tissues following VNMA treatment [26, 

27]. The biological impact of this cytokine dysregulation on tumour growth is unclear, however 

it is suggestive of disrupted gut homeostasis in the VNMA treated animals. 

In the absence of immunological changes, we employed RNA sequencing of whole tumour 

extracts to gain further mechanistic insight. In agreement with the lack of apparent immune 

infiltration into tumours, we determined, after biological process enrichment analysis, that 

alterations were predominantly seen in metabolic processes, particularly in lipid and protein 

metabolism. Metabolic reprogramming is a well-established hallmark of cancer and 

upregulation of lipid metabolism is strongly associated with tumorigenesis, particularly in BrCa. 

The significant upregulation of lipoprotein lipase (LPL) expression in our model suggests 

increased utilisation of circulating fatty acids. In support of this, Acyl-CoA Synthetase 1 

(ACSL1) is also upregulated in tumours. Its role is to activate long chain fatty acids during 

synthesis of acyl-CoA and is the first committed step in fatty acid metabolism. Upregulation of 

both ACSL1 and LPL expression has been demonstrated in BrCa and correlate negatively 

with overall survival [28–30]. In addition to meeting the cell’s energy demands, lipid 

metabolism also provides substrates for membrane lipid generation. A key enzyme in this 

process, Stearoyl-CoA desaturase (SCD1) is also significantly upregulated after VNMA 

administration. Its primary function is catalysing the production of monounsaturated fatty acids 

(MUFAs) from their saturated counterparts. Production of MUFAs is noted to be elevated in 

several cancers, including breast, and is required for generation of cellular lipids, particularly 

membrane phospholipids [31]. Additionally, elevated SCD1 levels prevent the accumulation 

of saturated fatty acids, which can induce apoptosis. This is demonstrated by SCD1 inhibition 

in BrCa cells which demonstrate decreased proliferative ability and increased rates of cell 

death. Furthermore, high levels of SCD1 in BrCa are associated with poor prognosis [32, 33].  

In addition to changes in lipid metabolism, several genes associated with protein metabolism 

are also downregulated in our DEG set, and many of these genes are known tumour 

suppressors. Expression of BNIP3 can induce apoptosis in response to oxidative stress by 

mitophagy and is seen at reduced levels in more aggressive BrCa subtypes [34, 35]. 

Additionally, Ornithine Decarboxylase Antizyme 2 (OAZ2) has been shown to inhibit the 
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enzyme ornithine decarboxylase (ODC) which synthesises polyamines from ornithine and 

promotes proliferation in numerous cancers [36, 37]. The network of gene expression 

identified by our transcriptomic analysis represents several potential avenues by which 

antibiotic administration may be accelerating BrCa growth. However, robust metabolomic 

analyses are required to confirm these observations and should be the focus of future 

investigation. 

The question remains how could perturbation of the microbiome induce these tumour-

enhancing metabolic effects? Microbiota-derived metabolites have previously been shown to 

alter tumour growth in other models and recently it has been demonstrated that this is also 

applicable to BrCa. Administration of cadaverine to mice harbouring 4T1 BrCa tumours 

resulted in improved outcomes (smaller tumours, fewer metastases). Furthermore, cadaverine 

production was shown to be decreased in BrCa patients and correlated with survival [38]. To 

test this in our BrCa models we used fecal metabolomic analysis by NMR and observed 

significant metabolic dysregulation in the microbiota of VNMA treated animals (Figure 4). Of 

note are perturbations in the SCFAs acetate and butyrate. Gut microbiota derived butyrate is 

readily absorbed and has been suggested to play a role in multiple diseases including cancer 

through its ability to inhibit histone deacetylases (HDACs). Inhibition of HDACs by butyrate 

has been shown to sensitise cancer cells to ROS induced apoptosis [39]. In vitro 

administration of exogenous butyrate suppresses proliferation of BrCa cells through 

senescence and induces apoptosis [40]. Whilst our transcriptomic data did not reveal any 

differences in transcription of cell cycle regulatory genes, we do observe decreased 

expression of pro-apoptotic genes such as BNIP3 and increased pro-survival genes such as 

HERPUD1 and URI which is consistent with butyrate’s bioactivity. Therefore, we hypothesize 

that decreased butyrate bioavailability is playing some role in our system. 

