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Abstract

Neural information flow (NIF) is a new framework for system identification in neuroscience.
NIF subsumes population receptive field estimation, neural encoding, effective connectivity
analysis and hemodynamic response estimation in a single differentiable model that can be
trained end-to-end via stochastic gradient descent. NIF models represent neural information
processing systems as a network of coupled tensors, each encoding the representation of the
sensory input contained in a brain region. The elements of these tensors can be interpreted as
cortical columns whose activity encodes the presence of a specific feature in a spatio-temporal
location. Each tensor is coupled to the measured data specific to a brain region via low-rank
observation models that can be decomposed into the spatial, temporal and feature receptive
fields of a localized neuronal population. Both these observation models and the convolutional
weights defining the information processing within regions and effective connectivity between
regions are learned end-to-end by predicting the neural signal during sensory stimulation. We
trained a NIF model on the activity of early visual areas using a large-scale fMRI dataset. We
show that we can recover plausible visual representations and population receptive fields that are
consistent with the existing literature. Trained NIF models are accessible for in silico analyses.

1 Introduction
Uncovering the neural computations that subserve cognition and behaviour is a major goal in
neuroscience (Churchland and Sejnowski, 1992). Arguably, a true understanding of the brain requires
replicating biological neural information processing in silico. However, a general approach for
estimating large-scale brain models from observed data has not been proposed so far. This paper
introduces a new framework, referred to as neural information flow (NIF), which allows us to achieve
this goal.

A popular approach for modeling neural information processing is a goal-driven approach,
where a basis set of of stimulus features optimized to solve a specific task is used to model neural
responses to complex naturalistic input (Naselaris et al., 2011; van Gerven, 2017; Yamins and DiCarlo,
2016). Using this approach, the best results so far have been obtained using deep neural networks
(DNNs) (Kriegeskorte, 2015; Güçlü and van Gerven, 2015; Yamins and DiCarlo, 2016; Agrawal et al.,
2014; Cichy et al., 2016; Horikawa and Kamitani, 2017; Cadena et al., 2019). However, these models
have been optimized on tasks such as object classification on image databases, and not for explaining
brain responses. While there exists a correspondence between DNNs and brains at a functional level,
they do not provide realistic models of neural information processing.

An alternative data-driven approach is to directly estimate neural models from measurements of
neural activity. We refer to this uncovering of neural information processing systems from observed
data as neural system identification (Stanley, 2005; Wu et al., 2006). This approach has been used to
reveal various mechanisms of neural information processing in biological systems (Joukes et al., 2014;
Klindt et al., 2017; Antolík et al., 2016; McIntosh et al., 2016; Brackbill et al., 2017). However, so far,
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neural system identification has been used to explain neural responses in individual brain regions.
Instead, we aim to estimate whole-brain models that model neural computations in individual neural
populations as well as causal interactions between neural populations.

Both goal-driven and data-driven models tend to ignore the causal interactions between brain
regions. That is, they are lacking the coupling between distinct neural regions commonly studied
with effective connectivity methods (Friston et al., 2003; Friston, 2011; Liao et al., 2010; Ambrogioni
et al., 2017). Established techniques for uncovering effective connectivity are able to uncover this
causal coupling (Friston et al., 2003), but do not capture the nature of information processing that
drives the interaction between brain regions.

NIF models can be interpreted as “synthetic (in silico) brain models” that learn to capture the
nonlinear computations that take place in real brains. Instead of modeling brain regions in an isolated
fashion, they include connectivity between brain regions by taking afferent input into account (Haak
et al., 2013). Moreover, by making use of convolution and factorization, we are able to estimate
whole-brain models in an efficient manner. In the following, we outline the basic methodology
of NIF modeling. Using a large functional magnetic resonance imaging (fMRI) dataset acquired
under naturalistic stimulation we demonstrate that the model is capable of generating realistic brain
measurements and that the computations captured in the model are biologically meaningful.