Several compounds that can be utilised by tumours were also upregulated in VNMA treated 

animals. Both alanine and lactate have been associated with metabolic reprogramming,  

however alanine alone is not sufficient to contribute to the increased energy demands of 

tumours [41]. However lactate achieves this by feeding into the Krebs cycle via conversion 

into pyruvate [42]. Additionally, lactate has HDAC inhibitor activity and may modulate gene 

expression in a similar fashion to that of butyrate  [43]. Though the implications of this on 

tumorigenesis are currently unclear, the effect of microbiota derived lactate in BrCa is under 

investigation.  

To strengthen the clinical relevance of our data and attempt to gain some insight into microbial 

population changes, we turned to using a BrCa relevant antibiotic regimen. Cephalexin is 

frequently prescribed to BrCa patients in the US undergoing mastectomy and treating animals 
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at a patient relevant dose (8.64mg/kg) resulted in significantly accelerated tumour growth. 

Profiling of the microbiota revealed significant changes to the microbial constituents of 

Cephalexin treated animals. The most significantly changed genus in both treatment groups 

relative to the pre-treatment sample was Lactobacillus, however there was no significant 

difference between treatments. Therefore, the loss of Lactobacillus is likely driven by cage 

effects, tumour-microbiota interactions or natural maturation of the microbiome, and is not a 

result of Cephalexin administration [44, 45]. Of the genera significantly depleted relative to the 

control, several are either known butyrate producers (i.e. Odoribacter and Anaerotruncus) or 

possess the genes necessary for butyrate production (Faecalibaculum and Alistipes) [46–48]. 

This is consistent with the significantly decreased butyrate production observed in our fecal 

metabolomics. Whilst microbiota derived butyrate has been shown to inhibit colorectal cancer 

cell proliferation in vitro, tumour studies have demonstrated a paradoxical effect [49]. As 

discussed previously, butyrate has been shown to induce apoptosis in BrCa cultures, but the 

effect in vivo is yet to be characterised and is under investigation. 

Of the increased relative abundance genera, most are understudied with respect to their 

contribution to human health. Of particular interest is the significant increase in Bacteroides 

spp. which are known to be resistant to several antibiotics including β-lactams [50]. Their role 

in human health and particularly contributions to tumorigenesis is mixed, and heavily 

species/strain dependent. An abundance of Bacteroides fragilis (B. fragilis) has been shown 

to potentiate immunotherapy in mouse sarcoma [23]. However, their presence in the 

microbiome has recently been associated with increased incidence of colon carcinogenesis 

[51]. Additionally, different species have also been shown to drive distant cancers. Bacteroides 

thetaiotaomicron is associated with non-response to PD-1 therapies in melanoma through 

reduced infiltration of cytotoxic T cells [21]. Therefore, to determine the potential importance 

of Bacteroides in our system, it is essential we obtain data from metagenomic analyses to 

determine the species changes in the microbiome of Cephalexin treated animals; these 

studies are currently underway. 

Our work has shown that disruption of the gut microbiota using robust antibiotics may have 

detrimental impacts on BrCa growth. Whilst the mechanism driving these effects is currently 

unclear, we have uncovered a potential network of metabolic processes that may be 

contributors. Furthermore, we have shown that antibiotic administration leads to dysregulation 

of bacterial metabolite production that has the potential to release the ‘brakes’ on tumour 

growth. Finally, using a BrCa relevant antibiotic we have shown that BrCa growth is also 

accelerated, suggesting even small perturbations of the microbiome may impact patient 

outcomes. We have demonstrated that this is associated with a loss of butyrate producing 

genera in the microbiome and increases in several other genera. Whilst it is too early to say 
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the use of antibiotics in the clinic should be reconsidered, we believe it is necessary to 

investigate these findings further to ensure patient outcomes are not impacted by antibiotic 

use.  
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Materials and Methods 

Animals 

All animals were female C57BL6 mice and were sourced in-house. All animals were age 

matched at 8-10 weeks old and were cage mixed prior to experiments. All animal experiments 

were performed in accordance with UK Home Office regulations and the European Legal 

Framework for the Protection of Animals used for Scientific Purposes (European Directive 

86/609/EEC). 

Antibiotic Administration 

Animals were treated with antibiotics 3 times weekly by oral gavage (200μl in water). Animals 

were treated with either an antibiotic cocktail consisting of 1mg/ml Amphoteracin B (Sigma-

Aldrich, St-Louis, Missouri, USA), 25mg/ml Vancomycin (Sigma), 50mg/ml Neomycin (Sigma), 

50mg/ml Metronidazole (Sigma) with drinking water being supplemented with 1mg/ml 

Ampicillin (Sigma) or 44mg/ml Cephalexin (Sigma). Antibiotic treatment began 5 days prior to 

tumour cell injection and was maintained throughout animal experiments. 