Sensory
Input

Behaviour

Neural
Recordings

Synthetic brain AnalysisEnvironment Mechanisms Phenomenology

Figure 1: The philosophy underlying neural information flow. NIF models define synthetic brains that model
information processing in real brains. They are specified in terms of mutually interacting neuronal populations
(white discs) that receive sensory input (green) and give rise to measurements of neural activity (blue) and/or
behavior (red). In practice, NIF models may consist of up to hundreds such interacting populations. They
can be estimated by fitting them to neurobehavioural data acquired under these tasks. By analyzing NIF
models, we can gain a mechanistic understanding of neural information processing in real brains and how
neural information processing relates to phenomenology.

This paper outlines the basic principles of NIF models. However, the framework is general in the
sense that the experimenter is free to choose the neural architecture of individual brain regions and
how these regions map onto observed measurements, which can be either neural or behavioural in
nature. The philosophy of neural information flow is outlined in Figure 1. Given the generality of
our framework, we expect that it will guide the development of a new family of generative models
that allow us to uncover the principles of neural computations in biological systems.

2 Neural information flow
The purpose of a NIF model is to capture the neuronal computations that take place within and
between neuronal populations in response to a naturalistic sensory input. The core of a NIF model is
a deep convolutional architecture. Each layer of this architecture stores the representation of the
sensory input encoded in a specific brain region. Information is processed through convolutions,
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which model the topographically organized connectivity between brain regions. These representations
are used to predict measurements through low-rank observation models that couple each layer of the
network to the observable responses of a specific brain region. These low-rank observation models
can be factorized into spatial, temporal and feature components.

The model parameters are estimated by fitting the measured neural signals during sensory
stimulation. Specifically, the model receives the same sensory input that is presented to the
participant and predicts the measurements of all the brain regions of interest. Both the internal
convolutions and the observation models are trained end-to-end using SGD. Note that the only
error signal comes from the neural responses without any further pre-training and regularization.
This differs from most existing encoding approaches, where neural responses are predicted from the
activations of a network trained on an unrelated classification task (Kriegeskorte, 2015; Güçlü and
van Gerven, 2015; Agrawal et al., 2014; Horikawa and Kamitani, 2017). In the following we describe
the components in more detail.

2.1 Modeling neural representations
We model the neural representations encoded in individual brain regions using tensors. The activity
of a neural area is encoded in a four-dimensional tensor N ∈ RNc×Nx×Ny×Nt , whose array dimensions
represent channels c, two spatial coordinates (x, y) and time t, respectively. During training on neural
measurements, the feature maps N[i, :, :, :] learn to encode neural processing of specific stimulus
(input) characteristics such as oriented edges or coherent motion. Consequently, a tensor element
can be interpreted as the response of one cortical column. Under the same interpretation, cortical
hyper-columns are represented by a sub-tensor storing the activations of all the columns that respond
to the same spatial location. Sensory inputs are represented in the same manner. The input tensor
represents the responses of sensory receptors such as the photoreceptors in the retina.

2.2 Modeling information flow
We model effective connectivity from a source region a to a target region b as a convolution between
the neural tensor Na and a tensor of synaptic weights Wa→b:

(Na ?Wa→b)[cout, x, y, t] =
∑

cin,dx,dy,dt

Na[cin, x− dx, y − dy, t− dt]Wa→b[cin, dx, dy, dt, cout] . (1)

In other words, here we model neural processing using 3D convolutions. To enforce causality of
the neural responses, the temporal filters should be causal, meaning that the only non-zero weights
correspond to past time points. However, this assumption can be dropped when the time scale of our
observations is much slower than that of the underlying temporal dynamics.

As shown in Equation (1), the tensor W has five array dimensions: input channels, two spatial
coordinates, one temporal coordinate and one output channel. The convolution is performed along the
two spatial dimensions and the temporal dimension. The spatial weights model the topographically
organized synaptic connections while the temporal component models synaptic delays. Using this
notation, we can define the activation of the j-th brain area as a function of its afferent input:

Nj = f

(
N∑
i=1

Ni ?Wi→j + Bj

)
, (2)

where f is a (nonlinear) activation function (applied element-wise) and Bj determines the bias. Using
this setup, we can model how neural populations respond to sensory input, as well as to each other.
Note further that bottom-up and top-down interactions between brain regions can be integrated in
the same model.
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2.3 Modeling observable signals
NIF models are estimated by linking neural tensors to observation models that capture (indirect)
measurements of brain activity. Observations are represented using tensors Y that reflect multiple
responses in space and time. They are modelled as

Y = g (N1, . . . ,NN ) + ε , (3)

where g is the observation model and ε is measurement noise. The exact form of g depends on
the kinds of measurements that are being made. Neuroimaging methods such as fMRI, single- and
multi-unit recordings, local field potentials, calcium imaging, EEG, MEG; but also motor responses
and eye movements are observable responses to afferent input and can thus be used as a training signal.
Note that the same brain regions can be observed using multiple observation models, conditioning
them on multiple heterogeneous datasets at the same time. This provides a solution for multimodal
data fusion in neuroscience (Uludağ and Roebroeck, 2014).

In this paper, we focus on blood-oxygenation-level dependent (BOLD) responses obtained for
individual voxels using fMRI. In this case, we can consider the voxel responses separately for each
region, such that we have Yi = gi (Ni)+ε for each region i. Let Yi ∈ RK×T denote BOLD responses
of K voxels acquired over T time points inside the i-th region. Our observation model for the k-th
voxel in that region is defined as

Yi[k, t+ ∆t] =
∑

c,x,y,t

Ni[c, x, y, t]Ui[c, x, y, t, k] + ε[k] , (4)

where ∆t is a temporal shift of the BOLD response that is used to take a basic offset in the
hemodynamic delay into account (4.9 s in our example). Every brain region can be observed using a
function of the form shown in Equation (4).

To simplify parameter estimation and facilitate model interpretability we use a factorized repre-
sentation of U. That is,

U[c, x, y, t, k] ≈ Uc[c, k]Us[x, y, k]Ut[t, k] , (5)

where Uc[·, k] are the channel loadings which capture the sensitivity of a voxel to specific input
features, Us[·, ·, k] is the spatial receptive field of a voxel and Ut[·, k] is the temporal profile of the
observed BOLD response of the k-th voxel. Hence, the estimated voxel-specific observation models
have a direct biophysical interpretation.

We further facilitate parameter estimation by using a spatial weighted low-rank decomposition of
the spatial receptive field:

Us[x, y, k] ≈ bk +
R∑

r=1

ak,rUx,r[x, k]Uy,r[y, k] . (6)

Here, bk is a voxel-specific bias and ak,r are positive rank amplitudes. In our experiments, we used
R = 4. To further stabilize the model and obtain localized population receptive fields, we apply a
softmax nonlinearity to the columns (voxel-specific weights) of Ut, Ux and Uy. That is, the elements
ui of each column vector u of these matrices are given by

ui = σi(v) = exp(vi)/
∑
j

exp(vj) , (7)

where the vi are learnable parameters. This enforces positively weighted spatio-temporal receptive
fields and reduces noise in the individual estimation of the voxel-specific weight values. The rank
limits the complexity of the spatial observation model. Rank one models can estimate unimodal
receptive fields. However, a small number of voxels have nonclassical receptive fields that respond to
multiple parts of the input space (see Figure 6), for which more degrees of freedom are needed.
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2.4 Model estimation
Once the architecture of the NIF model is defined, its parameters (synaptic weights and observation
model parameters) can be estimated using stochastic gradient descent (SGD). NIF allows modeling
recurrent neural computations (loops) that arise due to both bottom-up and top-down connections
between brain regions as well by unrolling the graph and performing backpropagation through
time (Werbos, 1990). However, in the present paper we only model feed-forward processing. Losses
are estimated within brain regions as mean squared error across voxels. The individual loss terms for
every brain region are summed to obtain a final loss that is minimized using SGD. Note that since
the model couples neuronal populations, region-specific estimates are constrained by one another
and consequently make use of all observed data. The NIF example presented here was implemented
in the chainer framework for automatic differentiation (Tokui et al., 2015).

3 Experimental validation
To test our example visual system model, we made use of a unique large-scale functional MRI dataset
for which which one subject was exposed to almost 23 hours of complex naturalistic spatiotemporal
stimuli. Specifically, we presented episodes from the BBC series Doctor Who (Davies et al., 2005).