Breast cancer cell culture 

PYMT-BO1 and EO771 cells were cultured in high glucose DMEM (Invitrogen, Carlsbad, 

California, US) supplemented with 10% fetal bovine serum (FBS) (Hyclone, Invitrogen) and 

100 units/mL penicillin/streptomycin (Pen/Strep) (Invitrogen). Cells were maintained at 37°C 

and 5% CO2. Tissue culture plastic was coated with 0.1% porcine gelatin (Sigma) in water for 

1 hour at 37°C prior to culture. 

In vivo tumour growth assays 

Syngeneic mouse breast carcinoma (PYMT-BO1a or E0771b) cells were injected at 1x105 per 

50μl of a 1:1 mixture of PBS and Matrigel (Corning Life Sciences, Corning, New York, USA) 

into the left inguinal mammary fat pad (MFP) of age matched female mice. Tumours were 

measured in two dimensions (Length x Width) every two days from 7 days post injection (DPI) 

using digital calipers. Upon conclusion of the experiment or once the tumours reached 

1000mm3 the animals were humanely killed by cervical dislocation and tissues harvested for 

various downstream analyses. Tumour volume was calculated according to the following 

formula: length * width2 * 0.52. 

  

aPYMT-BO1 cells obtained from Dr Katherine Weilbaecher (Washington University, St Louis, MO, USA) 

bE0771 cells obtained from Prof Kairbaan Hodivala-Dilke (Barts Cancer Institute, QMUL, London, UK) 
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Paraffin embedding and sectioning of formalin fixed tissues 

Tissues were fixed overnight in 4% PFA at 4°C before washing twice in PBS for 30 minutes. 

Tissues were gradually dehydrated through successively increasing concentrations of ethanol 

(30%-100%) before clearing in Histoclear (National Diagnostics, Atlanta GA, USA) and 

embedding in paraffin. Paraffin blocks were sectioned using a HM355 S microtome (Microm, 

Bicester, UK) at a thickness of between 5μm and 10μm and mounted onto positively charged 

glass slides (Thermofisher). Sections were dried o/n at 37°C. Prior to staining sections were 

rehydrated by washing in Histoclear before incubations in gradually decreasing concentrations 

of ethanol (100%-50%) with a final wash in dH2O.  

H&E staining 

Frozen tumour sections were air dried for 10 minutes at room temperature, transferred to 

running tap water for 30 seconds then placed in Mayer’s Hematoxylin for five 

minutes.  Sections were rinsed in running tap water until blue, drained and Eosin was added 

for 20 seconds.  Excess Eosin was blotted off sections, and sections were given a quick rinse 

in running tap water followed by a graded dehydration to Histoclear.  Sections were mounted 

with DPX and allowed to air dry. 

Flow Cytometry 

Organs were excised from humanely killed animals and tissues were mechanically 

homogenised using scalpels. Homogenate was incubated in collagenase solution (0.2% 

Collagenase IV (Invitrogen), 0.01% Hyaluronidase (Sigma) & 2.5U/ml DNAse I (Sigma) in 

HBSS) for 1 hour at 37°C with regular agitation. Supernatant was passed through a 70μm cell 

strainer and centrifuged for 5 minutes at 300 x g/4°C. Pellet was washed twice in PBS and 

resuspended in 10ml 1X red blood cell lysis buffer (Invitrogen) and incubated for 5 minutes at 

RT. Cells were washed once in PBS, counted using a haemocytometer (Sigma) and 1 million 

cells per condition transferred to a 96 well plate for staining. Cells were incubated in a fixable 

Live/Dead stain (Invitrogen, Thermofisher) for 30 minutes at RT, washed twice and blocked in 

Fc Block (Miltenyi, Bergisch Gladbach, Germany) made in FACS buffer (1% FBS in PBS) for 

10 minutes at 4°C. Cells were resuspended in 100μl antibody solutions (Table 1) and 

incubated at 4°C for 30 minutes in the dark. For cell surface only staining, cells were incubated 

in 4% PFA for 30 minutes, washed once in PBS and stored at 4°C until analysed. If intracellular 

staining is required, cells were incubated in FoxP3 fixation/permeabilisation buffer 

(Thermofisher) overnight at 4°C, washed twice in 1X permeabilisation buffer (Thermofisher), 

blocked in 5% normal rat serum for 30 minutes at RT and stained in the relevant antibody 

diluted in 1X permeabilisation buffer for 30 minutes at RT in the dark. Cells were washed twice 
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in 1X permeabilisation buffer, then finally resuspended in FACS buffer and stored at 4°C until 

analysed. 

All data was collected using a Becton Dickinson (BD, Franklin Lakes, NJ, USA) LSR II with 

standard filter sets and five lasers. Data was analysed using FlowJo software (BD). 

Gating strategies are detailed in Supplementary Figure 4. 

List of Flow Antibodies and other reagents 

Table 1 - List of flow cytometry antibodies and reagents 

Target Conjugate Manufacturer Product Number Clone Concentration 

CD45 PerCP-Cy5.5 eBioscience 45-0451 30-F11 1:400 

CD3 APC eBioscience 17-0031 145-2C11 1:200 

CD4 PE eBioscience 12-0041 GK1.5 1:200 

CD8 PE-Cy7 eBioscience 561967 53-6.7 1:400 

FoxP3 FITC eBioscience 48-5773 FJK-165 1:100 

CD11b Alexa 700 eBioscience 56-0112 M1/70 1:400 

F4/80 PE-Cy5 eBioscience 15-4801 BM8 1:400 

Ly6G APC-Cy7 BD 560600 IA8 1:200 

CD206 PE Biolegend 41705 C068C2 1:100 

MHCII eFluor450 eBioscience 48-5321 M5/114.1.2 1:200 

Live/Dead FITC Invitrogen L34970 N/A 1:200 

 

Fecal DNA Extraction 

Feces was weighed into MPBio Lysing Matrix E bead beating tubes (MPBio, Santa Ana, CA, 

USA) and extraction was completed according to the manufacturer’s protocol for the MPBio 

FastDNA™ SPIN Kit for Soil but extending the beat beating time to 3 minutes. The DNA 

recovered from these samples was assessed using a Qubit® 2.0 fluorometer (Invitrogen). 

16S Library Preparation and Sequencing 

Extracted DNA was normalised to 5ng/ul and used in 16S rRNA amplicon PCR targeting the 

V1+2 of the 16S rRNA gene using the primers detailed in Supplementary Table 3 and the 

following PCR cycle:  

95°C for 3 minutes, 25 cycles of 95°C for 30 seconds, 55°C for 30 seconds and 72°C for 30 

seconds with a final 72°C step for 5 minutes. Primer sequences are detailed below. 
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PCR products were taken through a round of AMPure XP bead clean-up to remove primers 

and sent to the Wellcome Trust Sanger Institute (Cambridge, UK) for sequencing by Illumina 

MiSeq 2x300bp paired end chemistry in multiplex generating ~100,000 reads per sample. Raw 

reads were returned to QIB for analysis. 

Bioinformatic Analysis of 16S sequencing 

At QIB, an in-house PE protocol was used for sequencing analysis. After demultiplexing and 

quality control of raw paired reads using FASTX-Toolkit [52] (minimum quality 33 for at least 

50% of the bases in each read sequence) reads were aligned against the SILVA database 

(version: SILVA_128_SSURef_tax_silva) [53] and BLASTN (ncbi-blast-2.2.25+; Max e-value 

10e-3) [54]. BLAST files were imported into MEGAN6 [55] to create proprietary rma6 files 

using the following parameters: 100 as maximum number of matches per reads, and “Min 

Score = 50” and “Top Percent = 10”.  All rma6 files of paired read sequences were then 

normalised and compared using MEGAN6. 

To make comparisons between study sets, the samples were normalised to the sample with 

the lowest number of reads. Alpha diversity analyses were performed using MEGAN6. 

Principal Coordinate Analysis plotting was performed using Bray-Curtis distances from the 

16S MEGAN community profiles. Significantly changing genera were identified from relative 

abundance data using paired and unpaired T-tests with FDR correction at 5%. 

Fecal Metabolomics 

Faecal samples were prepared for 1H NMR spectroscopy by mixing 25mg (FW) of faecal 

samples with 600µL NMR buffer made up of 0.1 M phosphate buffer (0.51 g Na2HPO4, 2.82 

g K2HPO4, 100 mg sodium azide and 34.5 mg sodium 3-(Trimethylsilyl)-propionate-d4 (1 mM) 

in 200 mL deuterium oxide) with a tube pestle. Sample tubes were vortexed for 5 minutes, 

then centrifuged at 12,000 x g for 5 minutes at 4°C. Supernatant was transferred to a 5-mm 

NMR tube for recording, conditions were as described below. 