3.1 Stimulus material
A single human participant (male, age 27.5) watched 30 episodes from seasons 2 to 4 of the 2005
relaunch of Doctor Who. This comprised the training set which was used for model estimation.
Episodes were split into 12 min chunks (with each last one having varying length) and presented
with a short break after every two runs. The participant additionally watched repeated presentations
of short movies (Pond Life (five movies of 1 min, 26 repetitions) and Space / Time (two movies of
3 min, 22 repetitions)) in random permutations after nearly every episode. They were taken from
the series’ sequel to avoid overlap with the training data. This comprised the test set which was used
for model validation.

3.2 Data acquisition
We collected 3T whole-brain fMRI data. It was made sure that the training stimulus material was
novel to the participant. Data were collected inside a Siemens 3T MAGNETOM Prisma system
using a 32-channel head coil (Siemens, Erlangen, Germany). A T2*-weighted echo planar imaging
pulse sequence was used for rapid data acquisition of whole-brain volumes (64 transversal slices with
a voxel size of 2.4× 2.4× 2.4 mm3 collected using a TR of 700 ms). We used a multiband-multi-echo
protocol with multiband acceleration factor of 8, TE of 39 ms and a flip angle of 75 degrees. The
video episodes were presented on a rear-projection screen with the Presentation software package,
cropped to 698× 732 pixels squares so that they covered 20◦ of the vertical and horizontal visual field.
The participant’s head position was stabilized within and across sessions by using a custom-made
MRI-compatible headcast, along with further measures such as extensive scanner training. The
participant had to fixate on a fixation cross in the center of the video. At the beginning of every
break and after every test set video a black screen was shown for 16 s to record BOLD fadeout,
however here we omit this part of the data. In total this leaves us with 118.197 whole-brain volumes
of single-presentation data, forming our training set (used for model estimation); and 1.031 volumes
of resampled data, forming our test set (used for model evaluation).

Data collection was approved by the local ethical review board. All specifics of the data set are
described in a separate manuscript accompanying the data that will be made publicly available.
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Figure 2: The example NIF model represents a simplified feed-forward architecture of early visual system
regions. Underneath the tensors resulting from the 3D convolution operations we state the size of each input
space (x× y × t) to the next layer. The number of feature maps (channels) in each input space is printed in
boldface, with the stimulus (input) space consisting of a single channel. The input to the network are 3D
stimulus video segments consisting of 3× 16 frames (covering three TRs of 700 ms each), aligned with the
hemodynamic response by applying a fixed delay of 7 TRs. The first convolutional layer is not attached to a
region observation model, but is a single-channel linear spatial convolution layer. It serves as a learnable
linear preprocessing step that accounts for retinal and LGN modulations. Convolutional kernel sizes are
7 × 7 × 7 in the second convolutional layer (leading to the V1 tensor), and 3 × 3 × 3 for all other layers.
After every convolution operation we apply a sigmoid nonlinearity and spatial average pooling with 2× 2× 2
kernels. Before entering the Ut observation models the temporal dimension is average pooled so that each
point t covers one TR. All weights in this model (colored blue) are learned by backpropagating the mean
squared error losses from predicting the BOLD activity of the observed voxels. The voxel-specific observation
models consisting of the spatio-temporal weight vectors Us and Ut and the channel observation vector Uc

enable the end-to-end training of the model from observational data.

3.3 Data preprocessing
Minimal BOLD data preprocessing was performed using FSL v5.0. Volumes were first aligned
within each 12 min run to their center volume (run-specific reference volume). Next, all reference
volumes were aligned to the center volume of the first run (global reference volume). The run-specific
transformations were applied to all volumes to align them with the global reference volume.