Multivariate statistical analyses (Principal Component Analysis) were carried out using the 

PLS Toolbox v5.5 (Eigenvector Research Inc., Wenatchee, WA) running within Matlab, v7.6 

(The MathWorks Inc., Natick, MA) and Metaboanalyst 3.0 [56]. Autoscaling was applied to the 

columns of the bucket table. Univariate analyses were carried out on individual variates in 

Excel (t-tests). 
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NMR Conditions 

High resolution 1H NMR spectra were recorded on a 600MHz Bruker Avance spectrometer 

fitted with a 5 mm TCI cryoprobe and a 60 slot autosampler (Bruker, Rheinstetten, Germany). 

Sample temperature was controlled at 300 K. Each spectrum consisted of 1024 scans of 

65,536 complex data points with a spectral width of 12.5 ppm (acquisition time 2.67 s). The 

noesypr1d presaturation sequence was used to suppress the residual water signal with low 

power selective irradiation at the water frequency during the recycle delay (D1 = 3 s) and 

mixing time (D8 = 0.01 s). A 90° pulse length of 9.6 μs was set for all samples. Spectra were 

transformed with 0.3 Hz line broadening and zero filling, manually phased, and baseline 

corrected using the TOPSPIN 2.0 software. Spectra were transferred into AMIX ® software 

for bucketing and multivariate analysis applied (using Matlab ® Toolbox software). Spectra 

were transformed with 0.3 Hz line broadening and zero filling, manually phased, and baseline 

corrected using the TOPSPIN 2.0 software. Metabolites were identified using information 

found in the literature (references) or on the web (Human Metabolome Database, 

http://www.hmdb.ca/) and by use of the 2D-NMR methods, COSY, HSQC, and HMBC. 

Mesoscale Discovery Multiplex Arrays 

Tissue samples were weighed into a MPBio Lysing Matrix E bead beating tube (MPBio) with 

1ml of homogenisation buffer (PBS + 10% FBS (Invitrogen) + cOmplete™ protease inhibitor 

(Roche). Tissues were homogenised using an MPBio Fast Prep bead beater at speed 4.0 for 

40 seconds followed by speed 6.0 for 40 seconds. Samples were centrifuged at 12,000 x g for 

12 minutes at 4°C and subsequently stored at -80°C until analysed. Samples were run on a 

Mesoscale Discovery (MSD, Rockville, MD, USA) V-PLEX Pro-Inflammatory Panel 1 Mouse 

Kit according to the manufacturer’s instructions. Plate was read using an MSD QuickPlex SQ 

120 imager. 

RNA Sequencing 

Whole tumour RNA was extracted as in described previously. Extracted RNA was then quality 

checked and quantified using a 2100 Bioanalyzer (Agilent) with an RNA 6000 Nano analysis 

kit (Agilent) and any samples with a RIN value of >8 were considered for use in sequencing. 

Suitable samples were sent to the Wellcome Trust Sanger Institute for sequencing. All 

samples were processed by poly-A selection and then sequencing using non-stranded, paired 

end protocol. Initial processing was performed at Welcome Trust Sanger Institute as follows. 

Data demultiplexed and adapter removed. Raw reads quality controlled using FastQC (0.11.3, 

[57]) and trimmed (phred score > 30) using FASTX (0.1.5, [52]). This was followed by read 

alignment to mouse reference genome (NCBI Mus musculus GRCm38) using Tophat (2.1.1, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 19, 2019. ; https://doi.org/10.1101/553602doi: bioRxiv preprint 

https://doi.org/10.1101/553602


 19 

[58]) using maximum intron size 500.000 bp and default settings. Aligned transcripts were 

assembled and quantified using Cufflinks (2.1.0, [58]) (applying standard parameters). 

At QIB, read alignment and quantification was performed using Kallisto [59]. The quantified 

read data was then normalised and differential expression analysis was conducted using 

DeSeq2 [60].. Transcript IDs were annotated using the Ensembl Biomart database. 

Significantly up and down regulated genes (padj <0.05) were used to perform biological process 

and pathway analysis using DAVID. Biological processes were annotated according to the 

GO_TERM_BP_ALL database and pathway analysis was performed using KEGG pathways. 

Significantly enriched pathways were determined by a DAVID enrichment score (EASE) of 

less than 0.05. 

Statistical Analyses 

Specific statistical methods are detailed in the relevant methods section or the figure legend. 