The signal of every voxel used in the model was linearly detrended, then standardized (demeaning,
unit variance) per run. Test set BOLD data was averaged over repetitions to increase signal to noise
ratio, and as a final step the result was standardized again. A fixed delay of 7 TRs (4.9 s) was used
to associate stimulus video chunks with responses and allow the model to learn voxel-specific HRF
delays within Ut. With the video segments covering 3 TRs starting from the fixed delay, the BOLD
signal corresponding to a stimulus is thus expected to occur within a time window of 4.9 s to 6.3 s
after the onset of the segment. As there were small differences between frame rates in the train and
test sets we converted the stimulus videos to a uniform frame rate of 23.86 Hz (16 frames per TR) for
training the example model. To reduce model complexity we downsampled the videos to 112× 112.
As the model operates on three consecutive TRs, the training input size was 112× 112× 48. The
stimuli were converted to greyscale prior to presenting them to the model. Otherwise stimuli were
left just as they were presented in the experiment.
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3.4 Model architecture
We implemented a purely feed-forward architecture for modeling parts of the visual system (LGN,
V1, V2, V3, FFA and MT). The used architecture is illustrated in detail in Figure 2. FFA and MT
have their own tensors originating from V3 to allow for a simplified model of the interactions between
upstream and downstream areas. We intentionally used a simplified model to focus on demonstrating
the capabilities of the NIF framework. To model LGN output, we used a linear layer consisting of a
single 3× 3× 1 spatial convolutional kernel. The model was trained for 11 epochs with a batch size
of 3, using the Adam optimizer (Kingma and Ba, 2014) with learning rate α = 5× 10−4. Weights
were initialized with Gaussian distributions scaled by the number of feature maps in every layer (He
et al., 2015).

4 Results
In this paper, we focus on the processing of visual information. In the following, we show that a NIF
model uncovers meaningful characteristics of the visual system.

4.1 Response prediction
After training the NIF model, we observed that BOLD responses in a majority of voxels in each
brain region could be significantly predicted by the model (p < 0.01, Bonferroni-corrected for the
total number of gray matter voxels). This is illustrated in Figure 3, showing voxel-wise correlations
between predicted and observed test data per region. The results show that the NIF model indeed
generates realistic brain activity in response to unseen input stimuli (out-of-sample prediction).
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100

V1 (n=1456)

0.0 0.5

V2 (n=1306)

0.0 0.5

V3 (n=964)

0.0 0.5

r
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15
FFA (n=107)

0.0 0.5

r

MT (n=56)
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z(r)

Figure 3: A. Histograms of voxel-wise correlations between predicted and observed BOLD responses on the
test set in different observed brain regions. The vertical line marks the median. The blue area shows the
significantly predictable voxels. B. Cortical flatmap of the distribution of all correlations across the visual
system. For the map we applied a Fisher z-transform to facilitate linear visual comparison of correlation
magnitudes.

4.1.1 Linear preprocessing

Both the retina and the LGN process visual information before it enters the visual cortex (Graham
et al., 2006; Dan et al., 1996). In our NIF model, we account for this biological preprocessing with a
learnable linear purely spatial single-channel convolutional layer (3× 3× 1) (without nonlinearities)
that connects the retinal input to the V1 input. In the main experiment presented in this paper, we
found that this layer behaves as an edge extractor (Figure 4B).

In alternative training runs, we included a second preprocessing channel in order to investigate
its effect. In this case, one channel became an edge extractor while the other channel extracted
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luminance (Figure 4C). This is likely to be a reflection of the independence of luminance and contrast
information in natural images and in LGN responses (Mante et al., 2005). These results indicate that
the model is capable of learning a biologically plausible linear transformation of the visual input.

A B C

Figure 4: Learned linear preprocessing. A. Original stimulus. B. Using one channel, the model learns to
extract edges. C. When an additional channel is added, the model learns to capture luminance information.

To simplify the model and reduce computational burden we used a single preprocessing channel
in the following analyses.

4.2 Neural representations

A

V2 V3 FFA MT

time

V1

 B

Figure 5: A. The 64 spatio-temporal channel weights estimated from neural data for area V1 (frame three
out of seven). The right panel shows seven of these feature weights over time. For visualization, channel
weights were clipped at the extremes and all weights were globally rescaled between 0 and 1. B. Preferred
inputs maximizing the responses of the first four feature maps for V1 (together with their corresponding
channel visualization) and for the feature maps associated with downstream brain regions.

Before nonlinearities are applied, neural network features can be inspected by visualizing the
learned weights. Figure 5A shows the 64 channels (feature detectors) learned by the neural tensor
connected to V1 voxels. We see that several well-known feature detection mechanisms of V1 arise
such as Gabor-like response profiles (Jones and Palmer, 1987). Several of these feature detectors
show distinct dynamic temporal profiles (see Figure 5A, right panel), reflecting the processing of
visual motion (Joukes et al., 2014).

For higher-order regions we need to resort to other visualization techniques. One common
approach is computing the gradient that leads to an increase in the activity in the whole feature map
of the target channel, and using this gradient to modify the input, starting from a white noise pattern.
The resulting visualizations give an impression of the inputs which specific neural network channels
prefer or respond strongly to. This procedure leads to noisy visualizations, but can be stabilized by
iteratively repeating it on multiple increasing scales of the input image (Mordvintsev et al., 2015).
We have used this procedure to synthesize preferred inputs of our network. We have used four scales

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/553255doi: bioRxiv preprint 

https://doi.org/10.1101/553255


(starting at 37× 37× 8 increasing with a scaling factor of 1.3 up to 81× 81× 18), using the mean
absolute error on the feature map activations as loss, and an SGD optimizer with a learning rate of
2000 and L2 regularization. The results for different areas can be seen in Figure 5B. The V1 preferred
input synthesis mainly shows similarly oriented bars across the feature maps. Higher-order channels
of the model show complex combinations consisting of multiple spatial frequencies.

4.3 Receptive field mapping
We examined whether the retinotopical organization of the visual cortex can be recovered from the
spatial observation models.

Us represents spatial receptive field estimates for every voxel. Some of these voxel-specific receptive
fields are shown in Figure 6A. The model has primarily learned classical local unimodal population
receptive fields, but has also learned more complex non-classical response profiles (Olshausen and
Field, 2005). This matches the expectation that a population (voxel) response is not necessarily
restricted to unipolar receptive fields.

To check that the NIF model has indeed captured sensible retinotopic properties we determined
the center of mass of the spatial receptive fields, and transformed these centers to polar coordinates
using the central fixation point as origin. Sizes of the receptive fields were estimated as the standard
deviation across Us, using the centers of mass as mean. Voxels whose responses could not be
significantly predicted were excluded from this analysis.

Figure 6 shows polar angle (B), eccentricity (C) and receptive field size (D) for early visual system
areas observed by our model. Maps were generated with pycortex (Gao et al., 2015). Note that
the boundaries between visual areas V1, V2 and V3 have been estimated with data from a classical
wedge and ring retinotopy session. It becomes clear that reversal boundaries align well with the
traditionally estimated ROI boundaries. The larger eccentricity and increase in receptive field size
(C) matches the expected fovea-periphery organization as well.

A B

FFAV1 V2 V3 MT

C D

Figure 6: A. Various spatial receptive fields in video pixel space Us learned for different ROIs within our
framework. Most estimated spatial receptive fields are unipolar. B-D. Basic retinotopy that arose in the
voxel-specific spatial observation matrix Us within the NIF model. B. Polar angle. C. Eccentricity. D.
Receptive field size.

The NIF model thus learns sensible retinotopic characteristics of the visual system directly from
naturalistic data. Our results also indicate that the NIF framework allows the estimation of accurate
retinotopic maps from naturalistic videos.
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5 Discussion
This paper introduced neural information flow as a new approach for neural system identification. The
approach relies on a neural architecture specified in terms of interacting brain regions that each embody
nonlinear computations. By conditioning each brain region on associated measurements of neural
activity, we can estimate neural information processing systems end-to-end. By allowing interactions
between brain regions, each brain region will act as a regularizer for the neural computations that
emerge in other brain regions. After all, the estimated neural computations must jointly explain
observed responses across all brain regions.

We showed using fMRI data collected during prolonged naturalistic stimulation that we can
successfully predict BOLD responses across different brain regions. Furthermore, meaningful receptive
fields emerged after model estimation. Importantly, the learnt receptive fields are specific to each
brain region but collectively explain all of the observed measurements. To the best of our knowledge,
these results demonstrate for the first time that biologically meaningful information processing
systems of multiple interconnected regions can be directly estimated from neural data. NIF allows
neuroscientists to specify hypotheses about neuronal interactions and test these by quantifying how
well the resulting models explain observed measurements.