However, unless specified otherwise, statistical analysis was performed using student’s t-test, 

* p<0.05, ** p<0.01, *** p<0.001.  
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Figure Legends 

Figure 1 – Tumour growth is accelerated by VNMA administration: A) Schematic showing 

antibiotic treatment regimen, (M – Monday, W – Wednesday and F – Friday). B) 

Representative images of agarose gels used to detect 16S rRNA amplification by PCR of DNA 

extracted from fecal samples. DoT – Days of Treatment. C) Ex vivo tumour volumes from 

animals injected with the PyMT derived PYMT-BO1 tumours. D) Representative photograph 

showing size of control and VNMA treated tumours. E) Ex vivo tumour volumes from animals 

injected with the spontaneously derived EO771 cell line. F) Representative images of H&E 

staining of tumours from control (Left) and antibiotic (Right) treated animals. Scale bar = 50µm, 

significance determined by unpaired, two-sample t test, * p<0.05 ** p<0.01, n=15 for PYMT-

BO1 and n≥6 in EO771. 

Figure 2 – Immune cell populations are not altered by VNMA administration: A) Myeloid 

cell populations determined by flow cytometry described as a percentage of total live cells in 

the tumour. B) Median Fluorescence Intensity analysis of CD206 and MHCII in macrophages. 

C) Flow cytometry of tumour infiltrating T cells, CD45 was again used as a pan-leukocyte 

marker (not shown). D&E) Flow cytometric analysis of spleen and mesenteric lymph nodes. 

F) Intratumoural cytokine production analysed by MSD V-Plex assays, data is shown in 

logarithmic scale to account for large intra-cytokine differences in production. 

Figure 3 – Intratumoural gene regulation is significantly different after VNMA treatment, 
particularly in metabolic processes: A) Volcano plot describing the parameters used for 

differential expression, FDR adjusted p value < 0.05 (Log10 adjusted) and Fold Change >2 

(Log2 adjusted). The top 7 DEGs are annotated on the graph. B) High level analysis of 

biological process enrichment using DAVID, separated by over-arching biological function C) 

Low-level analysis of the metabolic processes enriched in our DEG set, data is shown 

according to the number of genes involved in each process (Bar-plot, Left Y-axis) and the 

significance of the enrichment (Line, Right Y-axis, Log10 adjusted). D&E) Heatmaps showing 

specific genes which are related to lipid (D) and protein (E) metabolism from our DEG set. 

Colour ratio is shown according to Log2 fold change. 

Figure 4 – Antibiotic administration results in changes to bacterial metabolite 
production: One biological replicate had significant outliers in multiple metabolites and was 

excluded from analysis but is documented along with the full metabolomic dataset in 

Supplementary Figure 5. A) Two component PCA of included biological replicates. B) Volcano 

plot of remaining replicates; x-axis specifies the Log2 fold change of VNMA relative to control 
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animals and the y-axis specifies the negative logarithm to the base 10 of the t-test p-values. 

Dashed lines represent cut off values for differential regulation (FC ± 1, padj < 0.05). The 10 

most significantly regulated metabolites are annotated. C) Filtered heatmap clustered by 

average Euclidean distance showing only significantly regulated analytes (p<0.05), calculated 

by unpaired, two-tailed t test. All graphs produced using MetaboAnalyst 3.0 software.  

Figure 5 – Administration of Cephalexin increases tumour growth and 16S rRNA 
analysis describes the related changes: A) Tumour volumes of animals implanted with 

PYMT-BO1 tumours treated with patient analogous doses of the BrCa relevant antibiotic 

Cephalexin. Significance determined by unpaired two-sample T-test, * p<0.05, n≥6 B) 

Principle component analysis of all replicates using Bray Curtis distances. Pastel colours 

represent starting microbiome and darker are end-point samples. C) Full microbiome 

composition by genera in control vs Cephalexin treated animals at experimental start and end-

points. Bars represent percentage of total reads for each genus and are sorted by increasing 

number from bottom to top. Legend is ordered by greatest abundance. D) Alpha diversity 

analysis by reciprocal Simpson index of control vs Cephalexin treated animals at pre- and 

post-treatment timepoints, significance was determined by one-way ANOVA using Tukey’s 

test for multiple comparisons, * p<0.05, n=7. E) Mean fold change of significantly altered 

genera in the antibiotic treated animals relative to control at the post-treatment sampling point. 

Yellow indicates genera which are significantly enriched whilst blue bars are depleted in 

Cephalexin treated animals. Significantly altered genera were determined by unpaired two-

sample or paired T test with FDR correction of 5%.   
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