NIF generalizes current encoding models. For example, basic population receptive field mod-
els (Dumoulin and Wandell, 2008) and more advanced neural network models (van Gerven, 2017) are
special cases of NIF that assume no interactions between brain regions and make specific choices for
the nonlinear transformations that capture neuronal processing. Furthermore, current approaches
mainly rely on using neural networks that are trained to solve another task such as object recogni-
tion (Güçlü and van Gerven, 2015; Yamins et al., 2014). An exception is, e.g. (Güçlü and van Gerven,
2016), but the employed models required the transformation of sensory input to lower-dimensional
stimulus features and did not allow the explicit recovery of neural computations in individual regions
of interest. Here we show that biologically-interpretable models can be estimated directly from neural
data using neural information flow.

The present work also provides a new approach to effective connectivity analysis. The researcher
can specify alternative NIF models and then use explained variance as a model selection criterion.
This is similar in spirit to dynamic causal modelling. However, instead of using changes in neural
dynamics to estimate effective connectivity, we can embraces changes in neural computation to
estimate causal interactions.

NIF can be naturally extended in several ways. The employed convolutional layer to model neural
computation can be replaced by neural networks that have a more complex architecture. For example,
recurrent neural networks can be used to explicitly model the changes in neural dynamics that are
now captured by 3D convolutions. Furthermore, lateral and feedback processes are easily added by
adding additional links between brain regions.

NIF models can also be extended to handle other data modalities. Alternative observation models
can be formulated that allow us to infer neural computations from other measures of neural activity
(e.g., single- and multi-unit recordings, local field potentials, calcium imaging, EEG, MEG). Moreover,
NIF models can be conditioned on multiple heterogeneous datasets at the same time, providing an
elegant solution for multimodal data fusion. Cortical flow can also be easily applied to other sensory
inputs. For example, auditory areas can be conditioned on auditory input (see e.g. (Güçlü et al.,
2016)). If this is combined with visual input then we may be able to uncover new properties of
multimodal integration (Simanova et al., 2014).

Note that we are not restricted to conditioning NIF models on neural data. We may instead (or
also) condition these models on behavioural data, such as motor responses or eye movements. The
resulting models should then show the same behavioural responses as the system under study. We
can even teach NIF models to solve the task at hand directly using reinforcement learning (Sutton
and Barto, 2017). In this sense, NIF models provide a starting point for creating brain-inspired AI
systems that more closely model how real brains solve cognitive tasks.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/553255doi: bioRxiv preprint 

https://doi.org/10.1101/553255


Estimated NIF models can be interpreted as synthetic brains that model their biological counter-
parts. This implies that we can subject them to any approach which can also be used to probe neural
information processing in real brains. For instance, we can apply any method for neural data analysis
to the neural time series that result from driving the model with external input. Recently developed
nonlinear decoding techniques can shed further light on the neural representations that are encoded
by different brain regions (Güçlütürk et al., 2017), providing insight into the phenomenological
experience of synthetic brains. Here we restricted ourselves to demonstrating the virtues of our
approach using basic receptive field analyses.

Finally, we can use NIF models as in-silico models to examine changes in neural computation.
For example, we can examine how neural representations change during learning or by virtual
lesioning of the network (Graziano and Aflalo, 2007). This can provide insights into cognitive
development and decline. We can also test what happens to neural computations when we directly
drive individual brain regions with external input. This provides new approaches for understanding
how brain stimulation modulates neural information processing, guiding the development of future
neurotechnology (Roelfsema et al., 2018).

Summarizing, we view neural information flow as a starting point for building a new family of
rich, general, biologically-inspired computational models that capture neural information processing
in biological systems. As such it provides a perfect blend of computational and experimental
neuroscience (Churchland and Sejnowski, 2016). NIF models are also scalable since they make use
of efficient stochastic gradient methods, as developed by the artificial intelligence community. This
provides us with a principled approach to make sense of the high-resolution datasets produced by
continuing advances in neurotechnology (Stevenson and Kording, 2011). We expect that (variants of)
NIF models will provide exciting new insights into the principles and mechanisms that dictate neural
information processing in biological systems.
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